CN111876756B - 一种bmn多层介质薄膜及其制备方法 - Google Patents

一种bmn多层介质薄膜及其制备方法 Download PDF

Info

Publication number
CN111876756B
CN111876756B CN202010679363.8A CN202010679363A CN111876756B CN 111876756 B CN111876756 B CN 111876756B CN 202010679363 A CN202010679363 A CN 202010679363A CN 111876756 B CN111876756 B CN 111876756B
Authority
CN
China
Prior art keywords
bmn
heat treatment
dielectric film
orientation
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010679363.8A
Other languages
English (en)
Other versions
CN111876756A (zh
Inventor
石锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202010679363.8A priority Critical patent/CN111876756B/zh
Publication of CN111876756A publication Critical patent/CN111876756A/zh
Application granted granted Critical
Publication of CN111876756B publication Critical patent/CN111876756B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了一种Bi1.5MgNb1.5O7(BMN)多层介质薄膜及其制备方法,属于微电子技术领域。本发明提供的制备方法,包括以下步骤:将柠檬酸铋铵、四水合乙酸镁、乙醇铌和柠檬酸水溶液混合,进行络合反应,得到Bi‑Mg‑Ni前驱体溶胶;利用激光脉冲沉积法在Pt(111)/Ti/SiO2/Si(100)基片的表面沉积MgO,得到取向为(111)的MgO仔晶层;将所述Bi‑Mg‑Ni前驱体溶胶涂覆在所述取向为(111)的MgO仔晶层的表面后,进行退火热处理,得到单层膜;将所述单层薄膜重复涂覆和退火热处理过程,得到取向为(222)的BMN多层介质薄膜。

Description

一种BMN多层介质薄膜及其制备方法
技术领域
本发明属于微电子技术领域,尤其涉及一种BMN多层介质薄膜及其制备方法。
背景技术
随着通讯频率的日渐增加,无线通信技术进入到了微波领域,相应地,对各类通讯设备提出了更高的要求,必须设计和制备出捷变射频终端以适应不同的微波通信频段。可用于这些通讯设备的可调微波器件,如移相器、电调滤波器、压控振荡器、微波开关等,由于其频率捷变特性可改善电路的工作效率、提高其环境适应能力而在微波通信系统中具有广泛的应用。变容管是构成各类可调微波器件的核心,目前使用的可调微波器件主要基于以下变容管技术:半导体变容管、MEMS变容管、铁磁材料变容管、介质薄膜变容管。对介质薄膜压控变容管的研究主要是基于Bi1.5MgNb1.5O7(BMN)介质薄膜材料,具有立方焦绿石结构的BMN介质薄膜材料具有低介电损耗、良好热稳定性以及大介电调谐率,是一种极具发展前景的介电可调材料。
BMN介质薄膜材料的制备方法主要为物理沉积和化学沉积,其中,化学沉积又分为化学气相沉积和化学溶液沉积。化学溶液沉积中最常用的方法为溶胶-凝胶法,将几种金属醇盐、有机盐类或者无机化合物溶于同一种溶剂中形成溶液,通过水解和络合反应形成高度均匀分散的、含有金属离子的络合物溶胶,将该溶胶涂覆在基底表面得到湿膜,在加热或常温下使溶剂挥发,所述湿膜形成凝胶膜,该凝胶膜经过高温处理后晶化,得到介质薄膜。该方法制备成本低、操作简单、成膜面积大、适合大规模生产介质薄膜材料,但该方法难以控制介质薄膜厚度和晶粒取向。
发明内容
鉴于此,本发明的目的在于提供一种BMN多层介质薄膜及其制备方法,本发明提供的制备方法制得的BMN多层介质薄膜厚度和晶粒取向可控。
为了实现上述发明目的,本发明提供了以下技术方案:
本发明提供了一种BMN多层介质薄膜的制备方法,包括以下步骤:
将柠檬酸铋铵、四水合乙酸镁、乙醇铌和柠檬酸水溶液混合,进行络合反应,得到Bi-Mg-Ni前驱体溶胶;
利用激光脉冲沉积法在Pt(111)/Ti/SiO2/Si(100)基片的表面沉积MgO,得到取向为(111)的MgO仔晶层;
将所述Bi-Mg-Ni前驱体溶胶涂覆在所述取向为(111)的MgO仔晶层的表面后,进行退火热处理,得到单层膜;
将所述单层薄膜重复涂覆和退火热处理过程,得到取向为(222)的BMN多层介质薄膜;
所述退火热处理的温度独立地为500~800℃,时间独立地为20~60min。
优选地,所述络合反应的温度为250~600℃,时间为30~180min。
优选地,所述柠檬酸铋铵、四水合乙酸镁和乙醇铌的混合物与柠檬酸的摩尔比为1:3~10。
优选地,所述激光脉冲沉积的氧压为30Pa,激光能量为400mJ,激光频率为4Hz,靶材基底距离为4cm。
优选地,所述MgO仔晶层的厚度为20~50nm。
优选地,所述涂覆的方式为甩胶旋涂,所述甩胶旋涂的转速独立地为3600~5400转/min。
优选地,所述络合反应后,还包括将得到的络合反应产物和乙醇混合,进行纯化处理。
本发明还提供了上述技术方案所述制备方法制得的BMN多层介质薄膜,所述多层介质薄膜的厚度为300~400nm,晶粒的取向为(222),损耗tanδ≤5×10-3@1MHz,所述多层介质薄膜中BMN晶粒的平均粒径为30~90nm。
本发明提供的制备方法,包括以下步骤:将柠檬酸铋铵、四水合乙酸镁、乙醇铌和柠檬酸水溶液混合,进行络合反应,得到Bi-Mg-Ni前驱体溶胶;利用激光脉冲沉积法在Pt(111)/Ti/SiO2/Si(100)基片的表面沉积MgO,得到取向为(111)的MgO仔晶层;将所述Bi-Mg-Ni前驱体溶胶涂覆在所述取向为(111)的MgO仔晶层的表面后,进行退火热处理,得到单层膜;将所述单层薄膜重复涂覆和退火热处理过程,得到取向为(222)的BMN多层介质薄膜;所述退火热处理的温度独立地为500~800℃,时间独立地为20~60min。在本发明中,利用激光脉冲沉积法得到的取向为(111)的MgO仔晶层,该仔晶层能够诱导BMN多层介质薄膜晶粒的择优取向,制备得到取向为(222)的BMN多层介质薄膜;在本发明中,退火热处理的温度较低,为500~800℃,BMN颗粒在退火热处理过程中结晶的驱动力有限,BMN颗粒的生长尺寸不会过大,使BMN颗粒大小可控;本发明对制备得到的薄膜进行逐层退火热处理,每层薄膜受热均匀,可进一步限制BMN多层介质薄膜的厚度和BMN颗粒大小,制备得到薄膜厚度及颗粒大小可控、均匀的高质量BMN多层介质薄膜。因此,本发明提供的制备方法能够解决现有技术中溶胶-凝胶法存在的BMN多层介质薄膜厚度和晶粒大小较难控制的问题,并制备得到择优取向的薄膜。
附图说明
图1为实施例1制得的BMN多层介质薄膜的XRD谱图;
图2为实施例制备BMN前驱体溶胶的工艺流程图;
图3为实施例制备BMN多层介质薄膜的工艺流程图。
具体实施方式
本发明提供了一种Bi1.5MgNb1.5O7多层介质薄膜的制备方法,包括以下步骤:
将柠檬酸铋铵、四水合乙酸镁、乙醇铌和柠檬酸水溶液混合,进行络合反应,得到Bi-Mg-Ni前驱体溶胶;
利用激光脉冲沉积法在Pt(111)/Ti/SiO2/Si(100)基片的表面沉积MgO,得到取向为(111)的MgO仔晶层;
将所述Bi-Mg-Ni前驱体溶胶涂覆在所述取向为(111)的MgO仔晶层的表面后,进行退火热处理,得到单层膜;
将所述单层薄膜重复涂覆和退火热处理过程,得到取向为(222)的BMN多层介质薄膜。
在本发明中,若无特殊说明,所采用的原料均为本领域常规市售产品或采用本领域常规方法制备得到。
本发明将柠檬酸铋铵、四水合乙酸镁、乙醇铌和柠檬酸水溶液混合,进行络合反应,得到Bi-Mg-Ni前驱体溶胶。
在本发明中,所述柠檬酸铋铵、四水合乙酸镁和乙醇铌的质量比优选为Bi1.5MgNb1.5O7中Bi、Mg和Nb的化学计量比。在本发明中,所述柠檬酸铋铵、四水合乙酸镁和乙醇铌的混合物与柠檬酸的摩尔比为1:3~10,进一步优选为1:5~8,这里是指柠檬酸铋铵、四水合乙酸镁和乙醇铌的总摩尔数与柠檬酸的摩尔数之比。在本发明中,所述柠檬酸铋铵、四水合乙酸镁、乙醇铌和柠檬酸的纯度优选大于99.5%。
本发明中所述柠檬酸铋铵、四水合乙酸镁、乙醇铌和柠檬酸水溶液的混合顺序优选为:将柠檬酸和去离子水混合,得到柠檬酸水溶液后,再将柠檬酸水溶液、柠檬酸铋铵、四水合乙酸镁和乙醇铌混合。本发明对所述混合的方式没有特殊的限定,能够将原料溶解,进行络合反应即可,具体如搅拌。本发明优选在混合的同时进行络合反应。在本发明中,所述络合反应的温度优选为250~600℃,进一步优选为300~450℃;所述络合反应的时间优选为30~180min,进一步优选为30~90min。
所述络合反应后,本发明优选还包括将得到的络合反应产物和乙醇混合,进行纯化处理,得到Bi-Mg-Ni前驱体溶胶。在本发明中,所述络合反应产物和乙醇的体积比优选为1:1~3。在本发明中,所述纯化处理优选在超声条件下进行。在本发明中,所述纯化处理的温度优选为室温;所述纯化处理的时间优选为0.5~1h。本发明进行纯化处理能够去除杂质,提高Bi-Mg-Ni前驱体溶胶的纯度,有助于减少Bi1.5MgNb1.5O7多层介质薄膜的介质损耗。
本发明利用激光脉冲沉积法在Pt(111)/Ti/SiO2/Si(100)基片的表面沉积MgO,得到取向为(111)的MgO仔晶层。
本发明对所述Pt(111)/Ti/SiO2/Si(100)基片的来源没有特殊的限定,采用常规市售产品或本领域常规方法制备得到的均可。在本发明中,所述Pt(111)/Ti/SiO2/Si(100)基片的尺寸优选为4cm×4cm。本发明优选将所述Pt(111)/Ti/SiO2/Si(100)基片进行超声清洗后,再进行激光脉冲沉积。在本发明中,所述超声清洗的方式优选为:依次在去离子水中超声清洗10~30min、丙酮中超声清洗10~30min、乙醇中超声清洗10~30min和去离子水中超声清洗10~30min。本发明对所述超声清洗的功率没有特殊的限定,能够将Pt(111)/Ti/SiO2/Si(100)基片清洗干净即可。
所述超声清洗后,本发明优选将清洗后的Pt(111)/Ti/SiO2/Si(100)基片进行烘干,所述烘干的方式优选为红外灯烘干。
在本发明中,所述激光脉冲沉积的氧压优选为30Pa;所述激光脉冲沉积的激光能量优选为400mJ;所述激光脉冲沉积的激光频率优选为4Hz;所述激光脉冲沉积的靶材基底距离优选为4cm。本发明优选以MgO靶材为原料,利用激光脉冲沉积在所述Pt(111)/Ti/SiO2/Si(100)基片表面沉积(111)择优取向的MgO仔晶层。在本发明中,所述取向为(111)的MgO仔晶层的厚度优选为20~50nm。在本发明中,利用激光脉冲沉积法得到的取向为(111)的MgO仔晶层,该仔晶层能够诱导BMN介质薄膜晶粒的择优取向,制备得到取向为(222)的BMN多层介质薄膜。
得到取向为(111)的MgO仔晶层后,本发明将所述Bi-Mg-Ni前驱体溶胶涂覆在所述取向为(111)的MgO仔晶层的表面后,进行退火热处理,得到单层膜。
在本发明中,所述涂覆的方式优选为甩胶旋涂;在本发明的实施例中,所述甩胶旋涂优选在台式甩胶机中进行,所述台式甩胶机的转速独立地优选为3600~5400转/min。在本发明中,所述涂覆的涂覆量优选为每次涂覆0.5~0.8mL所述Bi-Mg-Ni前驱体溶胶。
在本发明中,所述退火热处理的温度优选为500~800℃,进一步优选为600~700℃;所述退火热处理的时间优选为20~60min,进一步优选为30~50min。在本发明中,退火热处理能够去除Bi-Mg-Ni前驱体溶胶中的杂质。在本发明中,所述退火热处理优选在空气中进行。
本发明对制备得到的单层薄膜进行退火,每层薄膜受热均匀,使制备得到的BMN多层介质薄膜厚度,BMN颗粒大小可控、均匀。
得到单层薄膜后,本发明将所述单层薄膜重复涂覆和退火热处理过程,得到取向为(222)的BMN多层介质薄膜。
在本发明中,所述重复涂覆和退火热处理过程的顺序优选依次为涂覆-退火热处理-涂覆-退火热处理-......涂覆-退火热处理。在本发明中,所述退火热处理的温度独立地优选为500~800℃,进一步独立地优选为600~700℃;所述退火热处理的时间独立地优选为20~60min,进一步独立地优选为30~50min。本发明优选每次退火热处理后,将得到的薄膜冷却至室温后再重复进行涂覆和退火热处理过程。本发明对所述冷却的方式没有特殊的限定,采用本领域技术人员熟知的冷却方式,如随炉冷却即可。本发明对重复所述涂覆和退火热处理过程的次数没有特殊的限定,重复至得到择优取向为(222)的BMN多层介质薄膜的厚度达到所需的厚度即可。
本发明还提供了上述技术方案所述制备方法制得的Bi1.5MgNb1.5O7多层介质薄膜,厚度为300~400nm,晶粒的取向为(222),损耗tanδ≤5×10-3@1MHz,所述多层介质薄膜中Bi1.5MgNb1.5O7的晶粒的平均粒径为30~90nm。
下面结合实施例对本发明提供的BMN多层介质薄膜及其制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
将Pt(111)/Ti/SiO2/Si(100)基片依次在去离子水中超声清洗10min、丙酮中超声清洗10min、乙醇中超声清洗10min和去离子水中超声清洗10min后,在红外灯下烘干;
按Bi1.5MgNb1.5O7的化学计量比称取5.8461g柠檬酸铋铵、1.3034g四水合乙酸镁和2.9008g乙醇铌加入50mL柠檬酸水溶液中(柠檬酸与去离子水作为溶剂,其摩尔比例为1:10),在250℃条件下搅拌进行络合反应,15min后,得到络合反应产物;
将络合反应产物和乙醇按体积比为1:1的条件混合,在室温、超声条件下进行纯化处理,0.5h后,得到Bi-Mg-Ni前驱体溶胶;
在氧压为30Pa、激光能量为400mJ、激光频率为4Hz、靶材基底距离为4cm的条件下,在尺寸为4cm×4cm的Pt(111)/Ti/SiO2/Si(100)基片的表面沉积得到取向为(111)的MgO仔晶层,厚度为50nm;
将Bi-Mg-Ni前驱体溶胶在3600转/min的条件下甩胶旋涂到取向为(111)的MgO仔晶层表面,涂覆量为0.5mL/次,在空气气氛中,700℃条件下进行退火热处理,30min后,得到单层膜,冷却,以相同的条件重复涂覆和退火热处理过程,直至得到(222)取向的BMN多层介质薄膜,厚度为360nm,1MHz下的损耗为3.4×10-3BMN,平均粒径为50nm。
图1为实施例1制得的BMN多层介质薄膜的XRD谱图,从图1可以看出,制备得到沿着(222)定向生长的BMN多层介质薄膜。
图2为实施例制备BMN前驱体溶胶的工艺流程图,本实施例将柠檬酸铋铵、四水合乙酸镁和乙醇铌加入柠檬酸水溶液中,搅拌条件下,进行络合反应,得到BMN前驱体溶胶,将BMN前驱体溶胶与乙醇混合,进行纯化处理,得到BMN前驱体溶胶,在本发明中,若无需纯化处理,可省去纯化处理步骤。
图3为实施例中制备BMN多层介质薄膜的工艺流程图,本实施例利用激光脉冲沉积法在Pt(111)/Ti/SiO2/Si(100)基片的表面沉积MgO,得到MgO仔晶层,将BMN前驱体溶胶涂覆在MgO仔晶层表面,在空气条件下,进行退火热处理后,得到BMN多层介质薄膜。
实施例2
将Pt(111)/Ti/SiO2/Si(100)基片依次在去离子水中超声清洗10min、丙酮中超声清洗10min、乙醇中超声清洗10min和去离子水中超声清洗10min后,在红外灯下烘干;
按Bi1.5MgNb1.5O7的化学计量比称取11.6992g柠檬酸铋铵,2.6068g四水合乙酸镁和5.8016g乙醇铌加入90mL柠檬酸水溶液中(柠檬酸与去离子水的摩尔比例为1:20),在500℃条件下搅拌,进行络合反应,1h后,得到络合反应产物;
将络合反应产物和乙醇按体积比为1:1.5的条件混合,在室温、超声条件下进行纯化处理,1h后,得到Bi-Mg-Ni前驱体溶胶;
在氧压为30Pa,激光能量为400mJ,激光频率为4Hz,靶材基底距离为4cm的条件下,在尺寸为4cm×4cm的Pt(111)/Ti/SiO2/Si(100)基片的表面沉积得到取向为(111)的MgO仔晶层,厚度为40nm;
将Bi-Mg-Ni前驱体溶胶在5400转/min的条件下甩胶旋涂到取向为(111)的MgO仔晶层表面,涂覆量为0.8mL/次,在空气气氛中,600℃条件下进行退火热处理,45min后,得到单层膜,以相同的条件重复涂覆和退火热处理过程,直至得到(222)取向的BMN多层介质薄膜,厚度为390nm,1MHz下的损耗为4.8×10-3BMN,平均粒径为75nm。
实施例3
将Pt(111)/Ti/SiO2/Si(100)基片依次在去离子水中超声清洗10min、丙酮中超声清洗10min、乙醇中超声清洗10min和去离子水中超声清洗10min后,在红外灯下烘干;
按Bi1.5MgNb1.5O7的化学计量比称取8.7692g柠檬酸铋铵,1.9551g四水合乙酸镁和4.3512g乙醇铌加入75mL柠檬酸水溶液中(柠檬酸与去离子水的摩尔比例为1:25),在550℃条件下搅拌,进行络合反应,1.5h后,得到络合反应产物;
将络合反应产物和乙醇按体积比为2:1的条件混合,在室温,超声条件下进行纯化处理,1h后,得到Bi-Mg-Ni前驱体溶胶;
在氧压为30Pa,激光能量为400mJ,激光频率为4Hz,靶材基底距离为4cm的条件下,在尺寸为4cm×4cm的Pt(111)/Ti/SiO2/Si(100)基片的表面沉积得到取向为(111)的MgO仔晶层,厚度为50nm;
将Bi-Mg-Ni前驱体溶胶在3600转/min的条件下甩胶旋涂到取向为(111)的MgO仔晶层表面,涂覆量为0.6mL/次,在空气气氛中,800℃条件下进行退火热处理,20min后,得到单层膜,以相同的条件重复涂覆和退火热处理过程,直至得到(222)取向的BMN多层介质薄膜,厚度为360nm,1MHz下的损耗为4.0×10-3BMN,平均粒径为60nm。
实施例4
本实施例与实施例3的区别在于,未对络合反应产物进行纯化处理。
将Pt(111)/Ti/SiO2/Si(100)基片依次在去离子水中超声清洗10min、丙酮中超声清洗10min、乙醇中超声清洗10min和去离子水中超声清洗10min后,在红外灯下烘干;
按Bi1.5MgNb1.5O7的化学计量比称取8.7692g柠檬酸铋铵,1.9551g四水合乙酸镁和4.3512g乙醇铌加入75mL柠檬酸水溶液中(柠檬酸与去离子水的体积比例为1:3),在550℃条件下搅拌,进行络合反应,1.5h后,得到络合反应产物;
在氧压为30Pa,激光能量为400mJ,激光频率为4Hz,靶材基底距离为4cm的条件下,在Pt(111)/Ti/SiO2/Si(100)基片的表面沉积得到取向为(111)的MgO仔晶层,厚度为50nm;
将Bi-Mg-Ni前驱体溶胶在3600转/min的条件下甩胶旋涂到取向为(111)的MgO仔晶层表面,涂覆量为0.6mL/次,在空气气氛中,500℃条件下再进行退火热处理,60min后,得到单层膜,以相同的条件重复涂覆和退火热处理过程,得到(222)取向的BMN多层介质薄膜,厚度为390nm,1MHz下的损耗为5.0×10-3BMN,平均粒径为90nm。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种Bi1.5MgNb1.5O7多层介质薄膜的制备方法,包括以下步骤:
将柠檬酸铋铵、四水合乙酸镁、乙醇铌和柠檬酸水溶液混合,进行络合反应,得到Bi-Mg-Ni前驱体溶胶;
利用激光脉冲沉积法在Pt(111)/Ti/SiO2/Si(100)基片的表面沉积MgO,得到取向为(111)的MgO仔晶层;
将所述Bi-Mg-Ni前驱体溶胶涂覆在所述取向为(111)的MgO仔晶层的表面后,进行退火热处理,得到单层膜;
将所述单层薄膜重复涂覆和退火热处理过程,得到取向为(222)的Bi1.5MgNb1.5O7多层介质薄膜;
所述络合反应的温度为250~600℃,时间为30~180min;
所述激光脉冲沉积的氧压为30Pa,激光能量为400mJ,激光频率为4Hz,靶材基底距离为4cm;
所述MgO仔晶层的厚度为20~50nm;
所述多层介质薄膜中Bi1.5MgNb1.5O7晶粒的平均粒径为30~90nm;
所述退火热处理的温度独立地为500~800℃,时间独立地为20~60min。
2.根据权利要求1所述的制备方法,其特征在于,所述柠檬酸铋铵、四水合乙酸镁和乙醇铌的混合物与柠檬酸的摩尔比为1:3~10。
3.根据权利要求1所述的制备方法,其特征在于,所述涂覆的方式为甩胶旋涂,所述甩胶旋涂的转速独立地为3600~5400转/min。
4.根据权利要求1所述的制备方法,其特征在于,所述络合反应后,还包括将得到的络合反应产物和乙醇混合,进行纯化处理。
5.权利要求1~4任一项所述制备方法制得的Bi1.5MgNb1.5O7多层介质薄膜,所述多层介质薄膜的厚度为300~400nm,晶粒的取向为(222),损耗tanδ≤5×10-3@1MHz,所述多层介质薄膜中Bi1.5MgNb1.5O7晶粒的平均粒径为30~90nm。
CN202010679363.8A 2020-07-15 2020-07-15 一种bmn多层介质薄膜及其制备方法 Active CN111876756B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010679363.8A CN111876756B (zh) 2020-07-15 2020-07-15 一种bmn多层介质薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010679363.8A CN111876756B (zh) 2020-07-15 2020-07-15 一种bmn多层介质薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN111876756A CN111876756A (zh) 2020-11-03
CN111876756B true CN111876756B (zh) 2022-02-11

Family

ID=73151281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010679363.8A Active CN111876756B (zh) 2020-07-15 2020-07-15 一种bmn多层介质薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111876756B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402275B (zh) * 2021-08-12 2022-09-02 齐鲁工业大学 一种多层bmn介质薄膜材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190008A (ja) * 2001-12-28 2003-07-08 Noritake Co Ltd 電磁調理器用容器
KR20070101454A (ko) * 2006-04-10 2007-10-17 삼성전자주식회사 표면발광소자 및 그의 제조방법
CN102249307A (zh) * 2011-05-06 2011-11-23 天津大学 铌酸铋镁介质薄膜的制备方法
CN102826847A (zh) * 2012-09-19 2012-12-19 天津大学 复合高介电常数微波介质陶瓷材料及其制备方法
CN104064357A (zh) * 2014-06-26 2014-09-24 天津大学 一种bmn介质薄膜微波压控电容器的制备方法
CN104073790A (zh) * 2014-06-26 2014-10-01 天津大学 取向bmn薄膜的制备方法
CN105420672A (zh) * 2015-11-25 2016-03-23 盐城工学院 一种bmn薄膜的制备方法
CN106835080A (zh) * 2017-01-22 2017-06-13 武汉理工大学 铌镁酸铅‑钛酸铅和锆钛酸铅异质结构薄膜及其制备方法
CN110364357A (zh) * 2019-07-21 2019-10-22 天津大学 一种高储能密度电容器及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264874B2 (en) * 2004-12-22 2007-09-04 Aps Laboratory Preparation of metal chalcogenide nanoparticles and nanocomposites therefrom
US20070270299A1 (en) * 2006-05-17 2007-11-22 3M Innovative Properties Company Glass-ceramics and methods of making same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190008A (ja) * 2001-12-28 2003-07-08 Noritake Co Ltd 電磁調理器用容器
KR20070101454A (ko) * 2006-04-10 2007-10-17 삼성전자주식회사 표면발광소자 및 그의 제조방법
CN102249307A (zh) * 2011-05-06 2011-11-23 天津大学 铌酸铋镁介质薄膜的制备方法
CN102826847A (zh) * 2012-09-19 2012-12-19 天津大学 复合高介电常数微波介质陶瓷材料及其制备方法
CN104064357A (zh) * 2014-06-26 2014-09-24 天津大学 一种bmn介质薄膜微波压控电容器的制备方法
CN104073790A (zh) * 2014-06-26 2014-10-01 天津大学 取向bmn薄膜的制备方法
CN105420672A (zh) * 2015-11-25 2016-03-23 盐城工学院 一种bmn薄膜的制备方法
CN106835080A (zh) * 2017-01-22 2017-06-13 武汉理工大学 铌镁酸铅‑钛酸铅和锆钛酸铅异质结构薄膜及其制备方法
CN110364357A (zh) * 2019-07-21 2019-10-22 天津大学 一种高储能密度电容器及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Effects of substrate on the crystalline structure and microwave dielectric properties of Bi1.5Mg1.0Nb1.5O7 sol-gel thin films;Helei Dong等;《Journal of Alloys and Compounds》;20141013;第622卷;第79-85页 *
Electrical properties of sol–gel derived pyrochlore-type bismuth magnesium niobate Bi2(Mg1/3Nb2/3)2O7 thin films;SangSu Kim等;《Journal of Crystal Growth》;20050523;第281卷;第432-439页 *
Influence of interface structure on microstructure and dielectric properties of bismuth magnesium niobate thin films;Helei Dong等;《Ceramics International》;20190211;第45卷(第8期);第10056-10062页 *
蓝宝石衬底上外延生长MgO薄膜过程中的应力研究;刘莹莹等;《全国薄膜技术学术研讨会论文摘要集》;20090818;第95页 *

Also Published As

Publication number Publication date
CN111876756A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
JP5740645B2 (ja) 配向ペロブスカイト酸化物薄膜
CN111876755B (zh) 一种bmn多层介质薄膜及其制备方法
CN111876756B (zh) 一种bmn多层介质薄膜及其制备方法
Choi et al. Sol-gel-derived magnesium oxide precursor for thin-film fabrication
JP4396860B2 (ja) 圧電体層の製造方法
CN100480437C (zh) 一种取向生长的介电常数可调钛酸锶铅薄膜的制备方法
CN113121221A (zh) 一种高介电性能钛酸铜钙外延薄膜的制备方法
CN113402275B (zh) 一种多层bmn介质薄膜材料及其制备方法
US6086957A (en) Method of producing solution-derived metal oxide thin films
CN107540402B (zh) 一种多孔钛酸铜钙薄膜的制备方法
CN102888586A (zh) 一种钛酸锶铅薄膜的制备方法及制备的钛酸锶铅薄膜
CN109761605A (zh) 一种具有(100)晶粒择优取向的锆钛酸铅薄膜及其制备方法
JP2001026421A (ja) ゾル・ゲル法による結晶性薄膜の形成方法
CN1054166C (zh) 尺寸可控的纳米级银颗粒镶嵌在钛酸钡薄膜中的制备方法
CN103664171A (zh) 铁酸镥陶瓷材料及其制备方法和应用
JP4264145B2 (ja) In2O3−SnO2前駆体塗布液の製造方法
Tsai et al. The preparation of ITO films via a chemical solution deposition process
CN112661184A (zh) 一种取向性板状[001]-Bi0.5K0.5TiO3介观材料及其制备方法
CN100341817C (zh) 钛酸锶钡薄膜材料的制备方法
JP2001053224A (ja) 薄膜キャパシタおよびその製造方法
CN110670041B (zh) 一种无热处理的磁控溅射制备钙钛矿铁电薄膜的方法
CN107089831A (zh) 一种低温下制备六方相bmn薄膜/粉体的方法
CN116623292A (zh) 一种在硅片上制备钛酸锶钡多晶薄膜的磁控溅射方法
CN115323361B (zh) 一种可相变的纳米片状vo2薄膜的制备方法
KR100529420B1 (ko) 비스무스나트륨 산화티타늄 화합물 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant