CN111874988A - 基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法 - Google Patents

基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法 Download PDF

Info

Publication number
CN111874988A
CN111874988A CN202010903705.XA CN202010903705A CN111874988A CN 111874988 A CN111874988 A CN 111874988A CN 202010903705 A CN202010903705 A CN 202010903705A CN 111874988 A CN111874988 A CN 111874988A
Authority
CN
China
Prior art keywords
organic wastewater
photocatalytic material
nano photocatalytic
treatment method
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010903705.XA
Other languages
English (en)
Inventor
朱益新
宋西玉
王洁
周杨
张梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cqc Intime Testing Technology Co ltd
Original Assignee
Cqc Intime Testing Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cqc Intime Testing Technology Co ltd filed Critical Cqc Intime Testing Technology Co ltd
Priority to CN202010903705.XA priority Critical patent/CN111874988A/zh
Priority to PCT/CN2020/113942 priority patent/WO2022047813A1/zh
Priority to US17/596,268 priority patent/US11534741B2/en
Publication of CN111874988A publication Critical patent/CN111874988A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/28Regeneration or reactivation
    • B01J27/32Regeneration or reactivation of catalysts comprising compounds of halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/166Nitrites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开了一种基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法,包括:制取硫‑二氧化钛混合物,以所述硫‑二氧化钛混合物与氯化铜、氨、强碱、过渡金属盐等进行水热反应,再将反应产物与氢氟酸反应,之后在空气中进行程序升温热处理,获得多元素共掺杂TiO2纳米光催化材料,之后在可见光照射下,以所述多元素共掺杂TiO2纳米光催化材料处理有机废水。本发明提供的有机废水处理方法高效快捷、安全环保,能彻底降解多种类型的有机污染物和氨氮等,不会造成二次污染,且所采用的多元素共掺杂TiO2纳米光催化材料只需简单煅烧即可再生并循环使用,成本低廉。

Description

基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法
技术领域
本发明涉及催化材料技术领域,特别是涉及一种基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法。
背景技术
环境污染问题日益严重及能源危机的爆发,已引起世界各国的重视。光催化技术有望在解决环境污染和能源危机中发挥关键作用,目前以吸引越来越多的科研工作者投入到相关研究之中。
TiO2作为一种高效、无毒的光催化剂,在废水处理、空气净化、抗菌等环保领域的应用备受关注,TiO2光催化剂现已被誉为“环境催化剂”。然而,TiO2的一些缺陷限制它的实用化进程,如禁带宽度较宽,只能吸收紫外光才能产生活性,不能有效地利用太阳光;另外,光生电子和空穴的复合导致低的光量子效率。因此,通过改性提高TiO2的可见光催化效率,成为人们研究的热点。近年来,人们尝试用非金属离子掺杂、金属掺杂、贵金属沉积、染料敏化、半导体复合等方式对TiO2进行改性,提高TiO2对可见光的吸收以及在可见光下的光催化效率。但是,采用传统的方法制得的掺杂型二氧化钛催化材料中,催化剂易聚集成大颗粒,比表面积减小,光催化活性降低,且传统制备方法操作复杂,周期长,能耗较高。同时,目前以此类掺杂型二氧化钛催化材料对有机废水进行处理时,不仅效率低、有机污染物降解不彻底,容易造成二次污染,而且催化剂容易失活。
发明内容
本发明的目的在于提供一种基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法,以克服现有技术中的不足。
为实现上述目的,本发明提供如下技术方案:
本发明实施例提供了一种基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法,其包括:
(1)将钛酸丁酯和二硫化钛依次加入无水乙醇中,并不停搅拌直至滴加完毕,再滴加硝酸溶液,于30~60℃水浴条件下搅拌1~2h,得到硫-二氧化钛混合物;
(2)将所述硫-二氧化钛混合物加入氯化铜溶液,并依次加入碱性水溶液、过渡金属盐水溶液,再转移到水热反应釜中,于150~160℃条件下持续反应10~20h;
(3)对步骤(2)所得反应混合物进行抽滤,以去离子水将所得滤饼洗涤至中性,于60~80℃真空干燥1~2h,再与氢氟酸溶液均匀混合成膏体状,并置入密封反应容器内,之后以3~5℃/min的速度升温至120~140℃,并保温0.5~1h;
(4)将步骤(3)所获产物在空气中先以1~2℃/min的速度缓慢升温至200~250℃并保温0.5~1h,再以8~12℃/min的速率迅速升温至300~400℃并保持2~3h,得到多元素共掺杂TiO2纳米光催化材料;
(5)将所述多元素共掺杂TiO2纳米光催化材料均匀分散于有机废水内,并以太阳光持续照射该有机废水,使其中的有机污染物被光催化降解为二氧化碳和水。
进一步的,所述步骤(1)中钛酸丁酯、无水乙醇、硝酸溶液的体积之比为3~5:12~15:1。
进一步的,所述步骤(1)中硝酸溶液的浓度为1mol/L~2mol/L。
进一步的,所述步骤(1)中钛酸丁酯与二硫化钛的体积质量为1mL:1~5g。
进一步的,所述步骤(1)中搅拌的速度为300~500r/min。
进一步的,所述步骤(2)中氯化铜溶液的浓度为1~4mol/L,所述碱性水溶液含有3~5mol/LNH3和1~2mol/LNaOH,所述过渡金属盐水溶液含有0.1~0.5mol/LZnCl2和0.2~0.3mol/LFeCl3
进一步的,所述步骤(2)中氯化铜溶液、碱性水溶液、过渡金属盐水溶液的体积比为10~20:5~8:1~2。
进一步的,所述步骤(3)中氢氟酸溶液的浓度为0.1~0.5mol/L。
进一步的,所述步骤(5)中若有机废水内还含有氨氮类污染物,则当将所述多元素共掺杂TiO2纳米光催化材料均匀分散于有机废水内,并以太阳光持续照射该有机废水时,还能使其中的氨氮类污染物被光催化降解为氮气而脱除。
在一些实施方式中,所述的有机废水处理方法还包括:在步骤(5)完成后,将多元素共掺杂TiO2纳米光催化材料从有机废水中分离出并自然风干,再在空气中煅烧,煅烧温度为350~450℃,时间为0.5~2h,实现所述多元素共掺杂TiO2纳米光催化材料的再生。
进一步的,所述的有机废水处理方法具体包括:将从有机废水中分离出的多元素共掺杂TiO2纳米光催化材料自然风干后,在空气中以20~30℃/min的速率迅速升温至350~450℃进行煅烧,煅烧时间为0.5~1h。
与现有技术相比,本发明的优点至少在于:
(1)提供的多元素共掺杂TiO2纳米光催化材料为粒径在40nm~150nm的空心球状,比表面积大(约195.463~212.168m2/g),密度小,易于在水相体系中均匀分散,且对太阳光能全光谱吸收,能将水体中的有机染料、氨氮等彻底降解为二氧化碳、氮气和水,而且在循环使用后只需简单煅烧即可再生,再生后的光催化性能可达初始光催化性能的90%以上;
(2)提供的有机废水处理方法高效快捷、安全环保,能彻底降解有机废水中的多种有机污染物和氨氮,且不会造成二次污染,成本低廉。
附图说明
图1是本发明实施例1所制备的一种多元素共掺杂TiO2纳米光催化材料的SEM图。
具体实施方式
本发明通过下列实施例作进一步说明:根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的具体的物料比、工艺条件及其结果仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
实施例1一种基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法,包括:
(1)将钛酸丁酯和二硫化钛依次加入无水乙醇中,并不停搅拌直至滴加完毕,再滴加浓度为1mol/L的硝酸溶液,于30℃水浴条件下以300r/min的速度搅拌1h,得到硫-二氧化钛混合物,其中钛酸丁酯、无水乙醇、硝酸溶液的体积之比为3:12:1,钛酸丁酯与二硫化钛的体积质量为1mL:1g;
(2)将所述硫-二氧化钛混合物加入浓度为1mol/L的氯化铜溶液,并依次加入含有3mol/LNH3和1mol/LNaOH的碱性水溶液、含有0.1mol/LZnCl2和0.2mol/LFeCl3的过渡金属盐水溶液,其中氯化铜溶液、碱性水溶液、过渡金属盐水溶液的体积比为10:5:1,再转移到水热反应釜中,于150℃条件下持续反应10h;
(3)对步骤(2)所得反应混合物进行抽滤,以去离子水将所得滤饼洗涤至中性,于80℃真空干燥1h,再与浓度为0.1mol/L的氢氟酸溶液均匀混合成膏体状,并置入密封反应容器内,之后以3℃/min的速度升温至120℃,并保温0.5h;
(4)将步骤(3)所获产物在空气中先以1℃/min的速度缓慢升温至200℃并保温0.5h,再以8℃/min的速率迅速升温至300℃并保持2h,得到多元素共掺杂TiO2纳米光催化材料,该纳米光催化材料的形貌可以参阅图1,其为粒径在40nm~150nm的空心球状,比表面积约203.257m2/g,其EDS能谱测试结果显示,其中Cu含量约9.23wt%、Fe含量约4.63wt%、Zn含量约2.06wt%、S含量约6.28wt%、F含量约7.24wt%、O含量约13.78wt%、余量为Ti,其XRD测试结果显示,其中TiO2主要为锐钛矿型。
(5)将所述多元素共掺杂TiO2纳米光催化材料直接的均匀分散于浓度为0.1wt%的罗丹明B溶液内,且使该纳米光催化材料与罗丹明B溶液的质量体积比1g:100mL,并以太阳光持续照射该有机废水,经7h后该罗丹明B溶液被转变为无色,再对该无色溶液进行增强拉曼光谱检测,结果显示,其中无罗丹明B和其它有机物余留,采用滴定法测量该无色溶液中的二氧化碳浓度,其有明显升高。
实施例2一种基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法,包括:
(1)将钛酸丁酯和二硫化钛依次加入无水乙醇中,并不停搅拌直至滴加完毕,再滴加浓度为2mol/L的硝酸溶液,于60℃水浴条件下以500r/min的速度搅拌2h,得到硫-二氧化钛混合物,其中钛酸丁酯、无水乙醇、硝酸溶液的体积之比为5:15:1,钛酸丁酯与二硫化钛的体积质量为1mL:5g;
(2)将所述硫-二氧化钛混合物加入浓度为4mol/L的氯化铜溶液,并依次加入含有5mol/LNH3和2mol/LNaOH的碱性水溶液、含有0.5mol/LZnCl2和0.3mol/LFeCl3的过渡金属盐水溶液,其中氯化铜溶液、碱性水溶液、过渡金属盐水溶液的体积比为20:8:2,再转移到水热反应釜中,于160℃条件下持续反应20h;
(3)对步骤(2)所得反应混合物进行抽滤,以去离子水将所得滤饼洗涤至中性,于60℃真空干燥2h,再与浓度为0.5mol/L的氢氟酸溶液均匀混合成膏体状,并置入密封反应容器内,之后以5℃/min的速度升温至140℃,并保温1h;
(4)将步骤(3)所获产物在空气中先以2℃/min的速度缓慢升温至250℃并保温1h,再以12℃/min的速率迅速升温至400℃并保持2h,得到多元素共掺杂TiO2纳米光催化材料;
(5)将所述多元素共掺杂TiO2纳米光催化材料均匀分散于含20mg/mL甲基蓝的水溶液内,且使该纳米光催化材料与甲基蓝水溶液的质量体积比1g:100mL,并以太阳光持续照射该甲基蓝水溶液。经5h后该甲基蓝水溶液被转变为无色,再对该无色溶液进行增强拉曼光谱检测,结果显示,其中无甲基蓝和其它有机物余留,采用滴定法测量该无色溶液中的二氧化碳浓度,其有明显升高。
实施例3一种基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法,包括:
(1)将钛酸丁酯和二硫化钛依次加入无水乙醇中,并不停搅拌直至滴加完毕,再滴加浓度为2mol/L的硝酸溶液,于40℃水浴条件下以400r/min的速度搅拌2h,得到硫-二氧化钛混合物,其中钛酸丁酯、无水乙醇、硝酸溶液的体积之比为4:14:1,钛酸丁酯与二硫化钛的体积质量为1mL:3g;
(2)将所述硫-二氧化钛混合物加入浓度为2mol/L的氯化铜溶液,并依次加入含有4mol/LNH3和2mol/LNaOH的碱性水溶液、含有0.4mol/LZnCl2和0.3mol/LFeCl3的过渡金属盐水溶液,其中氯化铜溶液、碱性水溶液、过渡金属盐水溶液的体积比为15:6:2,再转移到水热反应釜中,于160℃条件下持续反应15h;
(3)对步骤(2)所得反应混合物进行抽滤,以去离子水将所得滤饼洗涤至中性,于70℃真空干燥2h,再与浓度为0.3mol/L的氢氟酸溶液均匀混合成膏体状,并置入密封反应容器内,之后以4℃/min的速度升温至140℃,并保温1h;
(4)将步骤(3)所获产物在空气中先以2℃/min的速度缓慢升温至220℃并保温1h,再以10℃/min的速率迅速升温至350℃并保持2h,得到多元素共掺杂TiO2纳米光催化材料;
(5)将所述多元素共掺杂TiO2纳米光催化材料均匀分散于含20mg/mL中性红的水溶液内,且使该纳米光催化材料与中性红水溶液的质量体积比1g:100mL,并以太阳光持续照射该中性红水溶液,经8h后该中性红水溶液被转变为无色,再对该无色溶液进行增强拉曼光谱检测,结果显示,其中无中性红和其它有机物余留,采用滴定法测量该无色溶液中的二氧化碳浓度,其有明显升高。
实施例4一种基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法,包括:
步骤(1)-(4)与实施例1相同。
步骤(5):将所述多元素共掺杂TiO2纳米光催化材料直接的均匀分散于含0.1wt%罗丹明B和150mg/LNH3-N的桃红色水溶液内,且使该纳米光催化材料与该桃红色水溶液的质量体积比1g:100mL,并以太阳光持续照射该有机废水,经4h后该桃红色水溶液即被转变为无色,再对该无色溶液进行增强拉曼光谱检测,结果显示,其中无罗丹明B或其它有机物及氨氮或亚硝酸根离子等余留。
实施例5:
步骤(1)-(5)与实施例1相同。
步骤(6):在步骤(5)完成后,采用高速离心方式(离心机转速20000r/min,时间5min)分离出水溶液中的多元素共掺杂TiO2纳米光催化材料,并重新以该多元素共掺杂TiO2纳米光催化材料进行步骤(5)的操作,重复50次后,部分多元素共掺杂TiO2纳米光催化材料失活。
步骤(7):在步骤(6)完成后,再采用高速离心方式将多元素共掺杂TiO2纳米光催化材料分离出并自然风干,之后在空气中以30℃/min的速率迅速升温至450℃进行煅烧,煅烧时间为0.5h,使该多元素共掺杂TiO2纳米光催化材料再生。
采用步骤(5)的操作对再生后的多元素共掺杂TiO2纳米光催化材料的性能进行测试,结果显示,其催化效率保持为新鲜制备的多元素共掺杂TiO2纳米光催化材料的92%左右。
实施例6:
步骤(1)-(6)与实施例1相同。
区别之处在于,步骤(7)中,是在空气中以20℃/min的速率迅速升温至350℃进行煅烧,煅烧时间为1h,实现多元素共掺杂TiO2纳米光催化材料的再生。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。

Claims (10)

1.一种基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法,其特征在于包括:
(1)将钛酸丁酯和二硫化钛依次加入无水乙醇中,并不停搅拌直至滴加完毕,再滴加硝酸溶液,于30~60℃水浴条件下搅拌1~2h,得到硫-二氧化钛混合物;
(2)将所述硫-二氧化钛混合物加入氯化铜溶液,并依次加入碱性水溶液、过渡金属盐水溶液,再转移到水热反应釜中,于150~160℃条件下持续反应10~20h;
(3)对步骤(2)所得反应混合物进行抽滤,以去离子水将所得滤饼洗涤至中性,于60~80℃真空干燥1~2h,再与氢氟酸溶液均匀混合成膏体状,并置入密封反应容器内,之后以3~5℃/min的速度升温至120~140℃,并保温0.5~1h;
(4)将步骤(3)所获产物在空气中先以1~2℃/min的速度缓慢升温至200~250℃并保温0.5~1h,再以8~12℃/min的速率迅速升温至300~400℃并保持2~3h,得到多元素共掺杂TiO2纳米光催化材料;
(5)将所述多元素共掺杂TiO2纳米光催化材料均匀分散于有机废水内,并以太阳光持续照射该有机废水,使其中的有机污染物被光催化降解为二氧化碳和水。
2.根据权利要求1所述的有机废水处理方法,其特征在于,所述步骤(1)中钛酸丁酯、无水乙醇、硝酸溶液的体积之比为3~5:12~15:1。
3.根据权利要求1或2所述的有机废水处理方法,其特征在于,所述步骤(1)中硝酸溶液的浓度为1mol/L~2mol/L。
4.根据权利要求1所述的有机废水处理方法,其特征在于,所述步骤(1)中钛酸丁酯与二硫化钛的体积质量为1mL:1~5g。
5.根据权利要求1所述的有机废水处理方法,其特征在于,所述步骤(1)中搅拌的速度为300~500r/min。
6.根据权利要求1所述的有机废水处理方法,其特征在于,所述步骤(2)中氯化铜溶液的浓度为1~4mol/L,所述碱性水溶液含有3~5mol/LNH3和1~2mol/LNaOH,所述过渡金属盐水溶液含有0.1~0.5mol/LZnCl2和0.2~0.3mol/LFeCl3
7.根据权利要求1或6所述的有机废水处理方法,其特征在于,所述步骤(2)中氯化铜溶液、碱性水溶液、过渡金属盐水溶液的体积比为10~20:5~8:1~2。
8.根据权利要求1所述的有机废水处理方法,其特征在于,所述步骤(3)中氢氟酸溶液的浓度为0.1~0.5mol/L。
9.根据权利要求1所述的有机废水处理方法,其特征在于还包括:在步骤(5)完成后,将多元素共掺杂TiO2纳米光催化材料从有机废水中分离出并自然风干,再在空气中煅烧,煅烧温度为350~450℃,时间为0.5~2h,实现所述多元素共掺杂TiO2纳米光催化材料的再生。
10.根据权利要求9所述的有机废水处理方法,其特征在于具体包括:将从有机废水中分离出的多元素共掺杂TiO2纳米光催化材料自然风干后,在空气中以20~30℃/min的速率迅速升温至350~450℃进行煅烧,煅烧时间为0.5~1h。
CN202010903705.XA 2020-09-01 2020-09-01 基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法 Withdrawn CN111874988A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010903705.XA CN111874988A (zh) 2020-09-01 2020-09-01 基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法
PCT/CN2020/113942 WO2022047813A1 (zh) 2020-09-01 2020-09-08 基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法
US17/596,268 US11534741B2 (en) 2020-09-01 2020-09-08 Organic wastewater treatment method based on multi-element co-doping TiO2 nano photocatalytic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010903705.XA CN111874988A (zh) 2020-09-01 2020-09-01 基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法

Publications (1)

Publication Number Publication Date
CN111874988A true CN111874988A (zh) 2020-11-03

Family

ID=73199005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010903705.XA Withdrawn CN111874988A (zh) 2020-09-01 2020-09-01 基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法

Country Status (3)

Country Link
US (1) US11534741B2 (zh)
CN (1) CN111874988A (zh)
WO (1) WO2022047813A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340090B (zh) * 2022-09-06 2024-06-14 青岛百利达环保科技有限公司 一种含油废水处理材料及其制备方法
CN115624979B (zh) * 2022-10-19 2024-05-03 南京大学 一种改性黑色二氧化钛在降解抗生素废水中的应用
CN116081761B (zh) * 2023-03-16 2024-02-20 杭州师范大学钱江学院 一种农村污水处理方法及其使用的复合材料
CN116354446B (zh) * 2023-05-06 2024-10-01 广州渺钛新材料科技有限公司 一种高效可回收型光催化氧化处理工业污水方法及装置
CN117483010A (zh) * 2024-01-03 2024-02-02 山东海化集团有限公司 一种改性纳米TiO2催化剂的制备方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074113A (zh) * 2007-05-16 2007-11-21 浙江大学 一种非金属掺杂纳米TiO2的制备方法及其应用
CN101157027A (zh) * 2007-11-09 2008-04-09 浙江大学 经过改性的非金属掺杂的纳米TiO2光催化剂及其制备方法
CN102500426A (zh) * 2011-09-22 2012-06-20 中国矿业大学 低温两步法制备复合锐钛矿型二氧化钛可见光催化剂
US20130123093A1 (en) * 2011-11-11 2013-05-16 Hae-Jin Kim Method for Preparing Impurity-Doped Titanium Dioxide Photocatalysts Representing Superior Photo Activity at Visible Light Region and Ultraviolet Light Region in Mass Production
CN105261483A (zh) * 2015-10-12 2016-01-20 上海交通大学 Cu2ZnSnS4敏化TiO2光阳极及其原位制备方法和应用
CN105664995A (zh) * 2016-03-08 2016-06-15 济宁学院 一种多元素共掺杂纳米二氧化钛光催化材料
CN106495216A (zh) * 2016-10-11 2017-03-15 南昌大学 一种氟氧化钛铋层状化合物分级结构多孔空心球的制备方法
CN107138161A (zh) * 2017-07-17 2017-09-08 上海友兰科技有限公司 一种掺杂黑色二氧化钛的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334148A (ja) 2000-05-26 2001-12-04 Kawasaki Heavy Ind Ltd 光触媒機能保持材およびその保持方法
CN101219371A (zh) * 2007-01-08 2008-07-16 北京化工大学 光催化氧化处理高浓度有机工业废水
DE102007028391A1 (de) 2007-06-15 2008-12-18 Nano-X Gmbh Partikel bzw. Beschichtung zur Spaltung von Wasser
CN101301619A (zh) 2008-07-03 2008-11-12 南开大学 高效率金属、非金属离子共掺杂纳米TiO2可见光催化剂的制备方法
CN102872774A (zh) * 2011-07-11 2013-01-16 张�林 二氧化钛(壳)-掺杂物(核)复合材料及其制备方法
CN103614759B (zh) * 2013-11-22 2016-09-21 西北师范大学 氮掺杂二氧化钛纳米复合结构制备方法及应用
CN104549369B (zh) 2015-01-14 2016-08-24 山西师范大学 一种硫自掺杂型二氧化钛光催化剂的制备方法
CN111111696B (zh) 2019-12-31 2022-07-01 中南民族大学 一种利用溶剂热法一锅合成规整形貌硫化物-TiO2复合纳米结构的方法及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074113A (zh) * 2007-05-16 2007-11-21 浙江大学 一种非金属掺杂纳米TiO2的制备方法及其应用
CN101157027A (zh) * 2007-11-09 2008-04-09 浙江大学 经过改性的非金属掺杂的纳米TiO2光催化剂及其制备方法
CN102500426A (zh) * 2011-09-22 2012-06-20 中国矿业大学 低温两步法制备复合锐钛矿型二氧化钛可见光催化剂
US20130123093A1 (en) * 2011-11-11 2013-05-16 Hae-Jin Kim Method for Preparing Impurity-Doped Titanium Dioxide Photocatalysts Representing Superior Photo Activity at Visible Light Region and Ultraviolet Light Region in Mass Production
CN105261483A (zh) * 2015-10-12 2016-01-20 上海交通大学 Cu2ZnSnS4敏化TiO2光阳极及其原位制备方法和应用
CN105664995A (zh) * 2016-03-08 2016-06-15 济宁学院 一种多元素共掺杂纳米二氧化钛光催化材料
CN106495216A (zh) * 2016-10-11 2017-03-15 南昌大学 一种氟氧化钛铋层状化合物分级结构多孔空心球的制备方法
CN107138161A (zh) * 2017-07-17 2017-09-08 上海友兰科技有限公司 一种掺杂黑色二氧化钛的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ZHANG JINGHONG等: "Photocatalytic removal of chromium(VI) and sulfite using transition metal (Cu, Fe, Zn) doped TiO2 driven by visible light: Feasibility,mechanism and kinetics", 《JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY》 *
伊文涛等: "硫/铜共掺杂纳米TiO2的制备、表征及其光催化性能", 《化学工程》 *
陈赞宇等: "氟铜共掺杂TiO2空心微球的制备及可见光催化性能", 《中国有色金属学报》 *
黄显怀等: "《TiO2光催化技术及其在环境领域的应用》", 31 March 2013, 合肥工业大学出版社 *

Also Published As

Publication number Publication date
US11534741B2 (en) 2022-12-27
US20220266226A1 (en) 2022-08-25
WO2022047813A1 (zh) 2022-03-10

Similar Documents

Publication Publication Date Title
CN111874988A (zh) 基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法
CN102580742B (zh) 一种活性炭负载氧化亚铜光催化剂及其制备方法
CN108554412B (zh) 一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法及其应用
CN113663693B (zh) 一种硫化铟锌-二氧化钛复合材料的制备方法及其在生产双氧水用于废水治理中的应用
CN107115884B (zh) 一种g-C3N4/TiO2纳米线组装结构光催化剂
CN102145280B (zh) 稻壳活性炭/二氧化硅/二氧化钛复合材料的制备方法
CN107159313A (zh) 一种核壳结构TiO2纳米管@Ti‑MOF催化剂的制备方法
CN112844484B (zh) 一种氮化硼量子点/多孔金属有机框架复合光催化材料及其制备方法和应用
CN108355669B (zh) 一种磁性纳米洋葱碳负载Bi2WO6的光催化剂及其制备方法和应用
CN112536049B (zh) 一种Bi2Se3和TiO2纳米复合材料及其制备方法和应用
CN106622293A (zh) 一种H‑TiO2/CdS/Cu2‑xS纳米带的制备方法
CN104801308A (zh) 一种NiFe2O4/TiO2/海泡石复合光催化剂及其制备方法
CN106975509B (zh) 一种氮、铁共掺杂钒酸铋可见光催化剂的制备方法及应用
CN113976147B (zh) 一种Bi/Bi4O5Br2光催化剂、制备方法及其应用
CN112495400B (zh) 一种具有S空位的SnS2纳米片的制备及其在光降解Cr(Ⅵ)上的应用
CN113101980A (zh) 一种具有可见光催化活性的TiO2/UiO-66复合材料的制备方法和应用
CN112371113A (zh) 一种Bi2WO6-rGO可见光催化剂的制备方法和应用
CN114192145B (zh) GQDs/TiO2/α-FeOOH三复合光催化剂制备方法
CN109289887A (zh) 一种氮、钒共掺杂二氧化钛/钽酸铋z型异质结光催化剂的制备方法及应用
CN111569905B (zh) 一种CuInS2/TiO2复合光催化剂及其制备方法与应用
CN110624532B (zh) 一种TiO2-BiVO4-石墨烯三元复合光催化材料及其制备方法
CN111330608B (zh) 一种磷掺杂相转变钒酸铈光催化材料及其制备方法与应用
CN107321378A (zh) 一种宽光谱响应的光催化剂及其制备方法
CN103657621A (zh) 一种{111}面暴露高活性TiO2纳米光催化剂的制备方法
CN113578296A (zh) 一种片层状灰色TiO2光催化材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20201103