CN111111696B - 一种利用溶剂热法一锅合成规整形貌硫化物-TiO2复合纳米结构的方法及其应用 - Google Patents

一种利用溶剂热法一锅合成规整形貌硫化物-TiO2复合纳米结构的方法及其应用 Download PDF

Info

Publication number
CN111111696B
CN111111696B CN201911408874.XA CN201911408874A CN111111696B CN 111111696 B CN111111696 B CN 111111696B CN 201911408874 A CN201911408874 A CN 201911408874A CN 111111696 B CN111111696 B CN 111111696B
Authority
CN
China
Prior art keywords
tio
sulfide
pesticide
cadmium
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911408874.XA
Other languages
English (en)
Other versions
CN111111696A (zh
Inventor
陈连清
韦晓珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South Central Minzu University
Original Assignee
South Central University for Nationalities
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South Central University for Nationalities filed Critical South Central University for Nationalities
Priority to CN201911408874.XA priority Critical patent/CN111111696B/zh
Publication of CN111111696A publication Critical patent/CN111111696A/zh
Application granted granted Critical
Publication of CN111111696B publication Critical patent/CN111111696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及光催化剂制备和农药降解的技术领域,具体涉及一种利用溶剂热法一锅合成规整形貌一元、二元或三元硫化物‑TiO2复合纳米结构的方法及其在光催化降解有机农药中的应用。本申请利用原料既能提供钛源,又能提供硫源的优势,采用溶剂热法一锅合成技术制备规整形貌硫化物‑TiO2复合纳米结构。本发明所制备的硫化物‑TiO2复合纳米结构通过光激发产生的活性物种,如·OH、·O2 等能将有毒农药分解为小分子或无毒化合物,有效地降低了有毒农药的残留,提高了生产安全性,而且可以降解多种有机农药,广谱性强,效果好,在农药绿色化、低残留等方面有较好的应用前景。

Description

一种利用溶剂热法一锅合成规整形貌硫化物-TiO2复合纳米结 构的方法及其应用
技术领域
本发明涉及光催化剂制备和农药降解的技术领域,具体涉及一种利用溶剂热法一锅合成规整形貌硫化物-TiO2复合纳米结构的方法及其在光催化降解有机农药中的应用。
背景技术
TiO2作为一种半导体材料,具有无毒、化学稳定性好及氧化活性高等优点,目前多用于有机废水处理、二氧化碳还原、产氢、太阳能电池方面。TiO2作为光催化剂可利用紫外光作为光源,与有机污染物进行光催化降解反应,TiO2光催化剂被激发形成电子-空穴对,光生空穴与H2O、OH作用产生氧化性极强的·OH,光生电子与O2形成超氧自由基,最终将有机污染物分解为H2O、CO2和小分子物质,这避免了对环境的二次污染。但由于TiO2禁带宽度较宽(Eg=3.2eV),其光响应范围较窄,加上光激发TiO2所产生的电子-空穴对容易复合,从而影响了其光催化效率。因此,人们常利用半导体复合、形貌控制、染料光敏化、离子掺杂、贵金属沉积等方法对TiO2进行改性。
硫化物是半导体催化材料中重要的一员,大多数硫化物带隙宽度较窄,能够吸收可见光,且硫化物的原料成本较低,在实际生产中具有广阔的应用前景。但硫化物存在稳定性较差和在光照下容易发生光腐蚀的缺点,同时在大多数情况下,单一硫化物半导体材料催化性能存在一定局限。基于以上考虑,我们想将硫化物与TiO2进行复合,以弥补两者不足,制备规整形貌的实心、空心复合纳米结构,以提高其光催化性能。具有规整形貌的复合纳米结构,能加快光生电子的转移,很好地促进光生电子与空穴的分离,提高复合纳米结构的光催化性能。
目前,制备硫化物-TiO2光催化剂的方法,一般通过先分别制备好硫化物和二氧化钛的纳米材料,然后通过水热等方法复合,形成的复合纳米结构都不是规整形貌的,完成这些制备过程一般采用两步法或多步法合成,如:
1)水热法:中国发明专利申请CN 107469833 A先制备SiO2-TiO2,再将其与钼酸铵、尿素等通过水热法将二维片层MoS2生长在中空TiO2的表面,得到 MoS2包覆的TiO2中空核壳结构复合光催化剂。采用多步法制备,所制得的复合纳米结构的形貌不规整,且二维片层MoS2稳定性不好,后处理较为复杂。中国发明专利申请CN 103613130 A先制备TiO2纳米线和PbS量子点,再采用水热法制备PbS-TiO2复合材料,其形貌不规整,且采用多步法合成。最重要是的水热法只适用于氧化物或少数对水不敏感硫化物的制备。
2)溶胶-凝胶法:中国发明专利申请CN 103920504 A先制备CdS包覆聚苯乙烯核壳复合材料,接着加入十六烷基三甲基氯化铵,通过溶胶-凝胶法制备树枝形TiO2包覆CdS中空双壳层材料,其复合物的形貌不规整,后处理较为复杂,为两步法合成。溶胶-凝胶法在退火过程中容易发生烧结团聚,复合纳米结构容易发生改变,不利于复合材料的制备,降低了其光催化性能。
3)静电纺丝法:中国发明专利申请CN 109529884 A先通过制备TiO2纳米纤维,然后将其加入到含有羧甲基纤维素、硫化物酸性溶液及锌盐的混合溶液中,最后采用静电纺丝法制备得到ZnS量子点包覆的TiO2复合材料,其复合纳米结构的形貌不规整,稳定性较差,且采用两步法合成。静电纺丝法影响因素较多,容易受到环境、反应条件影响,难以用于工业化生产。
4)化学浴沉积法:中国发明专利申请CN 102024572 A先是制备多孔TiO2材料,再通过化学浴沉积制备了PbS量子点共敏化多孔TiO2复合材料,其形貌不规整,复合纳米结构稳定性较差,且采用两步法合成。化学浴沉积法主要用于溶液生长,控制沉淀或简单的化学沉积,但其化学反应过程比较缓慢。
发明内容
基于以上分析,由两步法或多步法制备得到的硫化物-TiO2复合纳米结构的形貌一般均为不规整的,后处理较为复杂,并考虑到水热法、溶胶-凝胶法、静电纺丝法及化学浴沉积法的优缺点,本申请想利用原料既能提供钛源,又能提供硫源的优势,采用溶剂热法一锅合成技术制备规整形貌硫化物-TiO2复合纳米结构。溶剂热法是在水热法的基础上发展起来的一种新型制备方法,将水热法中的水替换成溶剂,从而避免了少数对水敏感的硫化物在制备过程中分解,加入的溶剂能够在反应过程中控制晶体的生长,该法能够制备对水敏感的材料、且团聚少、不易受到环境影响、反应速度快。采用一锅法能够同时制备一元、二元或三元硫化物与TiO2复合纳米结构,且该复合物形貌是规整的,后处理较为简单,这不仅节省了时间和原料,同时也适用于工业生产。迄今为止,还没有文献报道溶剂热法一锅合成规整形貌硫化物-TiO2复合纳米结构。
针对现有技术中存在的问题,本发明的目的在于提供一种利用溶剂热法一锅合成规整形貌硫化物-TiO2复合纳米结构的方法,所述方法的具体步骤如下:
将钛化物加入含有金属盐溶液的容器中,向其中加入酸性试剂调节体系的 pH至3-4,搅拌均匀后得到混合溶液,将混合溶液转移至高压反应釜内胆中,密封后在160-200℃下反应10-15h(优选为在200℃下反应12h),反应结束后自然冷却至室温,洗涤,干燥后得到规整形貌硫化物-TiO2复合纳米结构;
所述钛化物为TiS2、TiS3、Ti2S3、Ti(SO4)2、Ti2SC和Ti4C2S2中的至少一种,优选为TiS2、TiS3或Ti2S3
所述金属盐为镉盐、锌盐、铟盐、铅盐、汞盐、银盐、铜盐、镍盐、铬盐和铁盐中的至少一种;优选为镉盐、锌盐或铟盐。
所述方法中调配钛化物与金属盐的用量关系使得产物硫化物-TiO2复合纳米结构中硫化物与TiO2质量比的理论值为(0.01-0.1):1,优选为0.03:1。
进一步的,所述金属盐溶液体积与高压反应釜内胆容积比为1:(2-4),优选为1:2。
进一步的,所述规整形貌硫化物-TiO2复合纳米结构的形貌为空心球、空心盒或实心球。
进一步的,所述镉盐为硝酸镉、乙酸镉、硫酸镉、碳酸镉或氯化镉;
进一步的,所述锌盐为硝酸锌、乙酸锌、氯化锌或硫酸锌;
进一步的,所述铟盐为硝酸铟、乙酸铟或氯化铟。
进一步的,所述金属盐溶液所用溶剂为乙二醇、乙醇、正丙醇、异丙醇、正丁醇、乙二醇单甲醚、乙二醇单乙醚中的至少一种,优选为乙二醇。
进一步的,所述酸性试剂为氟化铵、氯化铵、醋酸铵、硝酸铵、盐酸、硫酸、醋酸和硝酸中的至少一种,优选为氟化铵或氯化铵。
进一步的,所述干燥条件为60-120℃真空干燥环境,优选为60℃真空干燥环境。
本发明也提供了上述方法制备的规整形貌硫化物-TiO2复合纳米结构在光催化降解有机农药中的应用。以上述方法制备得到的规整形貌硫化物-TiO2复合纳米结构作为光催化剂,在可见光照射下将有机农药降解为无毒的小分子物质。
进一步的,所述有机农药为有机氯农药、苯胺农药、氨基甲酸酯农药、有机磷农药和氯苯氧基羧酸农药中的至少一种,优选为有机氯农药。
进一步的,所述有机氯农药为双氯酚、敌草隆、百菌清、六六六或五氯苯酚。
同现有的技术相比,本发明具有如下优点和有益效果:
(1)利用原料既能提供钛源,又能提供硫源的优势,采用溶剂热法一锅合成的光催化剂为规整形貌一元、二元或者三元硫化物-TiO2复合纳米结构,该法具有操作步骤简单、成本较低、节约时间、团聚少、产物形貌规整,易于实现大规模生产等优点。
(2)利用本发明的规整形貌硫化物-TiO2复合纳米结构降解有机农药时,操作过程较为简便,容易回收且能够反复使用,复合纳米结构抗光腐蚀能力增强,具有一定的稳定性。此外还能将其配制为溶液灌装成瓶喷洒使用,易于实现工业化生产。
(3)本发明所制备的硫化物-TiO2复合纳米结构通过光激发产生的高活性自由基能将有毒农药分解为小分子或无毒的化合物,有效地降低了有毒农药的残留,提高了生产安全性,可以降解多种有机农药,广谱性强,效果好,在农药绿色化、低残留等方面有较好的应用前景。
(4)本发明所制备的硫化物-TiO2复合纳米结构为规整形貌的实心结构或空心结构,其中规整形貌空心结构能够给催化反应提供更多的活性位点,有更大的比表面积,使反应进行更彻底,从而大大提高了复合纳米结构的光催化性能。同时,在重复实验中可以发现硫化物-TiO2复合纳米结构的稳定性没有发生明显变化,仍然显示了较好的光催化性能,说明其结构和催化活性能够长期保持稳定,这对于光催化剂在实际中的应用非常重要。
附图说明
图1为实施例1制备的规整形貌CdS-TiO2一元复合纳米实心球的SEM图(左) 和TEM图(右);
图2为实施例1制备的规整形貌ZnS-TiO2一元复合纳米实心球的SEM图(左) 和TEM图(右);
图3为实施例1制备的规整形貌CdIn2S4-TiO2二元复合纳米实心球的SEM 图(左)和TEM图(右);
图4为实施例1制备的规整形貌ZnIn2S4-TiO2二元复合纳米实心球的SEM 图(左)和TEM图(右);
图5为实施例1制备的规整形貌ZnCdIn4S8-TiO2三元复合纳米实心球的SEM 图(左)和TEM图(右);
图6为实施例1制备的规整形貌CdS-TiO2一元复合纳米实心球的XPS图;
图7为实施例3制备的规整形貌CdS-TiO2一元复合纳米空心盒的SEM图(左) 和TEM图(右);
图8为实施例3制备的规整形貌ZnS-TiO2一元复合纳米空心球的SEM图(左) 和TEM图(右);
图9为实施例3制备的规整形貌CdIn2S4-TiO2二元复合纳米空心球的SEM 图(左)和TEM图(右);
图10为实施例3制备的规整形貌ZnIn2S4-TiO2二元复合纳米空心球的SEM 图(左)和TEM图(右);
图11为实施例3制备的规整形貌ZnCdIn4S8-TiO2三元复合纳米空心球的 SEM图(左)和TEM图(右);
图12为实施例1制备的规整形貌硫化物-TiO2复合纳米实心球对有机农药 (双氯酚)的降解曲线图;
图13为实施例2制备的规整形貌硫化物-TiO2复合纳米实心球对有机农药 (敌草隆)的降解曲线图;
图14为实施例3制备的规整形貌硫化物-TiO2复合纳米空心球/空心盒对有机农药(百菌清)的降解曲线图;
图15为实施例4制备的规整形貌硫化物-TiO2复合纳米空心球对有机农药 (六六六)的降解曲线图;
图16为实施例5制备的规整形貌硫化物-TiO2复合纳米空心球对有机农药 (五氯苯酚)的降解曲线图;
图17为实施例3制备的规整形貌ZnCdIn4S8-TiO2三元复合纳米空心球对有机农药(五氯苯酚)循环降解曲线图。
具体实施方式
下面通过具体实施例对本发明作进一步的说明,以便本技术领域人员对本发明有更好的理解。
实施例1:溶剂热法一锅合成质量百分数为1%的规整形貌硫化物-TiO2复合纳米实心球,具体步骤如下:
将1g钛化物(本次实验为TiS2)加入50mL含有0.0117g金属盐的乙二醇溶液(本次实验为硝酸镉乙二醇溶液)中,然后向其中加入一定量氟化铵,使其溶液pH≈3-4,磁力搅拌0.5h后,将混合溶液转移至100mL高压反应釜内胆中,密封后置于200℃烘箱中反应12h。反应结束后自然冷却至室温,用无水乙醇和去离子水多次洗涤所得沉淀物,直到洗出液为中性(pH=7),于60℃下真空干燥12h后,得到质量百分数为1%的硫化物-TiO2一元复合纳米实心球 CdS-TiO2,记作S1,其中质量百分数1%为硫化物与TiO2的质量比,具体本实验为CdS-TiO2中CdS与TiO2的质量比,其他实施例类比计算。
将上述硝酸镉的乙二醇溶液换成50mL含0.0044g乙酸锌的乙二醇溶液,制备得到ZnS-TiO2一元复合纳米实心球,记作S2;
将上述硝酸镉的乙二醇溶液换成50mL含0.0072g硝酸镉和0.0134g氯化铟的乙二醇混合溶液,制备CdIn2S4-TiO2二元复合纳米实心球,记作S3;
将上述硝酸镉的乙二醇溶液换成50mL含0.0022g乙酸锌和0.0224g氯化铟的乙二醇混合溶液,制备得到ZnIn2S4-TiO2二元复合纳米实心球,记作S4。
将上述硝酸镉的乙二醇溶液换成50mL含0.0076g硝酸镉、0.0021g乙酸锌和0.0212g氯化铟的乙二醇混合溶液,制备得到ZnCdIn4S8-TiO2三元复合纳米实心球,记作S5。
其扫描电镜图和透射电镜图分别如图1-5所示,可以看出所得到的硫化物 -TiO2复合材料为规整形貌实心球结构。
图6为规整形貌CdS-TiO2一元复合纳米结构的XPS图,从图中可以找到归属于Cd、S、Ti、O元素相应峰的位置。
实施例2:溶剂热法一锅合成质量百分数为2%的规整形貌硫化物-TiO2复合纳米实心球,由以下方法制备得到:
将1g TiS3加入50mL含有0.0177g乙酸镉的乙二醇溶液聚四氟乙烯烧杯中,然后向其中加入一定量氯化铵,使其溶液pH≈3-4,磁力搅拌0.5h后,将混合溶液转移至100mL高压反应釜内胆中,密封后置于200℃烘箱中反应12h。反应结束后自然冷却至室温,用无水乙醇和去离子水多次洗涤所得沉淀物,直到洗出液为中性(pH=7),于60℃下真空干燥12h后,得到质量百分数为2%的硫化物-TiO2一元复合纳米实心球CdS-TiO2,记作S6。
将上述乙酸镉的乙二醇溶液换成50mL含0.0155g氯化锌的乙二醇溶液,制备得到ZnS-TiO2一元复合纳米实心球,记作S7;
将上述乙酸镉的乙二醇溶液换成50mL含0.0109g乙酸镉、0.0284g硝酸铟的乙二醇混合溶液,制备CdIn2S4-TiO2二元复合纳米实心球,记作S8;
将上述乙酸镉的乙二醇溶液换成50mL含0.0072g氯化锌、0.0316g硝酸铟的乙二醇混合溶液,制备得到ZnIn2S4-TiO2二元复合纳米实心球,记作S9。
将上述乙酸镉的乙二醇溶液换成50mL含0.0115g乙酸镉、0.0068g氯化锌和0.0299g硝酸铟的乙二醇混合溶液,制备得到ZnCdIn4S8-TiO2三元复合纳米实心球,记作S10。
实施例3:溶剂热法一锅合成质量百分数为3%的规整形貌硫化物-TiO2纳米空心球/空心盒,由以下方法制备得到:
将1g TiS2加入50mL含有0.0273g氯化镉的乙二醇溶液聚四氟乙烯烧杯中,然后向其中加入一定量氯化铵,使其溶液pH≈3-4,磁力搅拌0.5h后,将混合溶液转移至100mL高压反应釜内胆中,密封后置于200℃烘箱中反应12h。反应结束后自然冷却至室温,用无水乙醇和去离子水多次洗涤所得沉淀物,直到洗出液为中性(pH=7),于60℃下真空干燥12h后得到质量百分数为3%的复合纳米实心盒CdS-TiO2,记作S11。
将上述氯化镉的乙二醇溶液换成50mL含0.0656g硝酸锌的乙二醇溶液,制备得到ZnS-TiO2一元复合纳米空心球,记作S12;
将上述氯化镉的乙二醇溶液换成50mL含0.0168g氯化镉、0.0401g乙酸铟的乙二醇混合溶液,制备CdIn2S4-TiO2二元复合纳米空心球,记作S13;
将上述氯化镉的乙二醇溶液换成50mL含0.0302g硝酸锌、0.0593g乙酸铟的乙二醇混合溶液,制备得到ZnIn2S4-TiO2二元复合纳米空心球,记作S14。
将上述氯化镉的乙二醇溶液换成50mL含0.0176g氯化镉、0.0286g硝酸锌和0.0562g乙酸铟的乙二醇混合溶液,制备得到ZnCdIn4S8-TiO2三元复合纳米空心球,记作S15。
S11、S12、S13、S14、S15的SEM和TEM分别如图7-11所示,从图中可以明显的看出:S11的形貌为TiO2空心盒上的纳米棒结构,S12、S13、S14、S15 的形貌为纳米空心球结构。
实施例4:溶剂热法一锅合成质量百分数为5%规整形貌硫化物-TiO2复合纳米空心球,由以下方法制备得到:
将1g TiS3加入50mL含有0.0332g碳酸镉的乙二醇溶液聚四氟乙烯烧杯中,然后向其中加入一定量氟化铵,使其溶液pH≈3-4,磁力搅拌0.5h后,将混合溶液转移至100mL高压反应釜内胆中,密封后置于200℃烘箱中反应12h。反应结束后自然冷却至室温,用无水乙醇和去离子水多次洗涤所得沉淀物,直到洗出液为中性(pH=7),于60℃下真空干燥12h后得到质量百分数为5%的硫化物-TiO2一元复合纳米空心球CdS-TiO2,记作S16。
将上述硝酸镉的乙二醇溶液换成50mL含0.0461g硫酸锌的乙二醇溶液,制备得到ZnS-TiO2一元复合纳米空心球,记作S17;
将上述硝酸镉的乙二醇溶液换成50mL含0.0204g碳酸镉、0.0785g氯化铟的乙二醇混合溶液,制备CdIn2S4-TiO2二元复合纳米空心球,记作S18;
将上述硝酸镉的乙二醇溶液换成50mL含0.0212g硫酸锌、0.0872g氯化铟的乙二醇混合溶液,制备得到ZnIn2S4-TiO2二元复合纳米空心球,记作S19。
将上述硝酸镉的乙二醇溶液换成50mL含0.0215g碳酸镉、0.0201g硫酸锌、0.0826g氯化铟的乙二醇混合溶液,制备得到ZnCdIn4S8-TiO2三元复合纳米空心球,记作S20。
实施例5:溶剂热法一锅合成质量百分数为7%的规整形貌-TiO2复合纳米空心球,由以下方法制备得到:
将1g Ti2S3加入50mL含有0.0421g硫酸镉的乙二醇溶液和聚四氟乙烯烧杯中,然后向其中加入一定量氯化铵,使溶液pH≈3-4,磁力搅拌0.5h后,将混合溶液转移至100mL高压反应釜内胆中,密封后置于200℃烘箱中反应12h。反应结束后自然冷却至室温,用无水乙醇和去离子水多次洗涤所得沉淀物,直到洗出液为中性(pH=7),于60℃下真空干燥12h后得到质量百分含量为7%的硫化物-TiO2一元复合纳米空心球CdS-TiO2,记作S21。
将上述乙酸镉的乙二醇溶液换成50mL含0.0409g氯化锌的乙二醇溶液,制备得到ZnS-TiO2一元复合纳米空心球,记作S22;
将上述乙酸镉的乙二醇溶液换成50mL含0.0259g硫酸镉和0.1121g硝酸铟的乙二醇混合溶液,制备CdIn2S4-TiO2二元复合纳米空心球,记作S23;
将上述乙酸镉的乙二醇溶液换成50mL含0.0189g氯化锌和0.1246g硝酸铟的乙二醇混合溶液,制备得到ZnIn2S4-TiO2二元复合纳米空心球,记作S24。
将上述乙酸镉的乙二醇溶液换成50mL含0.0273g硫酸镉、0.0178g氯化锌和0.1180g硝酸铟的乙二醇混合溶液,制备得到ZnCdIn4S8-TiO2三元复合纳米空心球,记作S25。
实施例6:利用上述的规整形貌硫化物-TiO2复合纳米结构光催化降解有机氯农药的实验,步骤如下:
将50mg的光催化剂和50mL浓度为1×10-5mol/L有机氯农药于光反应瓶中,然后将混合溶液在黑暗处搅拌吸附0.5h,以达到吸附-脱附平衡。然后采用具有滤光器(λ>420nm)的300W氙灯照射,光源与光反应瓶的距离调节为20cm,并设置电流为7.0A,连续光照120min。在这过程中每间隔20min取一个样,即0,20,40,60,80,100,120min样,每个样取4mL,离心2次,取上层清液使用Agilent 7890A气相色谱仪测定其中有机氯农药的含量,色谱参数如下:
色谱柱:HP-5毛细管色谱柱(30m×320μm×0.25μm),流速为1.0mL/min;柱箱温度:初始温度120℃,以20℃/min的速率升至250℃,并保持6min;进样口温度:250℃,不分流进样,进样量为1μL;载气:高纯氮气(纯度≥99.999%),流速为8.0mL/min。以下实施例的检测过程同此过程,不再累述。
表1为在可见光照射时长120min,分别采用P25以及实施例1-5制备的复合纳米结构S1-S25为催化剂降解不同的有机氯农药时的降解效果,从表中可以明显看出,与光催化剂二氧化钛(P25)相比较,实施例3所制备的光催化剂对有机氯农药的降解效果达到最好,表明硫化物-TiO2复合纳米结构的光催化性能大大提高。其中,对有机氯农药的降解效率是质量百分数为3%规整形貌硫化物 -TiO2复合纳米空心球/空心盒>5%规整形貌硫化物-TiO2复合纳米空心球>7%规整形貌硫化物-TiO2复合纳米空心球>2%规整形貌硫化物-TiO2复合纳米实心球>1%规整形貌硫化物-TiO2复合纳米实心球。
图12为实施例1制备的规整形貌硫化物-TiO2复合纳米实心球对有机农药 (双氯酚)的降解曲线图;图13为实施例2制备的规整形貌硫化物-TiO2复合纳米实心球对有机农药(敌草隆)的降解曲线图;图14为实施例3制备的规整形貌硫化物-TiO2复合纳米空心球/空心盒对有机农药(百菌清)的降解曲线图;图 15为实施例4制备的规整形貌硫化物-TiO2复合纳米空心球对有机农药(六六六) 的降解曲线图;图16为实施例5制备的规整形貌硫化物-TiO2复合纳米空心球对有机农药(五氯苯酚)的降解曲线图。
表1光催化剂对有机氯农药的光降解率(%)
Figure BDA0002349440080000101
Figure BDA0002349440080000111
实施例7:利用规整形貌硫化物-TiO2复合纳米结构循环光催化降解有机农药的实验,步骤如下:
将50mg的光催化剂和50mL浓度为1×10-5mol/L有机农药(五氯苯酚)于光反应瓶中,然后将混合溶液黑暗处搅拌吸附0.5h,以达到吸附-脱附平衡。采用具有滤光器(λ>420nm)的300W氙灯照射,光源与光反应瓶的距离调节为 20cm,并设置电流为7.0A,连续光照6h,取样离心,采用Agilent 7890A气相色谱仪测定五氯苯酚的含量,此为一次循环。将使用过的光催化剂离心分离后,再分别用无水乙醇和蒸馏水洗涤、过滤,置于60℃烘箱中12h,得到粉末。然后分别向各自的光催化瓶中再入50mL、1×10-5mol/L五氯苯酚以及洗涤干燥后得到的粉末,重复上述光催化试验,此为2次循环。计算实施例1-5所制备的光催化剂对五氯苯酚循环降解效果,结果如表2所示。由表2可知,经过5次循环使用后,光催化剂对五氯苯酚的降解率基本没有降低,说明了所制备的复合光催化剂的稳定性较好。
实施例3制备的规整形貌ZnCdIn4S8-TiO2三元复合纳米空心球对有机农药 (五氯苯酚)循环降解曲线图如图17所示,因为硫化物存在不稳定和光照下容易发生光腐蚀现象,以图17对有机农药(五氯苯酚)的降解循环情况来看,可以很明显的看出本发明所制备的复合纳米材料稳定,抗光腐蚀能力相比于P25 增强了很多。
表2各光催化剂对五氯苯酚的循环降解率(%)
Figure BDA0002349440080000121
Figure BDA0002349440080000131

Claims (9)

1.一种利用溶剂热法一锅合成规整形貌硫化物-TiO2复合纳米结构的方法,其特征在于,所述方法的具体步骤如下:
将钛化物加入含有金属盐溶液的容器中,然后向其中加入酸性试剂调节体系的pH至3-4,搅拌均匀后得到混合溶液,将混合溶液转移至高压反应釜内胆中,密封后在160-200℃下反应10-15 h,反应结束后自然冷却至室温,洗涤,干燥后得到规整形貌硫化物-TiO2复合纳米结构;
所述钛化物为TiS2、TiS3和Ti2S3中的至少一种;
所述金属盐为镉盐、锌盐、铟盐中的至少一种;
所述方法中调配钛化物与金属盐的用量关系使得产物硫化物-TiO2复合纳米结构中硫化物与TiO2的质量比理论值为(0.01-0.1):1。
2.根据权利要求1所述的方法,其特征在于,所述规整形貌硫化物-TiO2复合纳米结构的形貌为空心球、空心盒或实心球。
3.根据权利要求1所述的方法,其特征在于,所述镉盐为硝酸镉、乙酸镉、碳酸镉、硫酸镉或氯化镉;所述锌盐为硝酸锌、乙酸锌、氯化锌或硫酸锌;所述铟盐为硝酸铟、乙酸铟或氯化铟。
4.根据权利要求1所述的方法,其特征在于,所述金属盐溶液所用溶剂为乙二醇、乙醇、正丙醇、异丙醇、正丁醇、乙二醇单甲醚、乙二醇单乙醚中的至少一种。
5.根据权利要求1所述的方法,其特征在于,所述酸性试剂为氟化铵、氯化铵、硝酸铵、盐酸、硫酸、醋酸、硝酸中的至少一种。
6.根据权利要求1所述的方法,其特征在于,所述干燥条件为60-120℃真空干燥。
7.一种权利要求1-6任一项所述方法制备得到的规整形貌硫化物-TiO2复合纳米结构在光催化降解有机农药中的应用。
8.根据权利要求7所述的应用,其特征在于,所述有机农药为有机氯农药、苯胺农药、氨基甲酸酯农药、有机磷农药和氯苯氧基羧酸农药中的至少一种。
9.根据权利要求8所述的应用,其特征在于,所述有机氯农药为双氯酚、敌草隆、百菌清、六六六或五氯苯酚。
CN201911408874.XA 2019-12-31 2019-12-31 一种利用溶剂热法一锅合成规整形貌硫化物-TiO2复合纳米结构的方法及其应用 Active CN111111696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911408874.XA CN111111696B (zh) 2019-12-31 2019-12-31 一种利用溶剂热法一锅合成规整形貌硫化物-TiO2复合纳米结构的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911408874.XA CN111111696B (zh) 2019-12-31 2019-12-31 一种利用溶剂热法一锅合成规整形貌硫化物-TiO2复合纳米结构的方法及其应用

Publications (2)

Publication Number Publication Date
CN111111696A CN111111696A (zh) 2020-05-08
CN111111696B true CN111111696B (zh) 2022-07-01

Family

ID=70506214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911408874.XA Active CN111111696B (zh) 2019-12-31 2019-12-31 一种利用溶剂热法一锅合成规整形貌硫化物-TiO2复合纳米结构的方法及其应用

Country Status (1)

Country Link
CN (1) CN111111696B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111874988A (zh) * 2020-09-01 2020-11-03 中认英泰检测技术有限公司 基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法
CN112275325B (zh) * 2020-09-28 2022-06-21 长春工业大学 用于光催化的硫化镉/二氧化钛/聚丙烯腈复合纳米材料的制备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100784509B1 (ko) * 2007-01-02 2007-12-11 주식회사 젠트로 광 촉매 수처리 유닛 및 이를 구비한 기체 혼화형 수처리장치
CN103433060B (zh) * 2013-08-22 2014-12-03 华南理工大学 核-壳型TiO2/ZnIn2S4复合光催化剂及其制备方法与应用
CN106268868B (zh) * 2016-08-24 2018-11-06 江苏大学 一种TiO2空心球表面生长ZnIn2S4的复合光催化剂的制备方法及其应用
CN108421551A (zh) * 2018-02-07 2018-08-21 江苏大学 一种CdIn2S4纳米点杂化TiO2空心球复合光催化剂及其制备方法和用途

Also Published As

Publication number Publication date
CN111111696A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
Tahir et al. Au-NPs embedded Z–scheme WO3/TiO2 nanocomposite for plasmon-assisted photocatalytic glycerol-water reforming towards enhanced H2 evolution
Cao et al. A novel Z-scheme CdS/Bi4O5Br2 heterostructure with mechanism analysis: Enhanced photocatalytic performance
Zhang et al. Dual Z-scheme 2D/3D carbon-bridging modified g-C3N4/BiOI-Bi2O3 composite photocatalysts for effective boosting visible-light-driven photocatalytic performance
Wu et al. Surfactants-assisted preparation of BiVO4 with novel morphologies via microwave method and CdS decoration for enhanced photocatalytic properties
Li et al. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe2O4 nanocomposites
Wang et al. 1T phase boosted MoSe2/pg-C3N4 with Z-scheme heterojunction for enhanced photocatalytic degradation of contaminants
Hussain et al. Recent advances in BiOX-based photocatalysts to enhanced efficiency for energy and environment applications
Zhang et al. Facile hydrothermal synthesis and photocatalytic activity of rod-like nanosized silver tungstate
Ghorbani et al. Facile synthesis of Z-scheme ZnO-nanorod@ BiOBr-nanosheet heterojunction as efficient visible-light responsive photocatalyst: The effect of electrolyte and scavengers
Jin et al. Fabrication of a La-doped BiVO4@ CN step-scheme heterojunction for effective tetracycline degradation with dual-enhanced molecular oxygen activation
Qiu et al. Bismuth molybdate photocatalyst for the efficient photocatalytic degradation of tetracycline in water under visible-light irradiation
Li et al. Z-scheme bismuth-rich bismuth oxide iodide/bismuth oxide bromide hybrids with novel spatial structure: Efficient photocatalytic degradation of phenolic contaminants accelerated by in situ generated redox mediators
Gu et al. Heterojunction photocatalyst of cavity shaped Bi2S3/g-C3N4 for bisphenol a degradation: Regulation of internal electric field via assistance of interfacial functional groups
Abdurahman et al. Tunable band structure of synthesized carbon dots modified graphitic carbon nitride/bismuth oxychlorobromide heterojunction for photocatalytic degradation of tetracycline in water
Wang et al. Environmentally benign chitosan as reductant and supporter for synthesis of Ag/AgCl/chitosan composites by one-step and their photocatalytic degradation performance under visible-light irradiation
Anum et al. Construction of hybrid sulfur-doped MOF-235@ g-C3N4 photocatalyst for the efficient removal of nicotine
Liao et al. Tunable oxygen vacancies facilitated removal of PFOA and RhB over BiOCl prepared with alcohol ether sulphate
Hu et al. Facile synthesis of Z-scheme Bi2O3/Bi2WO6 composite for highly effective visible-light-driven photocatalytic degradation of nitrobenzene
CN111111696B (zh) 一种利用溶剂热法一锅合成规整形貌硫化物-TiO2复合纳米结构的方法及其应用
Niu et al. Salt-sealing-pyrolysis derived Ag/ZnO@ C hollow structures towards efficient photo-oxidation of organic dye and water-born bacteria
Yuan et al. Efficient degradation of tetracycline hydrochloride by direct Z-scheme HKUST-1@ m-BiVO4 catalysts with self-produced H2O2 under both dark and light
Zhao et al. Polyoxometalates-doped TiO 2/Ag hybrid heterojunction: removal of multiple pollutants and mechanism investigation
Huang et al. Bi 2 O 2 CO 3/Bi 2 O 3 Z-scheme photocatalyst with oxygen vacancies and Bi for enhanced visible-light photocatalytic degradation of tetracycline
Bai et al. Wet chemical synthesis of CdS/ZnO nanoparticle/nanorod hetero-structure for enhanced visible light disposal of Cr (VI) and methylene blue
Zhang et al. Performance and mechanism of biochar-coupled BiVO4 photocatalyst on the degradation of sulfanilamide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant