CN111902818A - 用于时钟和电压的自主安全性和功能安全的装置 - Google Patents

用于时钟和电压的自主安全性和功能安全的装置 Download PDF

Info

Publication number
CN111902818A
CN111902818A CN201980021328.2A CN201980021328A CN111902818A CN 111902818 A CN111902818 A CN 111902818A CN 201980021328 A CN201980021328 A CN 201980021328A CN 111902818 A CN111902818 A CN 111902818A
Authority
CN
China
Prior art keywords
clock
output
counter
frequency
multiplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980021328.2A
Other languages
English (en)
Inventor
纳赛尔·库尔德
普拉文·摩萨利坎蒂
希普蒂·海格德
马克·L·内登加德
沃恩·J·格罗斯尼克
王琪
卡纳代·拉梅什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN111902818A publication Critical patent/CN111902818A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/81Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer by operating on the power supply, e.g. enabling or disabling power-on, sleep or resume operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/06Clock generators producing several clock signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K21/00Details of pulse counters or frequency dividers
    • H03K21/08Output circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/095Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using a lock detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • H03L7/1974Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division
    • H03L7/1976Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division using a phase accumulator for controlling the counter or frequency divider
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Manipulation Of Pulses (AREA)
  • Electric Clocks (AREA)
  • Power Sources (AREA)

Abstract

提供了一种用于时钟和电压的自主安全性和功能安全性(FUSA)的装置。该装置可以包括:多路复用器,具有第一输出和第二输出,第一输出通信地耦合到引脚以接收管芯外部的第一时钟,并且第二输入耦合到耦合至分频器的输出;振荡器,提供第二时钟;以及计数器,耦合到多路复用器和振荡器的输出,其中该计数器以第二时钟操作并用于确定第一时钟的频率。该装置还可以包括:用于监测FUSA的(一个或多个)电压的电压监测器电路、用于FUSA的基准生成器、用于FUSA的占空比监测器、用于FUSA的频率劣化监测器、以及用于FUSA的相位误差劣化监测器。

Description

用于时钟和电压的自主安全性和功能安全的装置
优先权声明
本申请要求于2018年6月27日递交的题为“用于时钟和电压的自主安全性和功能安全的装置(APPARATUS FOR AUTONOMOUS SECURTIY AND FUNCTIONAL SAFETY OF CLOCKAND VOLTAGES)”的美国专利申请No.16/020,918的优先权,其全部内容通过引用合并于此。
背景技术
随着计算设备(例如,笔记本电脑、平板电脑、智能手机、计算机、服务器、物联网等)成为用户的日常结构,硬件和软件的安全性至关重要。处理器的物理引脚上的信号可能被操纵而使处理器执行非预期的功能。例如,存储在非易失性存储器中供处理器内部使用的数据可能被未授权用户使用处理器的引脚上的不同信号来检索。同样地,在处理器上执行的软件可能使处理器的硬件执行未授权的功能(例如,降低锁相环的分频比)。尽管已经做出了许多努力来从计算设备减轻和/或去除软件病毒,但是对于熟练的黑客来说,硬件在很大程度上仍未受到保护。
附图说明
从以下给出的详细描述和本公开的各个实施例的附图将更全面地理解本公开的实施例,然而,不应将其视为将本公开限制于特定的实施例,而仅是为了解释和理解。
图1示出了根据本公开的一些实施例的用于向处理器提供功能安全(FUSA)的时钟和电压监测器的高级架构。
图2示出了根据一些实施例的示出高级架构的时序图的曲线图。
图3示出了根据一些实施例的用于监测FUSA的时钟频率的窄范围单频振荡器。
图4示出了根据一些实施例的用于监测FUSA的电压的电压监测器电路。
图5示出了根据一些实施例的用于FUSA的基准生成器。
图6示出了根据一些实施例的时钟架构,该时钟架构耦合到一个或多个性能监测电路以监测FUSA。
图7示出了根据一些实施例的用于提供FUSA的基于并行前缀树架构的可扩展比较器。
图8示出了根据一些实施例的用于FUSA的占空比监测器。
图9A-B分别示出了根据一些实施例的用于FUSA的频率劣化监测器、以及示出了老化影响的曲线图。
图10A示出了根据一些实施例的用于将基准时钟与反馈时钟进行比较并生成锁相指示符的电路。
图10B示出了根据一些实施例的为了FUSA目的确定相位误差劣化的逻辑。
图11示出了根据一些实施例的用于图1的架构的加电检测器。
图12示出了根据本公开的一些实施例的具有改进FUSA的装置的智能设备或计算机系统或SoC(片上系统)。
具体实施方式
各种实施例描述了一种方法和装置,用于连续且准确地监测所有关注的外部和内部时钟频率以满足严格的安全性和功能安全(FUSA)要求。在一些实施例中,用于FUSA的装置在引导或熔断负载之前自主地监测外部电压和时钟参数。例如,独立于各种电路的任何微调或校准,装置监测外部电压和时钟参数,以识别并标记对外部电压和时钟参数的任何不期望变化。在一些实施例中,在一个集成解决方案中提供了组合的电压/时钟精确监测器以实现安全性和功能安全。
一些实施例提供了监测器,这些监测器连续地跟踪关注的时钟频率和电压,并且如果超过最小和最大阈值、并在超过最小和最大阈值时,则将错误报告给一个或多个功能和安全性控制器。这些阈值可以按产品进行预编程,或在后续阶段进行编程。在一些实施例中,提供了非常窄频率范围的振荡器(例如,电感-电容(LC)高频谐振电路(tank)),其传送稳定的时钟以精确地监测和/或采样外部和/或内部时钟。在一些实施例中,提供了切换监测器,其检测外部时钟何时切换以接合监测器。在一些实施例中,提供电压基准生成器(例如,带隙(BG)电路)和稳压器(例如,低压差线性稳压器(low dropout regulator))以独立地生成FUSA监测器所需的内部电压。在一些实施例中,电压基准生成器和稳压器支持宽输入电源电压范围。还提供了内置的加电检测器(POD)以启用电源电压和基准电压生成。在一些实施例中,电压监测器持续跟踪电压并报告相对于设定阈值的任何变化。在一个这样的实施例中,为了安全性,在熔断负载之前使用硬件默认值,并且在启用微调或校准过程之前,可以应用针对功能安全的各种电路的微调或校准代码。
在一些实施例中,可以通过重新调整下游电路的电路参数和逻辑来减轻监测器发现的一些或所有异常(例如,超频、外部参考时钟的频率变化、电源电压变化等)。例如,如果外部时钟的频率发生变化,则相应的锁相环(PLL)可能无法生成正确的时钟。为了解决这个问题,确定外部时钟频率,并对PLL分频比进行适当的改变以使PLL输出时钟保持在其预期的频率。
在一些实施例中,提供了用于监测锁相环(PLL)的反馈时钟的装置。在一些实施例中,在监测反馈时钟之前通过分频器对反馈时钟进行分频,以提高监测器的精度。虽然参考监测PLL的反馈时钟描述了一些实施例,但是可以监测具有由已知参考时钟频率设置的已知频率的任何时钟。在一些实施例中,提供了FUSA控制器,其从关注的几个时钟当中旋转要监测的时钟,同时避免高速计数器/逻辑的复制。在一些实施例中,监测器用于具有BIST(内置自测)的HVM(高容量监测),以在指定的锁定计时器之后内部地改变PLL时钟分频比。例如,各种实施例的监测器用于测试HDMI 300+频率的精度,并且这显著减少了测试时间。
在以下描述中,讨论了许多细节以提供对本公开的实施例的更透彻的解释。然而,对于本领域技术人员将明显的是,可以在没有这些具体细节的情况下实施本公开的实施例。在其他情形下,公知的结构和设备以框图形式示出而不是详细描述,以避免模糊本公开的实施例。
要注意,在实施例的相应附图中,信号用线表示。一些线可以更粗以指示更多的组成信号路径,和/或在一端或多端具有箭头以指示主要信息流方向。这些指示不是意在进行限制。相反,这些线与一个或多个示例性实施例结合使用来促进更容易地理解电路或逻辑单元。如由设计需要和偏好所规定的,任何所表示的信号实际上可以包括可沿任一方向行进的一个或多个信号并且可采用任何适当类型的信号方案来实现。
在整个说明书中和权利要求书中,术语“连接”指所连接的事物之间的直接连接(例如,电气、机械、或磁性连接),而没有任何中间设备。
术语“耦合”是指直接连接或间接连接,诸如所连接的事物之间的直接的电气、机械、或磁性连接、或者通过一个或多个无源或有源中间设备的间接连接。
术语“相邻”在本文通常是指事物在另一事物附近(例如,紧靠或靠近它们之间的一个或多个事物)或与其相邻(例如,与其邻接)的位置。
术语“电路”或“模块”可以指被布置为彼此合作以提供期望功能的一个或多个无源和/或有源组件。
术语“信号”可以指至少一个电流信号、电压信号、磁信号、或数据/时钟信号。“一”、“一个”和“该”的含义包括复数引用。“在...中”的含义包括“在...中”和“在...上”。
术语“缩放”通常是指将设计(示意图和布局)从一种工艺技术转换为另一种工艺技术,并随后减小布局面积。术语“缩放”通常还指缩小同一技术节点内的布局和器件的尺寸。术语“缩放”还可以指相对于另一参数(例如,电源电平)调整(例如减速或加速,即分别缩小或放大)信号频率。术语“基本上”、“接近”、“近似”、“附近”以及“大约”通常是指位于目标值的+/-10%之内。
除非另有说明,否则使用序数形容词“第一”、“第二”和“第三”等来描述共同的对象仅表示所指的是相似对象的不同实例,而不是旨在暗示所描述的对象在时间上、空间上、次序上、或者以任何其他方式必须处于给定的顺序。
为了本公开的目的,短语“A和/或B”和“A或B”是指(A)、(B)或(A和B)。为了本公开的目的,短语“A、B和/或C”是指(A)、(B)、(C)、(A和B)、(A和C)、(B和C)或者(A、B和C)。
说明书中和权利要求书中的术语“左”、“右”、“前”、“后”、“顶部”、“底部”、“在...上方”、“在...下方”等(如果存在的话)用于描述目的,而不一定用于描述永久的相对位置。
应当指出,附图中具有与任何其他附图中的元件相同的附图标记(或名称)的那些元件可以以与所描述的方式类似的任何方式操作或起作用,但不限制于此。
为了实施例的目的,本文描述的各种电路和逻辑块中的晶体管是金属氧化物半导体(MOS)晶体管或其衍生物,其中,MOS晶体管包括漏极端子、源极端子、栅极端子和体端子(bulk terminal)。晶体管和/或MOS晶体管衍生物还包括三栅极晶体管和FinFET晶体管、栅极全包围圆柱形晶体管、隧穿FET(TFET)、方形线(Square Wire)、或矩形带状晶体管、铁电FET(FeFET)、或实现晶体管功能的其他器件(诸如碳纳米管或自旋电子器件)。MOSFET对称的源极和漏极端子即相同的端子并且在此可互换地使用。另一方面,TFET器件具有非对称源极端子和漏极端子。本领域技术人员将理解,在不背离本公开的范围的情况下可以使用其他晶体管,例如,双极结型晶体管(BJT PNP/NPN)、BiCMOS、CMOS等。
图1示出了根据本公开的一些实施例的用于向处理器提供功能安全(FUSA)的时钟和电压监测器的高级架构100。在一些实施例中,用于FUSA的架构100包括一起集中在框101中的带隙(BG)电路、低压差线性(LDO)稳压器、加电检测器(POD)和电压监测器(VM);振荡器(例如,LC谐振振荡器)102;多个计数器和比较器1031-n(其中“n”是大于1的整数);切换检测器104;分频器105、多路复用器106、控制器107、多路复用器108和分频器109。在一些实施例中,切换检测器104、控制器107和控制提供FUSA的处理的其他电路是FUSA控制器的一部分。
在一些实施例中,框101的POD检测VccIn电源轨上的电压(例如1.2V至2V),并将该电压与最小(Min)阈值和最大(Max)阈值进行比较。参照图11示出了POD的一种可能的实现方式。返回参考图1,在一些实施例中,框101的带隙(BG)电路生成基准电压,该基准电压用作一个或多个电压监测器和LDO的基准电压。在一些实施例中,(一个或多个)电压监测器持续跟踪VccIn的电压并报告相对于设定阈值的任何变化。为了安全性,在熔断负载之前使用阈值的硬件默认值。在一些实施例中,用于功能安全的微调代码(微调)或校准代码可以在启用BG之前应用于BG电路。在一些实施例中,框101中的电压监测器(VM)将电源电压VccIn与已知的最小(min)和最大(max)阈值进行比较。如果VccIn电压电平超出最小/最大阈值并且在VccIn电压电平超出最小/最大阈值时,生成错误信号(例如,Error_0被断言)。参考图5描述了使用具有稳压器的BG电路的一种可能的架构。
返回参考图1,在一些实施例中,窄范围振荡器102用于为架构100的各种逻辑提供振荡时钟OSC_Clk。例如,将振荡时钟OSC_Clk提供给计数器和/或比较器1031-n以用于对在特定(或可编程)时间窗口内看到的边沿进行计数。在一些实施例中,窄范围振荡器102包括具有默认中等粗略(mid-coarse)频带和精细(fine)代码的LC谐振电路,该默认中等粗略频带和精细代码一起具有小于例如+/-400MHz的整个范围。参考图3示出了LC谐振电路的一种可能的架构。
返回参考图1,在一些实施例中,计数器1031-n用于在由输入时钟(例如,一种版本地XTAL、选定的反馈时钟FB_Clk)的一定数量的周期确定的时间窗内对输入时钟OSC_Clk进行采样。计数器的主要精度由采样时钟的标称频率及其触发器的亚稳态来设定,并且对LC谐振电路频率OSC_Clk的变化不敏感。
在一些实施例中,切换检测器(或监测器)104检测外部时钟XTAL何时切换,然后自主地接合XTAL或其他基准监测器。例如,切换检测器104包括边沿检测电路,该边缘检测电路识别何时观察到XTAL时钟的转变(例如,从低到高或从高到低)。例如,XTAL时钟可以是由晶体生成的管芯外时钟。
在各种实施例中,拨动检测器104在管芯上,并且通信地耦合到接收外部时钟XTAL的引脚。在一些实施例中,当切换检测器104识别出XTAL时钟中的转变时,它生成使能信号EN_XTAL。使能信号EN_XTAL用于使能计数器和比较器,这些计数器和比较器开始对XTAL的频率进行计数,并将所计数的频率与最小(min)和/或最大(max)阈值频率数进行比较。每个计数器和比较器块1031-n的输出是计数值(例如,来自块1031的Count_1)和错误指示符(例如,来自块1031的Error_1),其指示频率计数值超出最小或最大预期计数值的范围。在本文,为了安全性,固定的XTAL/基准被用于FUSA。例如,如果支持多个XTAL/基准频率,则可以使用条带(strap)或熔断(fuse)来预定义最小/最大阈值。
为了提高计数器1031-n的精度,将输入时钟分频。在一些实施例中,分频器105用于对XTAL时钟的频率进行分频。然后分频后的频率被提供给多路复用器(Mux.)106,其为计数器1031提供XTAL时钟或分频XTAL时钟之一(根据选择信号Sel1)。在一些实施例中,控制器(未示出)提供Sel1信号。该控制器也称为FUSA控制器。多路复用器106允许直接或以分频形式灵活地对XTAL的频率进行计数。
在某些实施例中,计数器之一(例如103n)对几个PLL反馈时钟(PLL_FB1至PLL_FBn)之一的频率进行计数。PLL反馈时钟PLL_FB1至PLL_FBn具有从其各自的分频比得出的已知或固定频率。类似于XTAL时钟的情况,提供了多路复用器108和分频器109来选择反馈时钟之一并对其频率进行分频以生成针对计数器103n的FB_Clk,以更准确地计数。通常,分频比越高,择时钟监测器的精度越高。在一些实施例中,提供了控制器107(例如,FUSA控制器的一部分),该控制器107能够旋转PLL_FB1到PLL_FBn中的时钟以利用每个时钟和状态转换的知识来持续监测,以在转换期间屏蔽误差。这种时钟旋转的解决方案可能不需要知道实际的分频比,因为PLL的反馈时钟具有恒定的频率,而与PLL分频比无关。当FB_Clk可用于计数时,ENn启用计数器103n。在各种实施例中,当控制器107检测到切换FB_Clk或切换时钟PLL_FB1至PLL_FBn中的一个、一些或所有时钟时,由控制器107断言该使能信号ENn。
图2示出了根据一些实施例的示出高级架构的时序图的曲线图200。曲线图200示出了四个波形XTAL、OSC_Clk、EN和Count_1作为示例,以示出架构100的操作。当切换检测器104检测到XTAL时钟的转变时,使能信号EN被断言。一旦EN被断言,则计数器1031开始对OSC_Clk的两个上升沿之间的边沿的频率进行计数。计数器的值由Count_1显示,它是一个多位代码。
图3示出了根据一些实施例的用于监测用于FUSA的时钟的频率的窄范围单频振荡器300(也称为LC谐振振荡器)。LC谐振振荡器300包括串联耦合、并一起并联耦合到电容器组301和302的电感器L1和L2。在一些实施例中,电容器组301是包括二进制加权的电容器的粗略组。在一些实施例中,电容器组302是包括温度计加权的电容器的精细组。在此,粗略组指的是这样的一组电容器,其中的每个电容器在添加到电容网络时,比来自精细组的电容器被添加到电容网络时使电容增加大得多的量。
在一些实施例中,n型晶体管MN0和MN1交叉耦合并且还耦合到电感器L1和L2以及电容器组301和302,以引起振荡并且还控制振荡频率。在各种实施例中,可以通过由Ivco[0]至Ivco[n]控制的开关来调整振荡幅度,这些开关在晶体管MN0和MN1的源极上增加/减去电阻R[0]至R[n]。这样,修改了LC谐振振荡器的偏置电流。在一些实施例中,LC谐振振荡器300的输出Vcoout由后VCO(压控振荡器)缓冲器(PVB)303来缓冲。为了平衡LC谐振振荡器300,复制或虚设PVB304也耦合到电感器L1,以便为Vcoout时钟提供相同的上升和下降时间。在各种实施例中,Vcoout(例如,OSC_Clk)是稳定的时钟,其用于精确地监测或采样外部和/或内部时钟。
图4示出了根据一些实施例的用于监测FUSA的电压的电压监测器(VM)电路400。在一些实施例中,VM电路400包括第一比较器401和第二比较器402。在一些实施例中,分别来自第一比较器401和第二比较器402的输出VmaxCmpOut和VminCmpOut是粘性输出。例如,当节点VmaxCmpOut和VminCmpOut上的信号发生变化时,这些信号将被锁存并保持在这些逻辑状态。在一些实施例中,第一比较器401和第二比较器402是时钟控制比较器。任何合适的时钟控制比较器都可以用于实现第一比较器401和第二比较器402。
在各种实施例中,比较器401/402的电源VccRef由参考图5讨论的低压差线性(LDO)稳压器电路提供。返回参考图4,在此,第一比较器401将电源VccX的分频版本Vp与高或最大阈值Vmax_thresh进行比较。第二比较器402将电源VccX的分频版本Vp与低或最小阈值Vmin_thresh进行比较。这样,第一比较器401参考高阈值来监测VccX,而第二比较器402参考低阈值来监测VccX。在一些实施例中,电源VccX的分频版本Vp由包括电阻器件RCM1和RCM2的电阻阶梯或分压器产生。在一些实施例中,电阻器件RCM1和RCM2具有可调电阻。
在一些实施例中,最大阈值Vmax_thresh和最小阈值Vmin_thresh由电阻分压器产生。在此示例中,三个可调电阻器件RTH1至RTH3的堆叠用于提供最大阈值Vmax_thresh和最小阈值Vmin_thresh。电阻器件可以以任何合适的方式实现。例如,可以使用分立的电阻器、在线性区中工作的晶体管来实现电阻器件。这些电阻器件可以具有可调电阻。通过指示VccX何时高于或低于预期阈值,处理器可以检测任何功能安全问题并采取措施来缓解这些问题。
图5示出了根据一些实施例的用于FUSA的基准生成器架构500。在一些实施例中,可以由架构500提供用于第一比较器401和第二比较器402的基准电压源VccVref,该架构500包括有限状态机(FSM)501、BG基准生成器502和低压稳压器(VR)503。在一些实施例中,取决于BGref的电压值,FSM 501通过微调BG基准生成器502的一个或多个器件(例如,调整器件的电流/电压驱动强度)来校准BG基准生成器502,以使BGref的电平达到预期电平。在一些实施例中,VR 503是由VccIn供电的低压差线性(LDO)稳压器。任何合适的LDO稳压器设计都可用于实现VR 503。在一些实施例中,VR 503可以是单位增益缓冲器。任何合适的单位增益缓冲器设计都可以用于实现VR 503。
图6示出了根据一些实施例的时钟架构600,其耦合到一个或多个性能监测电路以监测FUSA。架构600包括相位频率检测器(PFD)601、电荷泵(CP)602、回路滤波器或低通滤波器(LPF)603、压控振荡器(VCO)604、后VCO缓冲器(PVB)605、多路复用器606、分频器607、占空比调整(DCA)电路608、时钟分配缓冲器609、占空比状态机610和增量总和(delta-sigma)调制器(DSM)611。在一些实施例中,时钟架构600的各种电路在由域613、614和615指示的不同电源上操作。在一些实施例中,VCO从LDO 612接收单独的电源。在一些实施例中,沿着时钟传播路径的一个或多个CP 602、回路滤波器603、VCO 604、PVB605、反馈分频器607和其他器件/电路从LDO 612接收单独的电源。时钟架构接收参考时钟(RefClk),例如XTAL或其衍生物,并且该时钟由PFD 601接收,其包括FBClk(例如,PLL_FB1至PLL_FBn之一)。PFD 601的输出是向上和向下(Dn)信号,其指示CP 602吸收电荷或提供电荷给控制节点。然后,控制节点上的电压由LPF 603滤波以生成Vcntl,该Vcntl控制VCO 604的振荡频率。VCO的输出Vclk由605缓冲并提供给DCA电路608。在一些实施例中,多路复用器606将ClkGrid或PLLClk之一选择为时钟以输入到分频器607。在一些实施例中,分频器607从DSM 611接收整数比或分数分频比。在各种实施例中,通过检查诸如ClkGrid的Up、Dn、占空比等之类的信号来监测时钟架构600的功能安全的性能。ClkGrid的Up、Dn、占空比的特性从其预期特性的变化可以提供对时钟架构600的功能安全危害的洞察。这里,时钟架构600是锁相环,并且被示为用于FUSA监测的示例架构。然而,用于FUSA监测的技术可以适用于任何时钟架构。
图7示出了根据一些实施例的用于提供FUSA的基于并行前缀树架构700的可扩展比较器。在一些实施例中,使用架构700来实现第一比较器401和第二比较器402。在一些实施例中,比较器架构700是多位比较器树,其包括NAND门701和NOR门704以比较输入a[i]和b[i],随后是包括复数逻辑702和AND门705、复数逻辑703和AND门706等的级。这里,示出了多位比较器树的前几级,其第一级计算二进制字“a”的单个位是大于(G[i])还是等于(E[i])“b”的相应位。剩余的级将有效位[i,i-j]的G个和E个位与有效位[i-j-l,i-k]的G个和E个位进行对数组合以产生有效位[i,i-k]。该扇入(fanin)-2描述是示例;扇入-3+的树是可能的,如交替的比较编码(例如,小于而不是等于)。
图8示出了根据一些实施例的用于FUSA的占空比监测器800。在一些实施例中,占空比监测器包括比较器802(例如,基于架构700),该比较器802将来自DCC(占空比校正器)610的占空比代码与预定代码801进行比较。根据一些实施例,DCC感测时钟网格的占空比。在一些实施例中,DCA代码由DCC更新以最小化DCD。然后,将比较器802的输出提供给FUSA控制器。FUSA控制器可以提供有关占空比运行状况的报告或指示符,并指示PLLClk的占空比何时超出其预期范围。例如,占空比监测器800可以提供对由于p型器件相对于n型器件的不对称老化引起的占空比失真(DCD)的洞察。DCD可能导致相位路径时序冲突,甚至导致脉冲宽度蒸发。
图9A-B分别示出了根据一些实施例的用于FUSA的频率劣化监测器900,以及示出老化影响的曲线图920。在一些实施例中,频率劣化监测器900包括模数转换器(ADC),该模数转换器将VCO输入控制电压Vctrl转换成数字表示V1(例如,10位数字代码V1[9:0])。在某些实施例中,数字代码形式的Vctrl的原始值(Vce-esh)存储在存储器902中。该原始值是在制造产品/管芯并首次使用时给定分频比的Vctrl值。然后,将对应于Vcfresh的原始值V2与V1(对应于Vcaged)进行比较,以确定老化如何影响PLL 613的性能,并因此影响FUSA的性能。为了能够针对同一目标频率Ftgt确定控制电压Vctrl的偏移,在一些实施例中,在将比较器902的输出提供给FUSA控制器之前,生成在Vcfresh时使用的分频比,并将其与目标分频比进行比较。例如,在FUSA控制器被告知Vcntl随时间的劣化之前,对比较器902的输出与XNOR门905的输出进行AND运算。
图10A示出了根据一些实施例的电路1000,其将参考时钟与反馈时钟进行比较并生成锁相指示符。在一些实施例中,电路1000包括XOR门1001,其后是如图所示耦合在一起的延迟缓冲器1002、多路复用器1003和1004、以及AND门1005和1006的链。XOR门1001的输入是参考时钟(clkref)和反馈时钟(clkfb)。比较这些时钟并将比较的输出(例如,XOR门1001)转换为脉冲RawUnlock和FusaUnlock。这里,RawUnlock和FusaUnlock提供对clkref和clkfb阶段中的分离的早期指示。在一些实施例中,多路复用器1003用于修改用于指示clkfb和clkref的相位何时分离得足以调用RawUnlock指示的阈值。该阈值可通过RawThresh来修改。在一些实施例中,多路复用器1004用于修改用于指示何时clkfb和clkref的相位被分离得足以调用FusaUnlock指示的阈值。此阈值可通过FusaThresh来修改。
图10B示出了根据一些实施例的为了FUSA目的确定相位误差劣化的逻辑1020。随着器件的时钟源(例如,PLL)老化,器件变得更慢,并且时钟源可能比新制造器件时更早地失去相位或频率锁定。在一些实施例中,提供逻辑1020以通过指示时钟源的相位或频率锁定的早期锁定失败来监测和警告锁定劣化。将该早期指示(例如,FUSA锁定)提供给FUSA控制器,该FUSA控制器可以修改与时钟源相关联的锁定检测器的锁定窗口,使得时钟源不声明对其系统进行解锁。FUSA控制器可以进一步请求电源或频率管理系统以降低时钟频率要求,使得处理器中的逻辑可以具有宽松的时序裕量。
在一些实施例中,逻辑1020包括递减计数器1021、锁定检测器1022和FUSA锁定检测器1023。这里,锁定检测器1022和FUSA锁定检测器1023是时钟源的真实锁定检测器的复制。递减计数器1021从最大锁定阈值(也称为初始(Init)锁定阈值(Init_LockThresh))开始递减计数,直到解除锁定(例如,不存在锁定)为止。在一些实施例中,递减计数器1021还对OSC_clk进行操作(例如,计数器时钟CntrClk与OSC_Clk或其分频版本相同)。当锁定被解除时,确定时间零点处的真实PLL相位误差。这里,锁定检测器1021是监测从相位频率检测器(比较参考时钟RefClk和反馈FbClk)产生的上升和下降脉冲的任何合适的锁定检测器电路。只要在持续预定时间内上升和下降脉冲之差在PLL_LockThrshold(锁定阈值)之内,则锁定信号就被断言。当上升和下降脉冲之差变得大于PLL_LockThreshold时,锁定信号去断言,指示时钟源的锁定丢失。
随着递减计数器1021递减计数并减小PLL_LockThreshold值,用于证明锁定的锁定检测器1022窗口被挤压,直到锁定检测器声明失去锁定为止。当锁定去断言时(例如,当锁定信号指示失去锁定时),确定在时间零点处的参考或真实PLL相位误差。在一些实施例中,导致锁定针对特定工艺、电压、温度条件下被去断言的PLL_LockThreshold的值被记录在非易失性存储器中。既然确定了参考PLL_LockThreshold,就将老化保护频带(GB)添加到真实PLL_LockThreshold值,以解决老化引起的性能劣化。这样,计算修改的锁定阈值FUSA_LockThresh,其通过FUSA_Lock信号向FUSA控制器提供早期锁定故障。然后,FUSA控制器可以采取合适的步骤来减轻相位误差劣化(例如,Clkref和Clkfb之间的相位误差)。合适的步骤的示例包括降低电源电压电平、通过改变锁相环的分频比来降低操作频率等。
图11示出了根据一些实施例的用于图1的加电检测器(POD)1100。在一些实施例中,POD 1100包括带隙基准电路,其包括如图所示耦合在一起的电阻器R1、R2、R3、R4和R5、二极管1101和1102、施密特触发器1104和数字滤波器1105。这里,VCCIN是被监测以查看其是否足够高以“良好”使用的输入电源。当指示符加电(PowerUp)被断言时表示VCCIN足够高而可供其它逻辑和电路使用。例如,加电被用于启用能或禁用功能安全或安全性测试操作。
二极管1102是二极管1101的N倍大,因此流过R2的电流是流过R1的电流的N倍大(减去电流R5)。比较器1103比较与两个电阻器R1和R2相关联的电压V1和V2。比较器1103的输出被转换为在VCCIN/2(例如,VCCIN的一半)上操作的信号,并被提供给施密特触发器1104。当电源VCCIN超过阈值时,施密特触发器1104的输出切换,这指示可能的电源良好。施密特触发器1104的输出由数字滤波器1105滤波以确保正确的加电指示。然后,加电指示符用于FUSA控制器,以使其他FUSA电路能够监测各种特性(例如,时钟频率、电压、占空比、相位误差等)。
各种实施例的各种时钟和电压监测器是硬件安全和安全产品的基本要素。各种安全性监测器提供近乎实时、或实时的自主响应。FUSA监测器跟踪时钟和电压随时间的变化。
图12示出了根据本公开的一些实施例的具有改进FUSA的装置的智能设备或计算机系统或SoC(片上系统)。图12示出了其中可以使用平坦表面接口连接器的移动设备的实施例的框图。在一些实施例中,计算设备1600表示移动计算设备,诸如计算平板、移动电话或智能电话、启用无线的电子阅读器、或其他无线移动设备。将理解,总体示出了某些组件,并且并非在计算设备1600中示出这种设备的全部组件。
在一些实施例中,根据所讨论的一些实施例,计算设备1600包括具有改进FUSA的装置的第一处理器1610。根据一些实施例,计算设备1600的其他块还也可以包括用于改进FUSA的装置。本公开的各种实施例还可以包括1670内的网络接口,例如无线接口,使得系统实施例可并入到无线设备(例如,蜂窝电话或个人数字助理)中。
在一些实施例中,处理器1610(和/或处理器1690)可以包括一个或多个物理设备,诸如微处理器、应用处理器、微控制器、可编程逻辑设备或其他处理装置。由处理器1610执行的处理操作包括在其上执行应用和/或设备功能的操作平台或操作系统的执行。处理操作包括与人类用户或其他设备的I/O(输入/输出)相关的操作、与电源管理相关的操作、和/或与将计算设备1600连接到另一设备有关的操作。处理操作还可以包括与音频I/O和/或显示I/O相关的操作。
在一些实施例中,计算设备1600包括音频子系统1620,其表示与向计算设备提供音频功能相关联的硬件组件(例如,音频硬件和音频电路)和软件(例如,驱动器、编解码器)组件。音频功能可以包括扬声器和/或耳机输出,以及麦克风输入。用于这些功能的设备可以集成到计算设备1600中或连接到计算设备1600。在一个实施例中,用户通过提供由处理器1610接收和处理的音频命令来与计算设备1600交互。
在一些实施例中,计算设备1600包括显示子系统1630。显示子系统1630表示为用户提供视觉和/或触觉显示以与计算设备1600进行交互的硬件(例如,显示设备)组件和软件(例如,驱动器)组件。显示子系统1630包括显示接口1632,该显示接口1632包括用于向用户提供显示的特定屏幕或硬件设备。在一个实施例中,显示接口1632包括与处理器1610分开以执行与显示相关的至少一些处理的逻辑。在一个实施例中,显示子系统1630包括向用户提供输出和输入两者的触摸屏(或触摸板)设备。
在一些实施例中,计算设备1600包括I/O控制器1640。I/O控制器1640表示与用户交互相关的硬件设备和软件组件。I/O控制器1640可用于管理作为音频子系统1620和/或显示子系统1630的一部分的硬件。另外,I/O控制器1640示出了用于连接至计算设备1600的附加设备的连接点,用户可以通过这些附加设备与系统进行交互。例如,可以附接到计算设备1600的设备可以包括麦克风设备、扬声器或立体声系统、视频系统或其他显示设备、键盘或小键盘设备、或者诸如读卡器或其他设备之类的用于与特定应用一起使用的其他I/O设备。
如上所述,I/O控制器1640可以与音频子系统1620和/或显示子系统1630交互。例如,通过麦克风或其他音频设备的输入可以为计算设备1600的一个或多个应用或功能提供输入或命令。另外,代替显示输出或除了显示输出之外,还可以提供音频输出。在另一示例中,如果显示子系统1630包括触摸屏,则显示设备还充当输入设备,其可以至少部分地由I/O控制器1640管理。在计算设备1600上还可以有附加的按钮或开关,以提供由I/O控制器1640管理的I/O功能。
在一些实施例中,I/O控制器1640管理诸如加速度计、照相机、光传感器或其他环境传感器之类的设备、或者可以包括在计算设备1600中的其他硬件。该输入可以是直接用户交互的一部分,以及向系统提供环境输入以影响其操作(诸如过滤噪声、调整显示器用于亮度检测、为照相机应用闪光灯、或其他特征)。
在一些实施例中,计算设备1600包括管理电池功率使用、电池充电、以及与节能操作有关的特征的功率管理1650。存储器子系统1660包括用于在计算设备1600中存储信息的存储器设备。存储器可以包括非易失性(如果到存储器设备的电力中断,则状态不改变)和/或易失性(如果到存储器设备的电力中断,则状态不确定)。存储器子系统1660可以存储应用数据、用户数据、音乐、照片、文档或其他数据,以及与计算设备1600的应用和功能的执行相关的系统数据(无论是长期的还是临时的)。
各实施例的元件还被提供为用于存储计算机可执行指令(例如,用于实现本文所讨论的任何其他处理的指令)的机器可读介质(例如,存储器1660)。机器可读介质(例如,存储器1660)可以包括但不限于闪存、光盘、CD-ROM、DVD ROM、RAM、EPROM、EEPROM、磁性或光学卡、相变存储器(PCM)、或适合于存储电子或计算机可执行指令的其他类型机器可读介质。例如,本公开的实施例可以作为计算机程序(例如,BIOS)来下载,该计算机程序可以经由通信链路(例如,调制解调器或网络连接)以数据信号的方式从远程计算机(例如,服务器)传输到请求计算机(例如客户端)
在一些实施例中,计算设备1600包括连接性1670。连接性1670包括硬件设备(例如,无线和/或有线连接器和通信硬件)以及使计算设备1600能够与外部设备通信的软件组件(例如,驱动程序、协议栈)。计算设备1600可以是分离的设备,诸如其他计算设备、无线接入点或基站,以及诸如耳机、打印机或其他设备之类的外围设备。
连接性1670可以包括多种不同类型的连接性。一般地,计算设备1600被示为具有蜂窝连接性1672和无线连接性1674。蜂窝连接性1672通常是指由无线运营商提供的蜂窝网络连接,例如经由GSM(全球移动通信系统)或变体或衍生物、CDMA(码分多址)或变体或衍生物、TDM(时分复用)或变体和衍生物、或者其他蜂窝服务标准提供。无线连接性(或无线接口)1674是指非蜂窝的无线连接性,并且可以包括个域网(例如蓝牙、近场(Near Field)等)、局域网(例如Wi-Fi)、和/或广域网(例如WiMax)、或其他无线通信。
在一些实施例中,计算设备1600包括外围连接1680。外围连接1680包括硬件接口和连接器以及软件组件(例如,驱动器、协议栈)以进行外围连接。应当理解,计算设备1600可以是其他计算设备的外围设备(“去往”1682),也可以具有连接到它的外围设备(“来自”1684)。计算设备1600通常具有“对接”连接器以连接到其他计算设备,用于诸如管理(例如,下载和/或上传、改变、同步)计算设备1600上的内容的目的。另外,对接连接器可以允许计算设备1600连接到某些外围设备,这些外围设备允许计算设备1600控制例如到视听或其他系统的内容输出。
除了专用对接连接器或其他专用连接硬件之外,计算设备1600可以经由通用或基于标准的连接器进行外围连接1680。常见类型可以包括通用串行总线(USB)连接器(其可以包括多种不同硬件接口中的任一者)、包含小型显示端口(MiniDisplayPort,MDP)的显示端口、高清晰度多媒体接口(HDMI)、火线(Firewire)、或其他类型。
在说明书中对“实施例”、“一个实施例”、“一些实施例”或“其他实施例”的引用意味着结合实施例描述的特定特征、结构或特性包括在至少一些实施例中,但不一定包括在所有实施例中。“实施例”、“一个实施例”或“一些实施例”的各种出现不一定都指相同的实施例。如果说明书声明组件、特征、结构或特性“可以”、“可能”或“能够”被包括,则不要求包括该特定组件、特征、结构或特性。如果说明书或权利要求书提及“一”或“一种”元件,这并不意味着只有一个该元件。如果说明书或权利要求书提及“附加”元件,则不排除存在多于一个的该附加元件。
此外,在一个或多个实施例中,可以以任何合适的方式组合特定特征、结构、功能或特性。例如,第一实施例可以与第二实施例组合,只要与该两个实施例相关联的特定特征、结构、功能或特性不相互排斥。
虽然已经结合本公开的具体实施例描述了本公开,但是根据前面的描述,这些实施例的许多替换、修改和变化对于本领域的普通技术人员来说是显而易见的。本公开的实施例旨在包含落入所附权利要求的宽泛范围内的所有这样的替换、修改和变化。
此外,为了简化说明和讨论,并且为了不模糊本公开,在所呈现的附图中可以示出或可以不示出到集成电路(IC)芯片和其他组件的公知的电源/接地连接。此外,可以以框图的形式示出布置,以避免使本公开不清楚,并且还考虑到关于这种框图布置的实施方式的细节高度依赖于本公开将在其中实现的平台这一事实(即这样的细节应该在本领域技术人员的理解范围内)。在阐述特定细节(例如,电路)以描述本发明的实例性实施例的情况下,对于本领域的技术人员明显的是,可以在没有这些具体细节或者采用其变化的情况下来实践本公开。因此,本描述要看作是说明性而不是限制性的。
提供了摘要,其将允许读者确定技术公开的本质和精神。该摘要是在理解其不被用于限制权利要求的范围或含义的情况下提交的。下面的权利要求在此被结合到具体实施方式中,每个权利要求独立地作为单独的实施例。

Claims (20)

1.一种装置,包括:
多路复用器,具有第一输入和第二输入,所述第一输入通信地耦合到引脚以接收管芯外部的第一时钟,并且所述第二输入耦合到分频器的输出;
振荡器,提供第二时钟;以及
计数器,耦合到所述多路复用器和所述振荡器的输出,其中,所述计数器以所述第二时钟操作并且确定所述第一时钟的频率。
2.根据权利要求1所述的装置,包括:比较器,用于将所述计数器的输出与基准进行比较。
3.根据权利要求1所述的装置,其中,所述振荡器包括电感-电容谐振电路。
4.根据权利要求1至3中任一项所述的装置,包括:加电检测器,耦合到电源轨,其中,所述加电检测器用于确定所述电源轨上的电源何时与阈值交叉,并且其中,所述加电检测器的输出用于启用或禁用功能安全或安全性测试。
5.根据权利要求3所述的装置,包括:带隙基准电路,用于生成用于所述电感-电容谐振电路的基准电压。
6.根据权利要求5所述的装置,包括:低压差线性稳压器,用于接收所述基准电压并生成经稳压的电源。
7.根据权利要求1至3中任一项所述的装置,包括:电路,用于监测所述第一时钟的上升沿或下降沿,然后使所述计数器开始计数。
8.根据权利要求1至3中任一项所述的装置,其中,所述计数器是第一计数器,其中,所述多路复用器是第一多路复用器,其中,所述装置还包括:
第二计数器,用于以所述第二时钟操作;以及
第二多路复用器,用于从多个时钟源接收多个时钟,其中,所述多路复用器提供作为所述多个时钟中的一个时钟的输出,并且其中,所述多路复用器的输出被直接或间接地提供给所述第二计数器。
9.根据权利要求8所述的装置,包括:占空比监测器,用于监测多个锁相环中的单个锁相环的输出的占空比。
10.根据权利要求9所述的装置,包括:频率劣化监测器,用于监测所述单个锁相环的输出的频率。
11.根据权利要求9所述的装置,包括:相位误差检测器,用于检测相对于基准相位误差的所述单个锁相环的相位误差。
12.根据权利要求9所述的装置,包括:电压监测器,用于监测电源的电压电平。
13.一种装置,包括:
分频器,通信地耦合到引脚以接收管芯外部的第一时钟;
多路复用器,具有第一输入和第二输入,所述第一输入通信地耦合到所述引脚,并且所述第二输入耦合到所述分频器的输出;
电感-电容谐振电路,用于提供第二时钟;以及
计数器,耦合到所述多路复用器和所述电感-电容谐振电路的输出,其中,所述计数器以所述第二时钟操作,并且确定所述第一时钟的频率。
14.根据权利要求13所述的装置,包括:电路,用于监测所述第一时钟的上升沿或下降沿,然后使所述计数器开始计数。
15.根据权利要求13所述的装置,包括:
第一比较器,用于将所述计数器的输出与第一基准进行比较;以及
第二比较器,用于将所述计数器的输出与第二基准进行比较。
16.一种系统,包括:
存储器;
时钟生成器,用于生成第一时钟;
处理器,耦合到所述存储器和所述时钟生成器,其中,所述处理器包括根据权利要求1至12中任一项所述的装置;以及
天线,用于允许所述处理器与另一设备通信。
17.一种系统,包括:
存储器;
时钟生成器,用于生成第一时钟;
处理器,耦合到所述存储器和所述时钟生成器,其中,所述处理器包括根据权利要求13至15中任一项所述的装置;以及
天线,用于允许所述处理器与另一设备通信。
18.一种方法,包括:
在引脚处接收管芯外部的第一时钟,其中,分频器通信地耦合到所述引脚;
在多路复用器的第一输入处接收所述第一时钟;
在所述多路复用器的第二输入处接收所述分频器的输出;
提供第二时钟;
使用所述第二时钟确定所述第一时钟的频率。
19.根据权利要求18所述的方法,包括:监测所述第一时钟的上升沿或下降沿;并且使计数器开始计数以确定所述第一时钟的频率。
20.根据权利要求19所述的方法,包括:
将所述计数器的输出与第一基准进行比较;以及
将所述计数器的输出与第二基准进行比较。
CN201980021328.2A 2018-06-27 2019-05-28 用于时钟和电压的自主安全性和功能安全的装置 Pending CN111902818A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/020,918 US10824764B2 (en) 2018-06-27 2018-06-27 Apparatus for autonomous security and functional safety of clock and voltages
US16/020,918 2018-06-27
PCT/US2019/034213 WO2020005439A1 (en) 2018-06-27 2019-05-28 Apparatus for autonomous security and functional safety clock and voltages

Publications (1)

Publication Number Publication Date
CN111902818A true CN111902818A (zh) 2020-11-06

Family

ID=68985141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980021328.2A Pending CN111902818A (zh) 2018-06-27 2019-05-28 用于时钟和电压的自主安全性和功能安全的装置

Country Status (6)

Country Link
US (2) US10824764B2 (zh)
JP (2) JP2021528875A (zh)
KR (1) KR20210014095A (zh)
CN (1) CN111902818A (zh)
DE (1) DE112019002217T5 (zh)
WO (1) WO2020005439A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102536240B1 (ko) * 2019-02-26 2023-05-24 삼성전자주식회사 수신 회로 및 이를 포함하는 근거리 무선 통신 카드
US11144081B2 (en) * 2019-10-14 2021-10-12 Himax Technologies Limited Bandgap voltage generating apparatus and operation method thereof
CN111342833A (zh) * 2020-03-12 2020-06-26 杭州芯耘光电科技有限公司 一种修调电路
US11880454B2 (en) * 2020-05-14 2024-01-23 Qualcomm Incorporated On-die voltage-frequency security monitor
CN115885340A (zh) * 2020-09-04 2023-03-31 索尼半导体解决方案公司 传感器设备、接收设备和发送/接收系统
US11070214B1 (en) * 2020-10-14 2021-07-20 Mellanox Technologies Denmark Aps Test circuit for a digital phase-locked loop
US11095293B1 (en) * 2020-12-31 2021-08-17 Texas Instruments Incorporated Low-power fractional analog PLL without feedback divider
US11947672B2 (en) * 2021-03-02 2024-04-02 Nxp B.V. Voltage glitch detection circuit

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695791A (en) * 1985-06-04 1987-09-22 Hewlett-Packard Company Auto ranging of a frequency measuring instrument
JPH05241680A (ja) * 1992-03-03 1993-09-21 Fujitsu Ltd クロック同期方式
JPH06149417A (ja) * 1992-11-12 1994-05-27 Fuji Electric Co Ltd Cpuリセット装置
US5930294A (en) * 1997-08-07 1999-07-27 Cisco Technology, Inc. Frequency measurement circuit
JP3930773B2 (ja) * 2002-07-19 2007-06-13 沖電気工業株式会社 周波数補正回路
JP2009069947A (ja) * 2007-09-11 2009-04-02 Renesas Technology Corp 半導体装置
US8391105B2 (en) 2010-05-13 2013-03-05 Maxim Integrated Products, Inc. Synchronization of a generated clock
US9354690B1 (en) 2011-03-31 2016-05-31 Adtran, Inc. Systems and methods for adjusting core voltage to optimize power savings
KR101412711B1 (ko) * 2013-08-02 2014-08-06 (주)전전사 구내방송장치용 이상부하분석 처리방법 및 장치
JP6285457B2 (ja) * 2013-11-07 2018-02-28 株式会社日立製作所 共振器、位相同期回路及び半導体集積回路装置
US9442184B2 (en) * 2014-02-21 2016-09-13 Nxp B.V. Functional safety monitor pin
KR20170009291A (ko) * 2015-07-16 2017-01-25 에스케이하이닉스 주식회사 클록 생성 장치 및 이를 포함하는 반도체 장치
US10419005B2 (en) * 2016-12-14 2019-09-17 Taiwan Semiconductor Manufacturing Co., Ltd. Phase-locked-loop architecture
US10044356B2 (en) * 2017-01-04 2018-08-07 Himax Technologies Limited Band selected clock data recovery circuit and associated method
US10270348B2 (en) * 2017-02-23 2019-04-23 Avago Technologies International Sales Pte. Limited Synchronous switching regulator circuit
US10746797B1 (en) * 2019-04-22 2020-08-18 Texas Instruments Incorporated Dynamically protective scan data control

Also Published As

Publication number Publication date
US10824764B2 (en) 2020-11-03
WO2020005439A8 (en) 2020-07-09
US11461504B2 (en) 2022-10-04
JP2024073587A (ja) 2024-05-29
US20200004990A1 (en) 2020-01-02
US20210049307A1 (en) 2021-02-18
WO2020005439A1 (en) 2020-01-02
KR20210014095A (ko) 2021-02-08
JP2021528875A (ja) 2021-10-21
DE112019002217T5 (de) 2021-02-18

Similar Documents

Publication Publication Date Title
US11461504B2 (en) Apparatus for autonomous security and functional safety of clock and voltages including adjustment of a divider ratio
US20240085973A1 (en) Frequency overshoot and voltage droop mitigation apparatus and method
US10712768B2 (en) Apparatus and method for extending frequency range of a circuit and for over-clocking and under-clocking
US11387815B2 (en) Apparatus and method for improving lock time
US11722128B2 (en) Duty cycle correction system and low dropout (LDO) regulator based delay-locked loop (DLL)
US10574243B2 (en) Apparatus and method for generating stable reference current
US10020931B2 (en) Apparatus for dynamically adapting a clock generator with respect to changes in power supply
US20150188553A1 (en) Apparatus for symmetric and linear time-to-digital converter (tdc)
WO2013141863A1 (en) Apparatus and system for digitally controlled oscillator
CN112368943A (zh) 具有数字泄漏补偿的低功率和低抖动锁相环
US11211934B2 (en) Apparatus to improve lock time of a frequency locked loop
US11188117B2 (en) Low latency analog adaptive clocking
US9768788B2 (en) Phase-locked loop with lower power charge pump

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination