CN111855723B - 一种粗大铝胞状晶组织形貌的直接三维显示方法 - Google Patents

一种粗大铝胞状晶组织形貌的直接三维显示方法 Download PDF

Info

Publication number
CN111855723B
CN111855723B CN202010528688.6A CN202010528688A CN111855723B CN 111855723 B CN111855723 B CN 111855723B CN 202010528688 A CN202010528688 A CN 202010528688A CN 111855723 B CN111855723 B CN 111855723B
Authority
CN
China
Prior art keywords
morphology
crucible
aluminum
niobium
coarse aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010528688.6A
Other languages
English (en)
Other versions
CN111855723A (zh
Inventor
陈焕铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia University
Original Assignee
Ningxia University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia University filed Critical Ningxia University
Priority to CN202010528688.6A priority Critical patent/CN111855723B/zh
Publication of CN111855723A publication Critical patent/CN111855723A/zh
Application granted granted Critical
Publication of CN111855723B publication Critical patent/CN111855723B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

本发明提供一种粗大铝胞状晶组织形貌的直接显示方法。该方法避免了传统微观组织形貌显示需用抛光与腐蚀、或者偏光的基本过程,直接将该方法生长的粗大铝胞状晶组织放置于扫描电子显微镜下进行非破坏性观察,获得具有三维立体形态的胞状晶微观组织形貌,充分展示粗大铝胞状晶微观组织形貌形成的生长过程特性。本发明提供一种粗大铝胞状晶组织形貌的直接三维显示方法,其显示尺度为数百微米的微观层次,所得组织形貌图像具有非破坏、非损伤的技术特点与优势。

Description

一种粗大铝胞状晶组织形貌的直接三维显示方法
技术领域
本发明涉及金属及金属基复合材料制备技术领域,特别涉及一种粗大铝胞状晶组织形貌的直接三维显示新方法。
背景技术
在金属及金属基复合材料制备技术领域,通常需要对金属及金属基复合材料的相组成和微观组织包括凝固组织进行观察和分析,为进一步调整制备工艺技术提供参考和依据。在这一过程中,传统的方法和技术是去制备透射电镜样品、扫描电镜样品、光学显微镜样品等,在这些样品的制备过程中需要对其进行机械抛光或者化学抛光,然后选用合适的化学腐蚀试剂对抛光的金属面进行化学腐蚀,使其呈现出易于成像和观察的微观凹凸等。本发明提供一种粗大铝胞状晶组织形貌的直接三维显示新方法,与传统技术方法相比,具有非破坏、非损伤和立体显示的技术特点与优势。
发明内容
本发明的目的是:提供一种粗大铝胞状晶组织形貌的直接三维显示新方法,与传统技术方法相比,避免了化学腐蚀破坏与损伤原始样品的缺点,实现了三维铝胞状晶放置于扫描电子显微镜下进行非破坏性的直接观察。本发明的技术设想原理是:充分利用铌铝反应生成的片状化合物及其反应时产生的热量,将铝蒸汽沉积于铌铝反应生成的片状化合物上,获得具有三维立体形态的粗大铝胞状晶微观组织形貌,用于直接微观组织形貌的观察。
基于上述原理,实现本发明的技术方案是:
(a) 将微纳量级铌粉与铝粉按比例混合均匀后盛装于由石墨坩埚(外坩埚,坩埚盖上开一直径2mm—5mm小孔)和氧化铝坩埚(内坩埚)套成的双坩埚中;
(b) 将物料装入碳管炉抽至高真空(10-3Pa量级),将坩埚加热至850℃—1100℃保温2—3小时;
(c) 炉温自然冷却至室温,由铌铝反应热产生的铝蒸汽沉积于由铌铝反应生成的片状铌铝化合物上,长大形成粗大铝胞状晶微观组织形貌。
本发明的主要创造性在于:充分利用了铌铝反应的热量产生铝蒸汽,利用反应生成的片状铌铝化合物做沉积基底,避开了铝胞状晶微观组织形貌观察前的破坏性腐蚀。与现有技术相比本发明的主要优点如下:该方法避免了化学腐蚀破坏与损伤原始样品的缺点,实现了三维立体铝胞状晶放置于扫描电子显微镜下进行非破坏性的直接观察,所得组织形貌图具有非破坏、非损伤、三维显示的技术特点与优势。
具体实施方式
实施实例1:
(a) 将颗粒尺寸为50微米—80微米的铌粉按体积比为10%与纯水混合,球磨140小时;
(b) 将球磨后的铌粉浆料置入真空烘箱中干燥,并按比例与铝粉混合;
(c) 将混合粉末装入由碳坩埚和氧化铝坩埚套成的双坩埚中,用碳管炉抽至高真空;
(d) 将物料加热至900℃保温3小时;
(e) 将炉温自然冷却至室温,取出样品;
经过扫描电镜形貌观察表明:所制备的样品微观组织形貌图像是具有三维立体形态的粗大铝胞状晶组织形貌特征, 能谱分析表明,其化学成份为铝,见附图(a)。
实施实例2:
(a) 将颗粒尺寸为50微米—80微米的铌粉按体积比为10%与纯水混合,球磨160小时;
(b) 将球磨后的铌粉浆料置入真空烘箱中干燥,并按比例与铝粉混合;
(c) 将混合粉末装入由碳坩埚和氧化铝坩埚套成的双坩埚中,用碳管炉抽至高真空;
(d) 将物料加热至1100℃保温2小时;
(e) 将炉温自然冷却至室温,取出样品;
经过扫描电镜形貌观察表明:所制备的样品微观组织形貌图像是具有三维立体形态的粗大铝胞状晶组织形貌特征, 能谱分析表明,其化学成份为铝,见附图(b)。
附图说明:
图1为用扫描电镜直接观察实例1所看到的粗大铝胞状晶微观组织形貌;
图2为用扫描电镜直接观察实例2所看到的粗大铝胞状晶微观组织形貌。

Claims (1)

1.一种粗大铝胞状晶组织形貌的直接三维显示方法,其特征在于(a) 将适量微纳量级铌粉与铝粉按比例混合均匀后盛装于由外坩埚和内坩埚套成的双坩埚中,外坩埚为石墨坩埚,内坩埚为氧化铝坩埚,外坩埚盖上开一直径为2mm—5mm的小孔,用碳管炉抽真空后,将坩埚加热至850℃—1100℃保温2—3小时;(b) 在炉温自然冷却至室温的过程中,将由铌铝反应热产生的铝蒸汽沉积于由铌铝反应生成的片状铌铝化合物上,长大形成三维粗大胞状晶微观组织形貌。
CN202010528688.6A 2020-06-11 2020-06-11 一种粗大铝胞状晶组织形貌的直接三维显示方法 Active CN111855723B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010528688.6A CN111855723B (zh) 2020-06-11 2020-06-11 一种粗大铝胞状晶组织形貌的直接三维显示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010528688.6A CN111855723B (zh) 2020-06-11 2020-06-11 一种粗大铝胞状晶组织形貌的直接三维显示方法

Publications (2)

Publication Number Publication Date
CN111855723A CN111855723A (zh) 2020-10-30
CN111855723B true CN111855723B (zh) 2023-11-14

Family

ID=72987225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010528688.6A Active CN111855723B (zh) 2020-06-11 2020-06-11 一种粗大铝胞状晶组织形貌的直接三维显示方法

Country Status (1)

Country Link
CN (1) CN111855723B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1311024A (fr) * 1962-01-18 1962-11-30 Union Carbide Corp Procédé de production de manganèse, d'aluminium ou de calcium sensiblement purs
US6143357A (en) * 1998-04-23 2000-11-07 Rohm And Haas Company Aluminum complex derivatives for chemical vacuum evaporation and the method of producing the same
CN102153334A (zh) * 2010-11-04 2011-08-17 西北工业大学 一种获得氧化铝基三元熔体生长陶瓷组织形貌的方法
CN107340307A (zh) * 2017-06-23 2017-11-10 中国地质大学(北京) 分析β‑SiC过渡层对金刚石膜形核生长影响的方法
CN109943742A (zh) * 2019-04-10 2019-06-28 安徽信息工程学院 一种合金改良材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1311024A (fr) * 1962-01-18 1962-11-30 Union Carbide Corp Procédé de production de manganèse, d'aluminium ou de calcium sensiblement purs
US6143357A (en) * 1998-04-23 2000-11-07 Rohm And Haas Company Aluminum complex derivatives for chemical vacuum evaporation and the method of producing the same
CN102153334A (zh) * 2010-11-04 2011-08-17 西北工业大学 一种获得氧化铝基三元熔体生长陶瓷组织形貌的方法
CN107340307A (zh) * 2017-06-23 2017-11-10 中国地质大学(北京) 分析β‑SiC过渡层对金刚石膜形核生长影响的方法
CN109943742A (zh) * 2019-04-10 2019-06-28 安徽信息工程学院 一种合金改良材料及其制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CLVI制备C/C复合材料的微观结构及力学性能研究;孙万昌等;《无机材料学报》;20030120(第01期);全文 *
TiC/7075铝基复合材料的磨损实验研究;刘慧敏等;《材料工程》;20110720(第07期);全文 *
喷射成形Mg-9Al-xZn合金的微观组织演变;李永兵等;《中国有色金属学报》;20090715(第07期);全文 *
炭/炭复合材料化学液气相沉积致密化技术研究;王海青等;《现代化工》;20070630;全文 *
脉冲电沉积时间对纳米晶镍镀层微观结构和性能的影响;戴玉明;张振忠;巴志新;赵芳霞;周剑秋;;金属热处理(第10期);全文 *
透明MgAl_2O_4晶须的制备与表征;杨道媛等;《硅酸盐通报》;20090815;第74-77页 *
铝熔体泡沫化制备胞状铝的研究进展;吴照金, 王艳明, 何德坪;铸造(第04期);全文 *

Also Published As

Publication number Publication date
CN111855723A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
Zhou et al. Shape control and spectroscopy of crystalline BaZrO 3 perovskite particles
CN110872728B (zh) 一种简单、高效降低SiC单晶中碳包裹物的方法
CN110366611A (zh) 碳化硅基板的制造方法及碳化硅基板
CN109836155A (zh) 一种致密铁弹性双稀土钽酸盐固溶体高温陶瓷及其制备方法
CN111855723B (zh) 一种粗大铝胞状晶组织形貌的直接三维显示方法
Eremeev et al. Progress with multi-cell Nb3Sn cavity development linked with sample materials characterization
WO2019049784A1 (ja) 被覆SiCナノ粒子を用いたSiCセラミックス及びその製造方法
CN111855724B (zh) 一种等轴钛铝枝晶微观组织形貌的直接显示方法
Bao et al. Floating zone growth and thermionic emission property of single crystal CeB6
CN105714370A (zh) 一种大量制备锡晶须的方法
CN107236989B (zh) 一种五元稀土硼化物单晶热阴极材料及其制备方法
CN105568023A (zh) 一种Al6Mn准晶的制备方法
Su et al. Fabrication and electrical properties of 0.94 Na0. 5Bi0. 5TiO3–0.06 BaTiO3 textured ceramics by RTGG method using micrometer sized BaTiO3 plate-like templates
CN111499377B (zh) 一种压电陶瓷及其制备方法
Tighe Experimental techniques
US4202930A (en) Lanthanum indium gallium garnets
Voronin et al. Oriented growth of β-SiC on diamond crystals at high pressure
Naber et al. Synthesis of monocrystalline Ca3SiO5 using the optical floating zone method
Kamitsuji et al. Direct observation of crystallization of amorphous Mg-bearing silicate grains into Mg (forsterite)
CN113773089A (zh) 一种高熵二硅化物及其制备方法
Fang et al. Growth and characterization of diamond single crystals grown in the Fe–S–C system by the temperature gradient method
Pang et al. Study on the growth, etch morphology and spectra of Y2SiO5 crystal
Wang et al. Microstructural Characteristics of Reaction‐Bonded B4C/SiC Composite
US20230075594A1 (en) Preparation method for alumina/titanium silicon carbide composite material
Oka et al. Growth of single crystals of lead monoxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant