CN111855724B - 一种等轴钛铝枝晶微观组织形貌的直接显示方法 - Google Patents

一种等轴钛铝枝晶微观组织形貌的直接显示方法 Download PDF

Info

Publication number
CN111855724B
CN111855724B CN202010529025.6A CN202010529025A CN111855724B CN 111855724 B CN111855724 B CN 111855724B CN 202010529025 A CN202010529025 A CN 202010529025A CN 111855724 B CN111855724 B CN 111855724B
Authority
CN
China
Prior art keywords
titanium aluminum
equiaxed
crucible
microstructure morphology
morphology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010529025.6A
Other languages
English (en)
Other versions
CN111855724A (zh
Inventor
陈焕铭
吴芳芳
马晓波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia University
Original Assignee
Ningxia University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia University filed Critical Ningxia University
Priority to CN202010529025.6A priority Critical patent/CN111855724B/zh
Publication of CN111855724A publication Critical patent/CN111855724A/zh
Application granted granted Critical
Publication of CN111855724B publication Critical patent/CN111855724B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供一种等轴钛铝枝晶微观组织形貌的直接显示新方法。该方法避免了传统等轴枝晶微观组织形貌显示需用抛光与腐蚀、或者偏光的基本过程,直接将该方法生长的等轴钛铝枝晶放置于扫描电子显微镜下进行非破坏性观察,获得具有三维立体形态的等轴枝晶微观组织形貌,充分展示等轴钛铝枝晶微观组织形貌形成的生长过程特性。本发明提供一种等轴钛铝枝晶微观组织形貌的直接显示新方法,其显示尺度为微观层次,所得组织形貌图像生动、逼真,具有非破坏、非损伤的技术特点与优势。

Description

一种等轴钛铝枝晶微观组织形貌的直接显示方法
技术领域
本发明涉及金属及金属基复合材料制备技术领域,特别涉及一种等轴钛铝枝晶微观组织形貌的直接显示新方法。
背景技术
在金属及金属基复合材料制备技术领域,通常需要对金属及金属基复合材料的相组成和微观组织包括凝固组织进行观察和分析,为进一步调整制备工艺技术提供参考和依据。在这一过程中,传统的方法和技术是去制备透射电镜样品、扫描电镜样品、光学显微镜样品等,在这些样品的制备过程中需要对其进行机械抛光或者化学抛光,然后选用合适的化学腐蚀试剂对抛光的金属面进行化学腐蚀,使其呈现出易于成像和观察的微观凹凸等。本发明提供一种等轴钛铝枝晶微观组织形貌的直接显示新方法,与传统技术方法相比,具有非破坏、非损伤的技术特点与优势。
发明内容
本发明的目的是:提供一种等轴钛铝枝晶微观组织形貌的直接显示新方法,与传统技术方法相比,避免了化学腐蚀破坏与损伤原始样品的缺点,实现了等轴钛铝枝晶放置于扫描电子显微镜下进行非破坏性的直接观察。本发明的技术设想原理是:充分利用钛铝反应生成的片状化合物及其反应时产生的热量,将钛铝蒸汽沉积于钛铝反应生成的片状化合物上,获得具有三维立体形态的等轴钛铝枝晶微观组织形貌,用于直接微观组织形貌的观察。
基于上述原理,实现本发明的技术方案是:
(a) 将微纳量级钛粉与铝粉按比例混合均匀后盛装于由石墨坩埚(外坩埚,坩埚盖上开一直径2mm—5mm小孔)和氧化铝坩埚(内坩埚)套成的双坩埚中;
(b) 将物料装入碳管炉抽至高真空(10-3Pa量级),将坩埚加热至1100℃—1200℃保温1—2小时;
(c) 炉温自然冷却至室温,由钛铝反应热产生的钛铝蒸汽沉积于由钛铝反应生成的片状钛铝化合物上,长大形成等轴钛铝枝晶微观组织形貌。
本发明的主要创造性在于:充分利用了钛铝反应的热量产生钛铝蒸汽,利用反应生成的片状钛铝化合物做沉积基底,避开了等轴钛铝枝晶微观组织形貌观察前的破坏性腐蚀。与现有技术相比本发明的主要优点如下:该方法避免了化学腐蚀破坏与损伤原始样品的缺点,实现了等轴钛铝枝晶放置于扫描电子显微镜下进行非破坏性的直接观察,所得组织形貌图像生动、逼真,具有非破坏、非损伤的技术特点与优势。
具体实施方式
实施实例1:
(a) 将颗粒尺寸为30微米—60微米的钛粉按体积比为10%与纯水混合,球磨48小时;
(b) 将球磨后的钛粉浆料置入真空烘箱中干燥,并按比例与铝粉混合;
(c) 将混合粉末装入由碳坩埚和氧化铝坩埚套成的双坩埚中,用碳管炉抽至高真空;
(d) 将物料加热至1200℃保温1小时;
(e) 将炉温自然冷却至室温,取出样品;
经过扫描电镜形貌观察表明:所制备的样品微观组织形貌图像生动、逼真,是具有三维立体形态的等轴钛铝枝晶组织形貌特征, 能谱测试表明其成份为钛、铝,见附图(a)。
实施实例2:
(a) 将颗粒尺寸为30微米—60微米的钛粉按体积比为10%与纯水混合,球磨72小时;
(b) 将球磨后的钛粉浆料置入真空烘箱中干燥,并按比例与铝粉混合;
(c) 将混合粉末装入由碳坩埚和氧化铝坩埚套成的双坩埚中,用碳管炉抽至高真空;
(d) 将物料加热至1100℃保温1小时;
(e) 将炉温自然冷却至室温,取出样品;
经过扫描电镜形貌观察表明:所制备的样品微观组织形貌图像生动、逼真,是具有三维立体形态的等轴钛铝枝晶组织形貌特征, 能谱测试表明其成份为钛、铝,见附图(b)。
附图说明:
图1为用扫描电镜直接观察实例1所看到的等轴钛铝枝晶微观组织形貌;
图2为用扫描电镜直接观察实例2所看到的等轴钛铝枝晶微观组织形貌。

Claims (1)

1.一种等轴钛铝枝晶微观组织形貌的直接显示新方法,其特征在于(a) 将适量微纳量级钛粉与铝粉按比例混合均匀后盛装于由外坩埚和内坩埚套成的双坩埚中,外坩埚为石墨坩埚,内坩埚为氧化铝坩埚,外坩埚盖上开一直径为2mm—5mm的小孔,用碳管炉抽真空后,将坩埚加热至1100℃—1200℃保温1—2小时;(b) 在炉温自然冷却至室温的过程中,将由钛铝反应热产生的少量钛铝蒸汽沉积于由钛铝反应生成的片状钛铝化合物上,长大形成等轴钛铝枝晶微观组织形貌。
CN202010529025.6A 2020-06-11 2020-06-11 一种等轴钛铝枝晶微观组织形貌的直接显示方法 Active CN111855724B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010529025.6A CN111855724B (zh) 2020-06-11 2020-06-11 一种等轴钛铝枝晶微观组织形貌的直接显示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010529025.6A CN111855724B (zh) 2020-06-11 2020-06-11 一种等轴钛铝枝晶微观组织形貌的直接显示方法

Publications (2)

Publication Number Publication Date
CN111855724A CN111855724A (zh) 2020-10-30
CN111855724B true CN111855724B (zh) 2023-10-24

Family

ID=72986548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010529025.6A Active CN111855724B (zh) 2020-06-11 2020-06-11 一种等轴钛铝枝晶微观组织形貌的直接显示方法

Country Status (1)

Country Link
CN (1) CN111855724B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108983A (en) * 1989-11-21 1992-04-28 Georgia Tech Research Corporation Method for the rapid deposition with low vapor pressure reactants by chemical vapor deposition
CN101029376A (zh) * 2007-04-12 2007-09-05 北京科技大学 Fe基非晶纳米晶喷涂粉末及其氩气雾化制备方法
CN110702497A (zh) * 2019-09-09 2020-01-17 中国航发北京航空材料研究院 一种预测金属表面裂纹萌生位置或扩展方向的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2309710T3 (es) * 2004-01-15 2008-12-16 Element Six Limited Procedimiento para revestir abrasivos.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108983A (en) * 1989-11-21 1992-04-28 Georgia Tech Research Corporation Method for the rapid deposition with low vapor pressure reactants by chemical vapor deposition
CN101029376A (zh) * 2007-04-12 2007-09-05 北京科技大学 Fe基非晶纳米晶喷涂粉末及其氩气雾化制备方法
CN110702497A (zh) * 2019-09-09 2020-01-17 中国航发北京航空材料研究院 一种预测金属表面裂纹萌生位置或扩展方向的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AZ91D镁合金前处理工艺对化学镀镍的影响;刘玉芬;钱建刚;黄巍;;材料保护(第06期);全文 *
化学气相沉积法生长透明硒化锌多晶;杨曜源等;《硅酸盐学报》;20040826(第08期);全文 *
温度和气氛对合成镁铝尖晶石纤维的影响;段红娟等;《人工晶体学报》;20131115(第11期);全文 *
激光沉积修复ZL114A铝合金的组织及力学性能;钦兰云等;《稀有金属材料与工程》;20170615(第06期);全文 *
透明MgAl_2O_4晶须的制备与表征;杨道媛等;《硅酸盐通报》;20090815;第74-77页 *

Also Published As

Publication number Publication date
CN111855724A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN1289389C (zh) 含有磷酸铝组合物的材料以及磷酸铝组合物
CN110872728B (zh) 一种简单、高效降低SiC单晶中碳包裹物的方法
CN102317512A (zh) 3b族氮化物的晶体生长方法及3b族氮化物晶体
CN107052330B (zh) 一种纳米金属铁获得及包裹的方法
Heiba et al. Structural properties of Zn1–xMgxO nanomaterials prepared by sol‐gel method
CN107236989B (zh) 一种五元稀土硼化物单晶热阴极材料及其制备方法
Eremeev et al. Progress with multi-cell Nb3Sn cavity development linked with sample materials characterization
FR2837217A1 (fr) Revetement composite de mosi2-si3n4 et son procede de fabrication
CN111855724B (zh) 一种等轴钛铝枝晶微观组织形貌的直接显示方法
CN113042753A (zh) 减少slm成形镍基高温合金裂纹及提升力学性能的方法
CN107236991B (zh) 一种大尺寸六元稀土硼化物单晶阴极材料及其制备方法
CN111855723B (zh) 一种粗大铝胞状晶组织形貌的直接三维显示方法
Sure et al. Microstructural characterization and chemical compatibility of pulsed laser deposited yttria coatings on high density graphite
CN104018124B (zh) 一种半导体材料SiC薄膜的制备工艺
Route et al. Preparation of large untwinned single crystals of AgGaS2
US4202930A (en) Lanthanum indium gallium garnets
JP2002068896A (ja) 窒化物単結晶製造方法及び製造装置
WO2004070091A1 (ja) 磁性ガーネット単結晶膜形成用基板、その製造方法、光学素子およびその製造方法
Jiang et al. Preparation of dense films of crystalline ZrO2 by intense pulsed‐electron‐beam ablation
CN102517544A (zh) 超声波作用下真空蒸发气相沉积生长多晶碘化汞厚膜的方法
Kamitsuji et al. Direct observation of crystallization of amorphous Mg-bearing silicate grains into Mg (forsterite)
CN115259901A (zh) 一种炭材料表面TaC保护涂层材料的制备方法
CN108362694B (zh) 一种快速检测二维过渡金属硫族化合物晶界的方法
CN112593288A (zh) 一种准一维超导材料Li0.9Mo6O17的单晶制备方法
Oka et al. Growth of single crystals of lead monoxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant