CN111848139B - 一种高发射率LaMgAl11O19陶瓷的制备方法 - Google Patents

一种高发射率LaMgAl11O19陶瓷的制备方法 Download PDF

Info

Publication number
CN111848139B
CN111848139B CN202010589209.1A CN202010589209A CN111848139B CN 111848139 B CN111848139 B CN 111848139B CN 202010589209 A CN202010589209 A CN 202010589209A CN 111848139 B CN111848139 B CN 111848139B
Authority
CN
China
Prior art keywords
powder
lamgal
ceramic
emissivity
heating rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010589209.1A
Other languages
English (en)
Other versions
CN111848139A (zh
Inventor
刘玲
马壮
柳彦博
朱皓麟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202010589209.1A priority Critical patent/CN111848139B/zh
Publication of CN111848139A publication Critical patent/CN111848139A/zh
Application granted granted Critical
Publication of CN111848139B publication Critical patent/CN111848139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Abstract

本发明涉及一种高发射率LaMgAl11O19陶瓷的制备方法,属于六铝酸镧陶瓷材料制备技术领域。先将La2O3粉体、Al(OH)3粉体和Mg(OH)2粉体混合均匀,再在真空环境下通过两段变速升温以及后段升温过程中加压的方式进行热压烧结,使所制备的LaMgAl11O19陶瓷致密度高、表面无微裂纹、内部无微孔洞、物相纯净,而且在3μm~5μm红外波段的光谱发射率大于0.9,满足航天飞行器外侧热防护领域以及工业窑炉节能领域对LaMgAl11O19陶瓷的应用需求。

Description

一种高发射率LaMgAl11O19陶瓷的制备方法
技术领域
本发明涉及一种高发射率LaMgAl11O19陶瓷的制备方法,属于六铝酸镧陶瓷材料制备技术领域。
背景技术
LaMgAl11O19陶瓷具有红外发射率高、熔点高、热导率低、热膨胀系数高和化学稳定性优异的特点。利用其红外发射率高的特点,可以对航天飞行器外侧进行热防护并达到工业窑炉节能的目的;而极低的热导率使其成为一种优异的热障涂层材料,同时其也是一种优异的荧光发光材料。可见,LaMgAl11O19陶瓷在上述领域具有极好的应用前景。
根据目前的应用需求,若将LaMgAl11O19陶瓷用于航天飞行器外侧热防护或工业窑炉节能,要求其在3μm~5μm红外波段的光谱发射率达到0.9以上,才能达到令人满意的效果。然而,目前采用热压烧结工艺所制备的LaMgAl11O19陶瓷难以满足发射率要求,从而限制了其应用和推广。
发明内容
针对现有技术存在的不足,本发明提供一种高发射率LaMgAl11O19陶瓷的制备方法,通过对热压烧结工艺的升温方式以及加压方式进行优化,使所制备的LaMgAl11O19陶瓷在3μm~5μm红外波段的光谱发射率大于0.9,满足航天飞行器外侧热防护领域以及工业窑炉节能领域对LaMgAl11O19陶瓷的应用需求。
本发明的目的是通过以下技术方案实现的。
一种高发射率LaMgAl11O19陶瓷的制备方法,所述方法步骤如下:
将La2O3粉体、Al(OH)3粉体和Mg(OH)2粉体按化学计量比进行配料并混合均匀,将混合粉体装入模具中,再将模具置于热压烧结炉中,在真空环境下,先以15℃/min~20℃/min的升温速率加热至900℃~1100℃,再以10℃/min~15 ℃/min的升温速率加热至1400℃~1500℃,且900℃~1100℃的升温速率与1400 ℃~1500℃的升温速率不同,同时于900℃~1100℃起开始以1MPa/min~2 MPa/min的升压速率加压至40MPa~45MPa,在1400℃~1500℃以及40MPa~45 MPa下保温保压2.5h~3h后,随炉冷却,得到高发射率LaMgAl11O19陶瓷。
进一步地,La2O3粉体、Al(OH)3粉体以及Mg(OH)2粉体的粒径分别独立为0.5μm~1μm。
进一步地,900℃~1100℃的升温速率与1400℃~1500℃的升温速率差值为5℃/min~10℃/min。
有益效果:
本发明所述热压烧结过程中,先以相对较快的速率升温,使各反应物原子充分地自由扩散以实现长程范围内的均匀分布;之后降低升温速度,以延长到达目标温度所需时间,从而有充足的时间使局部聚集的各反应物原子进一步在短程范围内扩散,以使彼此间距接近到能相互反应的范围,同时伴随加压,促进经由热扩散而相互靠近的不同反应物原子进一步聚集,有利于目标产物的生成。因为在长程热扩散充分进行后才实施加压,同时降低加压时的升温速率,延长了短程扩散时间,使短程扩散更充分,这样使得反应物原子在整个范围内分散均匀,此时再进行加压能使目标产物的产率提高,从而有利于发射率提升。而常规热压工艺是采用一段升温的方式,同时伴随加压,由于升温过快导致用时过短,各反应物间扩散不均匀,同时由于加压具有方向性,一开始各原子间存在偏聚,这种方向性阻碍与加压方向相反的长程原子扩散,导致原子扩散不均匀,并且在压力作用下,容易使偏聚的原子相互靠近而形成中间相,产生的中间相在压力推动下会成为部分原子扩散的阻碍,最终使得各反应物原子在扩散不足的情况下发生反应,导致目标产物生成率降低,所以发射率不高。因此,采用本发明所述方法制备的LaMgAl11O19陶瓷致密度高、表面无微裂纹、内部无微孔洞、物相纯净,而且在3μm~5μm红外波段的光谱发射率大于0.9,具有很好的应用前景。
附图说明
图1为实施例1制备的LaMgAl11O19陶瓷的X射线衍射(XRD)图谱。
图2为实施例1以及对比例1所制备的LaMgAl11O19陶瓷的红外光谱发射率对比图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步阐述,其中,所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径获得。
实施例1
(1)将La2O3粉体(平均粒径为0.5μm,纯度≥99.9%)、Al(OH)3粉体(平均粒径为0.5μm,纯度≥99.9%)和Mg(OH)2粉体(平均粒径为0.5μm,纯度≥98.0%)按化学计量比进行配料,并采用湿法球磨进行混料,得到混合均匀的白色混合粉体;
(2)将混合粉体装入模具中,再将模具置于热压烧结炉中,在真空环境下,先以15℃/min的升温速率加热至1100℃,再以10℃/min的升温速率加热至 1500℃,同时于1100℃起开始以1MPa/min的升压速率加压至40MPa,在1500 ℃以及40MPa下保温保压2.5h后,随炉冷却,得到高发射率LaMgAl11O19陶瓷。
本实施例所制备的LaMgAl11O19陶瓷表面无微裂纹,从其截面可以看出内部无微孔洞。经排水法测得本实施例所制备的LaMgAl11O19陶瓷致密度为99.4%。从图1的XRD图谱中可以看出,本实施例所制备的LaMgAl11O19陶瓷物相纯净,无杂相存在。
从图2的测试结果可以看出,本实施例所制备的LaMgAl11O19陶瓷在3μm~5 μm红外波段的光谱发射率均在0.920以上,且在3μm~5μm红外波段的平均光谱发射率达到0.941,相对于对比例1采用常规热压烧结工艺制备的LaMgAl11O19陶瓷在3μm~5μm红外波段的平均光谱发射率(0.873)有显著的提升。
实施例2
(1)将La2O3粉体(平均粒径为0.5μm,纯度≥99.9%)、Al(OH)3粉体(平均粒径为0.5μm,纯度≥99.9%)和Mg(OH)2粉体(平均粒径为0.5μm,纯度≥98.0%)按化学计量比进行配料,并采用湿法球磨进行混料,得到混合均匀的白色混合粉体;
(2)将混合粉体装入模具中,再将模具置于热压烧结炉中,在真空环境下,先以15℃/min的升温速率加热至950℃,再以10℃/min的升温速率加热至1400 ℃,同时于950℃起开始以1MPa/min的升压速率加压至45MPa,在1400℃以及45MPa下保温保压3h后,随炉冷却,得到高发射率LaMgAl11O19陶瓷。
本实施例所制备的LaMgAl11O19陶瓷表面无微裂纹,从其截面可以看出内部无微孔洞。经排水法测得本实施例所制备的LaMgAl11O19陶瓷致密度为99.6%。根据XRD的表征图谱可知,本实施例所制备的LaMgAl11O19陶瓷物相纯净,无杂相存在。
本实施例所制备的LaMgAl11O19陶瓷在3μm~5μm红外波段的光谱发射率均在0.925以上,且在3μm~5μm红外波段的平均光谱发射率达到0.943,相对于对比例2采用常规热压烧结工艺制备的LaMgAl11O19陶瓷在3μm~5μm红外波段的平均光谱发射率(0.874)有显著的提升。
对比例1
(1)将La2O3粉体(平均粒径为0.5μm,纯度≥99.9%)、Al(OH)3粉体(平均粒径为0.5μm,纯度≥99.9%)和Mg(OH)2粉体(平均粒径为0.5μm,纯度≥98.0%)按化学计量比进行配料,并采用湿法球磨进行混料,得到混合均匀的白色混合粉体;
(2)将混合粉体装入模具中,再将模具置于热压烧结炉中,在真空环境下,以15℃/min的升温速率加热至1500℃,同时以1MPa/min的升压速率加压至 40MPa,在1500℃以及40MPa下保温保压2.5h后,随炉冷却,得到LaMgAl11O19陶瓷。
对比例2
(1)将La2O3粉体(平均粒径为0.5μm,纯度≥99.9%)、Al(OH)3粉体(平均粒径为0.5μm,纯度≥99.9%)和Mg(OH)2粉体(平均粒径为0.5μm,纯度≥98.0%)按化学计量比进行配料,并采用湿法球磨进行混料,得到混合均匀的白色混合粉体;
(2)将混合粉体装入模具中,再将模具置于热压烧结炉中,在真空环境下,以15℃/min的升温速率加热至1400℃,同时以1MPa/min的升压速率加压至 45MPa,在1400℃以及45MPa下保温保压3h后,随炉冷却,得到LaMgAl11O19陶瓷。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种高发射率LaMgAl11O19陶瓷的制备方法,其特征在于:所述方法步骤如下,
将La2O3粉体、Al(OH)3粉体和Mg(OH)2粉体按化学计量比进行配料并混合均匀,将混合粉体装入模具中,再将模具置于热压烧结炉中,在真空环境下,先以15℃/min~20℃/min的升温速率加热至900℃~1100℃,再以10℃/min~15℃/min的升温速率加热至1400℃~1500℃,且900℃~1100℃的升温速率与1400℃~1500℃的升温速率不同,同时于900℃~1100℃起开始以1MPa/min~2MPa/min的升压速率加压至45MPa,在1400℃~1500℃以及45MPa下保温保压2.5h~3h后,随炉冷却,得到高发射率LaMgAl11O19陶瓷。
2.根据权利要求1所述的高发射率LaMgAl11O19陶瓷的制备方法,其特征在于:La2O3粉体、Al(OH)3粉体以及Mg(OH)2粉体的粒径分别独立为0.5μm~1μm。
3.根据权利要求1所述的高发射率LaMgAl11O19陶瓷的制备方法,其特征在于:900℃~1100℃的升温速率与1400℃~1500℃的升温速率差值为5℃/min~10℃/min。
CN202010589209.1A 2020-06-24 2020-06-24 一种高发射率LaMgAl11O19陶瓷的制备方法 Active CN111848139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010589209.1A CN111848139B (zh) 2020-06-24 2020-06-24 一种高发射率LaMgAl11O19陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010589209.1A CN111848139B (zh) 2020-06-24 2020-06-24 一种高发射率LaMgAl11O19陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN111848139A CN111848139A (zh) 2020-10-30
CN111848139B true CN111848139B (zh) 2021-09-28

Family

ID=73493393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010589209.1A Active CN111848139B (zh) 2020-06-24 2020-06-24 一种高发射率LaMgAl11O19陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN111848139B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113233876B (zh) * 2021-05-12 2022-04-08 北京理工大学 一种高发射率高熵陶瓷材料及其制备方法和应用
CN116332659A (zh) * 2023-03-28 2023-06-27 北京理工大学 一种节能涂层及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815928A (zh) * 2012-08-27 2012-12-12 哈尔滨工业大学 稀土离子掺杂六铝酸盐高发射率材料及其制备方法
US20140231727A1 (en) * 2010-06-23 2014-08-21 Raytheon Company Solid solution-based nanocomposite optical ceramic materials
CN105924177A (zh) * 2016-04-25 2016-09-07 北京理工大学 一种碳化硼基复相陶瓷的热压-反应烧结制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815927B (zh) * 2012-08-27 2013-09-25 哈尔滨工业大学 一种六铝酸盐高发射率热防护涂层的制备方法
CN106396664A (zh) * 2016-07-31 2017-02-15 包头稀土研究院 一种镁基铝酸镧陶瓷制造方法
CN107746280B (zh) * 2017-08-31 2020-07-07 北京安泰六九新材料科技有限公司 一种高致密度TiB2陶瓷靶材的制备方法
CN110981484B (zh) * 2019-11-21 2021-10-15 天津津航技术物理研究所 一种热压法制备纳米级氟化镁透明陶瓷的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140231727A1 (en) * 2010-06-23 2014-08-21 Raytheon Company Solid solution-based nanocomposite optical ceramic materials
CN102815928A (zh) * 2012-08-27 2012-12-12 哈尔滨工业大学 稀土离子掺杂六铝酸盐高发射率材料及其制备方法
CN105924177A (zh) * 2016-04-25 2016-09-07 北京理工大学 一种碳化硼基复相陶瓷的热压-反应烧结制备方法

Also Published As

Publication number Publication date
CN111848139A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN111848139B (zh) 一种高发射率LaMgAl11O19陶瓷的制备方法
CN105541341A (zh) 一种添加复合助剂制备高致密度氮化硅陶瓷的方法
CN110590377B (zh) 一种高β相致密氮化硅陶瓷及低温制备方法
CN107759238B (zh) 氮化硅结合碳化硅耐火制品的氮化烧成方法
US20240116821A1 (en) Preparation method of high-thermal-conductivity and net-size silicon nitride ceramic substrate
CN101215183A (zh) 一种多孔氮化硅陶瓷的制备方法
CN113943159B (zh) 一种碳化硼复合陶瓷的制备方法
CN111393170A (zh) 一种通过多因素优化制备高致密度氮化硅陶瓷的方法及制备的氮化硅陶瓷
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN114988879A (zh) 一种大型复相反应烧结碳化硅制品及制备方法
CN107164803A (zh) 一种简单控制相变制备β‑氮化硅晶须的方法
CN107555800A (zh) 一种透明Sr3Al2O6‑SrAl2O4玻璃陶瓷及其制备方法
CN112939608B (zh) 一种白色氮化铝陶瓷及其热压烧结方法和用途
CN105924175A (zh) 一种细晶碳化硼陶瓷及其制备方法
CN109704780B (zh) 一种耐热冲击氮化硼-锶长石陶瓷基复合材料及其制备方法
CN114835473B (zh) 一种氧化铝陶瓷及其制备方法
CN114133245B (zh) 热电陶瓷材料及其制备方法
CN104911384A (zh) 一种钨基难熔碳化物复合材料的低温制备方法
CN113372096B (zh) 低温常压烧结碳化硅复合陶瓷的制备方法、及其制得的碳化硅复合陶瓷制品和应用
CN114671689A (zh) 一种热压液相烧结碳化硼复合陶瓷及其制备方法
CN112194485A (zh) 一种热障涂层陶瓷材料及其制备方法和应用
US6300265B1 (en) Molybdenum disilicide composites
CN114315372A (zh) 一种高强度h-BN陶瓷的制备工艺
CN116639980B (zh) 一种多元碳化物陶瓷涂层的制备方法
CN113173800B (zh) 一种β-Sialon多孔陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant