CN111847500B - 硫化铟薄膜及其制备方法、基于硫化铟薄膜的无机钙钛矿太阳能电池及其制备方法 - Google Patents

硫化铟薄膜及其制备方法、基于硫化铟薄膜的无机钙钛矿太阳能电池及其制备方法 Download PDF

Info

Publication number
CN111847500B
CN111847500B CN202010736936.6A CN202010736936A CN111847500B CN 111847500 B CN111847500 B CN 111847500B CN 202010736936 A CN202010736936 A CN 202010736936A CN 111847500 B CN111847500 B CN 111847500B
Authority
CN
China
Prior art keywords
indium sulfide
thin film
indium
solar cell
sulfide thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010736936.6A
Other languages
English (en)
Other versions
CN111847500A (zh
Inventor
陈建林
黄才友
邱炜
何建军
李微
彭卓寅
任延杰
陈荐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN202010736936.6A priority Critical patent/CN111847500B/zh
Publication of CN111847500A publication Critical patent/CN111847500A/zh
Application granted granted Critical
Publication of CN111847500B publication Critical patent/CN111847500B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/287Chalcogenides
    • C03C2217/288Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了硫化铟薄膜及其制备方法,基于该硫化铟薄膜的无机钙钛矿太阳能电池及其制备方法,该硫化铟薄膜的制备方法包括:将巯基乙酸、乙二醇甲醚和铟的可溶性盐混合,进行搅拌,得硫化铟前驱溶液;然后升温至80~120℃,并进行冷凝回流,得到硫化铟溶胶,将硫化铟溶胶涂覆在导电玻璃上,即得致密无针孔的硫化铟薄膜。本发明的方法具有制备温度低、生产效率高、薄膜形貌和厚度可控等优点,且得到的硫化铟薄膜质量好、致密无针孔、电子迁移率高、稳定性好,采用该薄膜制备的太阳能电池输出性能更优。

Description

硫化铟薄膜及其制备方法、基于硫化铟薄膜的无机钙钛矿太 阳能电池及其制备方法
技术领域
本发明属于太阳能电池技术领域,涉及一种硫化铟薄膜及其制备方法、基于硫化铟薄膜的无机钙钛矿太阳能电池及其制备方法。
技术背景
如今,能源转型升级大势所趋且迫在眉睫,各国都在新能源领域布局规划以减少对化石能源的依赖。其中,太阳能光伏发电领域欣欣向荣,目前晶硅太阳能电池和薄膜太阳能电池占据市场绝大部分份额,而钙钛矿太阳能电池的出现有望使太阳能电池的制造成本大幅度降低。在短短10年间,有机/无机杂化钙钛矿太阳能电池的光电转换效率从3.8%提升到25.2%。然而,有机/无机杂化钙钛矿太阳能电池对湿度和温度及其敏感,在空气环境中很容易失效,这严重限制了此类太阳能电池的发展。
全无机钙钛矿太阳能电池由于优异的稳定性能吸引众多研究者的关注,但由于传统电子传输层如TiO2存在电子迁移率低、需高温(>450℃)烧结、在紫外光下性能衰减快等不可避免的问题,限制了TiO2在全无机钙钛矿太阳能电池上的应用。因此需要制备一种电子迁移率高,低温工艺,性能稳定的新型电子传输层,以提高全无机钙钛矿太阳能电池的输出性能以及稳定性。
现有制备In2S3薄膜的方法有化学浴沉积法(CBD),该方法对溶液中原料的比例、过饱和浓度以及反应沉积时间有较高要求,此外,还存在众多副反应的发生,使得制备的In2S3薄膜纯度不高或者存在一定的缺陷,进而促进载流子复合,从而导致电池输出性能下降。采用热注入法制备高质量单分散In2S3纳米晶有一定优势,但反应条件严苛,成本高且难以实现。采用化学气相沉积方法制备硫化铟薄膜一般需要在H2S气氛下加热制备,需要耗费大量的H2S气体,并且如果H2S气体不加以处理而直接排放到空气中会造成严重的环境污染,并且反应需在高温下进行,不仅耗费大量能源,而且衬底薄膜需要耐高温而不被破坏。传统的溶胶凝胶+旋涂法制备得到的硫化铟薄膜,在器件性能上并不出色,主要原因是薄膜存在很多孔洞,不能完全覆盖导电玻璃衬底,造成钙钛矿薄膜与衬底直接接触而使器件性能降低。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种硫化铟薄膜及其制备方法,该方法具有制备温度低、生产效率高、薄膜形貌和厚度可控等优点,得到的硫化铟薄膜致密、无针孔、电子迁移率高,并且采用本发明制备的硫化铟结晶度高,光学带隙与钙钛矿材料相接近,同时导带低位置略低于钙钛矿导带位置,所以能减少器件开路电压的损失,从而提升器件性能。还提供一种采用该硫化铟薄膜作为电子传输层的全无机钙钛矿太阳能电池及其制备方法,采用该硫化铟薄膜能够提升太阳能电池的输出性能和稳定性,并且在紫外线照射环境中不会分解,也不存在对钙钛矿材料的破坏作用,在自然环境中表现优秀的热稳定性和水氧稳定性。
为解决上述技术问题,本发明的技术方案为:
硫化铟薄膜的制备方法,包括如下步骤:
将巯基乙酸、乙二醇甲醚和铟的可溶性盐混合,进行搅拌,得到硫化铟前驱溶液;将硫化铟前驱溶液升温至80~120℃,并进行冷凝回流,得到硫化铟溶胶,然后将硫化铟溶胶涂覆在导电玻璃上,即得致密无针孔的硫化铟薄膜。
上述的硫化铟薄膜的制备方法,优选地,还包括采用有机滤膜将所得硫化铟溶胶进行过滤纯化。
上述的硫化铟薄膜的制备方法,优选地,所述升温过程中,升温速率为5~15℃/min;所述冷凝回流的时间为1.5~2.5h。
上述的硫化铟薄膜的制备方法,优选地,所述铟的可溶性盐为三氯化铟;
所述巯基乙酸、乙二醇甲醚和三氯化铟的用量比为1~10mL∶10~60mL∶2~6mmol。
上述的硫化铟薄膜的制备方法,优选地,采用旋涂法制备硫化铟薄膜;所述旋涂法为一步旋涂法;所述旋涂的转速为2000~5000rpm,进一步优选为2500~4500rpm,更进一步优选为3000~4000rpm,涂覆时间为20~40s;
还包括对所制备的In2S3薄膜进行退火;所述退火的气氛为N2或Ar气氛,所述退火温度为250~380℃;所述退火时间为1~2h。
作为一个总的发明构思,还提供一种硫化铟薄膜,采用上述的制备方法制备得到。
作为一个总的发明构思,还提供一种基于硫化铟薄膜的无机钙钛矿太阳能电池,所述无机钙钛矿太阳能电池采用前述的硫化铟薄膜作为电子传输层。
上述的基于硫化铟薄膜的无机钙钛矿太阳能电池,优选地,所述电子传输层的厚度为70~200nm;
所述太阳能电池从下到上依次包括透明导电玻璃、硫化铟电子传输层、无机钙钛矿吸光层和背电极构成。
本发明还提供一种基于硫化铟薄膜的无机钙钛矿太阳能电池的制备方法,包括如下步骤:
(1)采用前述的制备方法在导电玻璃上制备硫化铟薄膜作为电子传输层;
(2)在硫化铟电子传输层上制备无机钙钛矿吸光层;
(3)在无机钙钛矿吸光层上制备背电极,得到一种致密无针孔硫化铟薄膜为电子传输层的无机钙钛矿太阳能电池。
上述的无机钙钛矿太阳能电池的制备方法,优选地,所述导电玻璃为透明导电玻璃;所述透明导电玻璃为ITO导电玻璃、FTO导电玻璃或AZO导电玻璃;
所述无机钙钛矿吸光层为CsPbBr3钙钛矿、CsPbIBr2钙钛矿、CsPbI2Br钙钛矿或CsPbI3钙钛矿;
所述背电极为碳电极、银(Ag)电极或金(Au)电极;所述碳电极采用刮刀法或丝网印刷法制备;所述银电极或金电极采用真空蒸镀法制备。
与现有技术相比,本发明的优点在于:
1、本发明采用冷凝回流技术制备In2S3薄膜,不仅能够制备得到致密无针孔、结晶性好的硫化铟薄膜,具有优良的结构和性能,且该方法具有工艺和设备简单、制备成本低廉等优点,相比于传统的化学浴沉积方法制备In2S3薄膜,采用旋涂In2S3溶胶制备薄膜更加的方便快捷、薄膜厚度精准可控以及原料用料少;与传统的溶胶凝胶法制备得到的薄膜相比,具备更优的性能,提高太阳能电池的光电转换效率。
2、本发明通过控制冷凝回流温度、时间、溶剂类型控制纳米晶大小与形状,旋涂速度控制薄膜厚度,薄膜热处理温度控制结晶性,最终实现薄膜表面形貌控制。进一步的,获得合适的光学带隙以匹配钙钛矿吸光层的能级位置,加强载流子的分离与传输,提升开路电压和电路电流。
3、本发明提供了一种以In2S3薄膜为电子传输层的无机钙钛矿太阳能电池, 其采用从下到上为透明导电玻璃、硫化铟电子传输层、无机钙钛矿吸光层和背电极的结构,该无机钙钛矿太阳能电池具有良好的光吸收效率、热稳定性以及水氧稳定性;在紫外光照射下,不会分解并破坏钙钛矿吸光层;采用本发明制备的In2S3薄膜能增强钙钛矿吸光材料对太阳光的吸收效率,提升器件的开路电压、短路电路密度以及填充因子,并且其作为一种n型半导体材料,具有合适的带隙(2.0eV~2.8eV),与钙钛矿材料的能级更加匹配;通过调控薄膜厚度和晶粒尺寸大小改变In2S3能级位置和光学带隙宽度。
4、本发明的无机钙钛矿太阳能电池,控制In2S3薄膜厚度为70nm~200nm,能够进一步提升电池器件性能,当In2S3薄膜的厚度为124nm时,获得最佳的电池输出性能。
附图说明
图1为本发明实施例1中制备得到的In2S3薄膜的XRD图。
图2为本发明实施例1中制备得到的In2S3薄膜的SEM图。
图3为本发明实施例1中以In2S3薄膜为电子传输层的无机钙钛矿太阳能电池结构示意图。
图4为本发明实施例1中制备得到的CsPbBr3钙钛矿薄膜的XRD图。
图5为本发明实施例1中制备得到的FTO/In2S3/ CsPbBr3截面SEM图。
图6为对比例1中FTO/In2S3/ CsPbBr3/C结构的J-V曲线图。
图7为对比例2中FTO/In2S3/ CsPbBr3/C结构的J-V曲线图。
图8为对比例2中制备的In2S3薄膜的SEM图。
图9为对比例2中制备得到的In2S3薄膜的XRD图。
图10为对比例3中FTO/In2S3/ CsPbBr3/C结构的J-V曲线图。
图11为实施例2中制备得到的FTO/In2S3/ CsPbBr3截面SEM图。
图12为本发明实施例1、实施例2和实施例3中基于In2S3薄膜的CsPbBr3钙钛矿太阳能电池的光电转化效率(J-V)曲线图。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明进一步说明,但不因此而限制本发明的保护范围。
本发明提供一种硫化铟薄膜的制备方法,包括如下步骤:
将巯基乙酸、乙二醇甲醚和铟的可溶性盐混合,在常温下进行磁力搅拌,得到In2S3前驱溶液;将In2S3前驱溶液升温至80~120℃,并进行冷凝回流,得到In2S3溶胶,然后将In2S3溶胶涂覆在导电玻璃上,即得In2S3薄膜。
优选地,还包括对采用有机滤膜将所得In2S3溶胶进行过滤纯化;优选地,有机滤膜的孔径为0.45μm。
优选地,磁力搅拌的时间为10~30min。
优选地,升温过程中,升温速率为5~15℃/min;所冷凝回流的时间为1.5~2.5h。
优选地,铟的可溶性盐为三氯化铟;进一步优选,巯基乙酸、乙二醇甲醚和三氯化铟的用量比为1~10mL∶10~60mL∶2~6mmol。
优选地,采用旋涂法制备硫化铟薄膜;旋涂法为一步旋涂法;旋涂的转速为2000~5000rpm,进一步优选为2500~4500rpm,更进一步优选为3000~4000rpm,涂覆时间为20~40s。
优选地,还包括对硫化铟薄膜进行退火;退火的气氛为N2或Ar气氛,退火温度为250℃~380℃;退火时间为1~2h。
采用一步旋涂法在导电玻璃上制备硫化铟薄膜的制备过程如下:
具体过程:设置一步旋涂法参数:转速2000~5000rpm,优选2500rpm~4500rpm,更进一步优选为3000~4000rpm;涂覆时间20s~40s;然后用移液枪移取60μL~120μL的In2S3溶胶滴在透明导电玻璃衬底上进行涂覆,最后在250℃~380℃下,于N2或Ar气氛中退火1h~2h。
本发明还提供一种采用上述方法制备的硫化铟薄膜。优选地, In2S3的晶粒尺寸为10~30nm。
本发明还提供一种基于前述硫化铟薄膜的无机钙钛矿太阳能电池,该无机钙钛矿太阳能电池采用前述硫化铟薄膜作为电子传输层。
优选地,硫化铟薄膜电子传输层的厚度为70~200nm,进一步优选为100~150nm。
太阳能电池从下到上依次包括透明导电玻璃、In2S3电子传输层、无机钙钛矿吸光层和背电极构成。
本发明还提供一种基于硫化铟薄膜的无机钙钛矿太阳能电池的制备方法,包括如下步骤:
(1)采用前述的制备方法在导电玻璃上制备硫化铟薄膜作为电子传输层;
(2)在In2S3电子传输层上制备无机钙钛矿吸光层;
(3)在无机钙钛矿吸光层上制备背电极,得到一种致密无针孔In2S3薄膜为电子传输层的无机钙钛矿太阳能电池。
优选地,步骤(2)中,采用旋涂法制备无机钙钛矿吸光层;旋涂法为一步旋涂法或多步旋涂法。
优选地,导电玻璃为透明导电玻璃;透明导电玻璃为ITO导电玻璃、FTO导电玻璃或AZO导电玻璃;
优选地,无机钙钛矿吸光层为CsPbBr3钙钛矿、CsPbIBr2钙钛矿、CsPbI2Br钙钛矿或CsPbI3钙钛矿;
优选地,背电极为碳电极、银(Ag)电极或金(Au)电极;碳电极采用刮刀法或丝网印刷法制备;银电极或金电极采用真空蒸镀法制备。
优选地,步骤(1)中还包括对透明导电玻璃进行预处理;预处理包括:将透明导电玻璃依次经玻璃清洗剂、去离子水、丙酮、异丙醇和无水乙醇超声清洗,然后进行烘干,再经过紫外-臭氧清洗机清洗:优选的,具体为:将透明导电玻璃依次经玻璃清洗剂、去离子水、丙酮、异丙醇和无水乙醇各超声清洗20~40min后放入60℃~80℃干燥箱中烘干20~30min,再经过紫外-臭氧清洗机清洗20~40min。
以下实施例中所采用的材料和仪器均为市售。
实施例1
一种本发明的硫化铟薄膜的制备方法,包括如下步骤:
取2mL巯基乙酸、38mL乙二醇甲醚和4mmol四水合三氯化铟(InCl3·4H2O)于圆底烧瓶中,在常温下磁力搅拌10min以形成In2S3前驱溶液,将In2S3前驱溶液升温至100℃,升温速率5℃/min,在冷凝回流的状态下保持2h得到In2S3溶胶,用0.45μm的有机尼龙滤膜过滤In2S3溶胶,得到纯化的In2S3溶胶。取90μL纯化的In2S3溶胶滴涂在FTO导电玻璃上,于3000rpm转速下涂覆30s,在Ar下300℃退火1h得到硫化铟薄膜。
对所得In2S3薄膜进行XRD测试,结果如图1所示。由图1可知,制备得到的In2S3经XRD测试未出现其他杂峰,结晶效果好,图中对应的衍射峰分别与In2S3的(1 0 3)、(1 0 9)、(0 0 12)、(1 0 15)、(2 2 12)对应,与标准PDF#25-0390基本一致,呈四方相。
对所得的In2S3薄膜进行SEM测试,结果如图2所示。由图2可知,制备得到的In2S3晶粒尺寸分布在10nm~30nm,且利用软件jade使用Scherer公式计算得到In2S3平均晶粒尺寸为13.9nm,这与SEM的测试结果一致。
一种基于本实施例中上述硫化铟薄膜的钙钛矿太阳能电池,以In2S3薄膜为电子传输层、CsPbBr3为钙钛矿吸光层的太阳能电池,其结构如图3所示,该钙钛矿太阳能电池从下到上依次包括FTO透明导电玻璃层、In2S3薄膜层、CsPbBr3钙钛矿吸光层和碳电极层,In2S3薄膜层的厚度为124nm。
一种本实施例的基于硫化铟薄膜的钙钛矿太阳能电池,制备方法包括:
(1)清洗FTO透明导电玻璃
依次采用玻璃清洗剂、去离子水、丙酮、异丙醇和无水乙醇超声清洗FTO导电玻璃各30min,并在80℃下烘20min。再使用紫外-臭氧清洗机清洗FTO导电玻璃25min。
(2)制备In2S3薄膜
采用前述方法制备硫化铟薄膜,即采用前述制备硫化铟薄膜的制备方法来在FTO导电玻璃上制备In2S3薄膜,在经清洗处理的FTO导电玻璃表面制备电子传输层。
(3)制备CsPbBr3钙钛矿薄膜
(3.1)将PbBr2溶于DMF中,制备浓度为1.0mol/L PbBr2的DMF溶液;将CsBr溶于甲醇中,制备浓度为0.07mol/L CsBr的甲醇溶液。
(3.2)在In2S3薄膜层上涂覆PbBr2的DMF溶液,90℃退火30min,然后于CsBr的甲醇溶液中浸泡1min,250℃下退火5min,再用旋涂仪涂覆CsBr的甲醇溶液,旋涂参数设置为:2000rpm,旋涂30s,于250℃退火5min,重复涂覆CsBr溶液-退火操作4次,得到CsPbBr3钙钛矿薄膜层。
对所得CsPbBr3钙钛矿薄膜进行XRD测试,结果如图4所示。由图4可知,图中对应的衍射峰分别与CsPbBr3的(1 0 0)、(1 1 0)、(0 0 12)、(2 0 0)、(2 1 0)对应,与标准PDF#18-0364基本一致,其中出现CsPb2Br5的杂峰,对应(2 1 3)晶面。
对所得FTO/In2S3/CsPbBr3截面进行SEM测试,结果如图5所示。由图5可知,FTO导电薄膜厚度为350nm,In2S3薄膜厚度为124nm,CsPbBr3钙钛矿薄膜厚度为509nm。
(4)制备碳电极层:
采用丝网印刷或刮刀法制备碳电极,制备完碳电极后,将其置于120℃热台上干燥20min,最终制得完整电池器件,记为FTO/In2S3/CsPbBr3 /C。
将本实施例制备的太阳能钙钛矿电池进行J-V测试,测试结果如图12所示。
对比例1
本对比例与实施例1的区别仅在于,在制备In2S3溶胶过程中,巯基乙酸∶乙二醇甲醚∶四水合三氯化铟的配比为12mL∶38mL∶4mmol。
将本对比例制备的太阳能钙钛矿电池进行J-V测试,测试结果如图6所示。由图6可知,对比例1中太阳能电池的短路电流密度为6.47mA/cm2,开路电压为1.34V,填充因子为56%,光电转换效率为4.90%,由此可知,实施例1中制备的器件性能均优于对比例1,尤其是填充因子,这是因为原料的配比不当会严重影响In2S3薄膜质量,造成内部缺陷较多,复合中心多而使填充因子降低。
对比例2
本对比例与实施例1的区别仅在于,在制备In2S3溶胶过程中,冷凝回流的时间为1h。
采用此反应条件制备以In2S3为电子传输层的CsPbBr3钙钛矿太阳能电池,进行J-V测试,测试结果如图7所示。由图7可知,对比例2中太阳能电池的短路电流密度为6.45mA/cm2,开路电压为1.33V,填充因子为60%,光电转换效率为5.14%,由此可知,对实施例1中制备的器件性能均优于对比例2。
对所得的In2S3薄膜进行SEM测试,结果如图8所示。由图8可知,制备得到的In2S3晶粒结晶性不强,相较于实施例1中,没有明显的晶界和晶粒。对所得In2S3薄膜进行XRD测试,结果如图9所示。由图9可知,与实施例1 相比,对比例2中的In2S3峰更宽,表明结晶度低,这与SEM的测试结果相一致。同样用软件jade使用Scherer公式计算得到In2S3平均晶粒尺寸为9.4nm。由此可知,冷凝回流时间较短(1h),In2S3微核生长受限,造成晶粒尺寸较小,进一步影响器件输出性能。
对比例3
本对比例与实施例1区别仅在于:在制备In2S3薄膜采用传统溶胶凝胶法,具体制备步骤如下:
将0.2198g InCl3·4H2O和0.1427g硫脲(CH4N2S)溶于15mL乙二醇甲醚中,在40℃下搅拌1h,再加入2滴乙醇胺作为稳定剂,再次搅拌6h,直到溶液变成黄色透明状。取90μL纯化的In2S3溶胶滴涂在FTO导电玻璃上,于3000rpm转速下涂覆30s,在Ar下退火1h得到In2S3薄膜。
对所得到的太阳能电池器件进行J-V测试,测试结果如图10所示。由图10可知,对比例3中太阳能电池的短路电流密度为6.38mA/cm2,开路电压为1.34V,填充因子为50%,光电转换效率为4.27%。可见,采用该薄膜制备的太阳能电池器件性能相对较差,经分析发现,这是由于在40℃搅拌作用下,硫脲与铟形成络合物而不是硫化铟微核,在后处理的退火过程中才形成硫化铟,由于旋涂成膜之后,硫源的量相当于减少,改变了实际的硫铟比,生成了非化学计量比的硫化铟,同时生成的硫化铟薄膜出现较多孔洞,最终导致了器件光电转换效率降低。
实施例2
本实施例与实施例1的区别仅在于,旋涂制备In2S3薄膜时的旋涂转速为2000rpm。通过控制涂覆速度来控制In2S3薄膜的厚度,旋涂速度越低,薄膜越厚。
对所得到的FTO/In2S3/CsPbBr3截面进行SEM测试,结果如图11所示。由图11可知,In2S3薄膜厚度为240nm,对本实施例制备的基于In2S3的CsPbBr3钙钛矿太阳能电池性能进行J-V测试,测试结果如图12所示。结果为短路电流密度为5.86mA/cm2,开路电压为1.34V,填充因子为60%,光电转换效率为4.74%。
实施例3
本实施例与实施例1的区别仅在于:旋涂制备In2S3薄膜时的旋涂转速为5000rpm。
对本实施例制备的基于In2S3的CsPbBr3钙钛矿太阳能电池性能进行J-V测试,测试结果如图12所示。结果为短路电流密度为6.29mA/cm2,开路电压为1.29V,填充因子为64%,光电转换效率为5.22%。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (7)

1.硫化铟薄膜的制备方法,其特征在于,包括如下步骤:
将巯基乙酸、乙二醇甲醚和铟的可溶性盐混合,进行搅拌,得到硫化铟前驱溶液;将硫化铟前驱溶液升温至80~120℃,并进行冷凝回流,得到硫化铟溶胶,然后将硫化铟溶胶涂覆在导电玻璃上,即得致密无针孔的硫化铟薄膜;
所述升温过程中,升温速率为5~15℃/min;所述冷凝回流的时间为1.5~2.5h;
所述铟的可溶性盐为三氯化铟;
所述巯基乙酸、乙二醇甲醚和三氯化铟的用量比为1~10mL∶10~60mL∶2~6mmol;
采用旋涂法制备硫化铟薄膜,所述旋涂法为一步旋涂法,所述旋涂的转速为2000~5000rpm,涂覆时间为20~40s;
还包括对所制备的In2S3薄膜进行退火,所述退火的气氛为N2或Ar气氛,所述退火温度为250~380℃,所述退火时间为1~2h。
2.如权利要求1所述的硫化铟薄膜的制备方法,其特征在于,还包括采用有机滤膜将所得硫化铟溶胶进行过滤纯化。
3.硫化铟薄膜,其特征在于,其是采用权利要求1或2所述的硫化铟薄膜的制备方法制备得到。
4.基于硫化铟薄膜的无机钙钛矿太阳能电池,其特征在于,所述无机钙钛矿太阳能电池采用权利要求3所述的硫化铟薄膜作为电子传输层。
5.如权利要求4所述的基于硫化铟薄膜的无机钙钛矿太阳能电池,其特征在于,所述电子传输层的厚度为70~200nm;
所述太阳能电池从下到上依次包括透明导电玻璃、硫化铟电子传输层、无机钙钛矿吸光层和背电极构成。
6.基于硫化铟薄膜的无机钙钛矿太阳能电池的制备方法,其特征在于,包括如下步骤:
(1)采用如权利要求1或2所述的制备方法在导电玻璃上制备硫化铟薄膜作为电子传输层;
(2)在硫化铟电子传输层上制备无机钙钛矿吸光层;
(3)在无机钙钛矿吸光层上制备背电极,得到一种致密无针孔硫化铟薄膜为电子传输层的无机钙钛矿太阳能电池。
7.如权利要求6所述的无机钙钛矿太阳能电池的制备方法,其特征在于,
所述导电玻璃为透明导电玻璃;所述透明导电玻璃为ITO导电玻璃、FTO导电玻璃或AZO导电玻璃;
所述无机钙钛矿吸光层为CsPbBr3钙钛矿、CsPbIBr2钙钛矿、CsPbI2Br钙钛矿或CsPbI3钙钛矿;
所述背电极为碳电极、银电极或金电极;所述碳电极采用刮刀法或丝网印刷法制备;所述银电极或金电极采用真空蒸镀法制备。
CN202010736936.6A 2020-07-28 2020-07-28 硫化铟薄膜及其制备方法、基于硫化铟薄膜的无机钙钛矿太阳能电池及其制备方法 Active CN111847500B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010736936.6A CN111847500B (zh) 2020-07-28 2020-07-28 硫化铟薄膜及其制备方法、基于硫化铟薄膜的无机钙钛矿太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010736936.6A CN111847500B (zh) 2020-07-28 2020-07-28 硫化铟薄膜及其制备方法、基于硫化铟薄膜的无机钙钛矿太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN111847500A CN111847500A (zh) 2020-10-30
CN111847500B true CN111847500B (zh) 2022-09-09

Family

ID=72948375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010736936.6A Active CN111847500B (zh) 2020-07-28 2020-07-28 硫化铟薄膜及其制备方法、基于硫化铟薄膜的无机钙钛矿太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN111847500B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517370B (zh) * 2021-06-11 2022-10-14 上海应用技术大学 一种异质构型太阳能电池结构及其制备方法与应用
CN114597272B (zh) * 2022-03-09 2024-02-09 陈王伟 Sb2(S,Se)3基体型异质结薄膜、太阳能电池及其电池制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928575A (zh) * 2014-04-29 2014-07-16 中国科学院长春应用化学研究所 一种吸光层薄膜、其制备方法和铜基薄膜太阳能电池
CN104409563A (zh) * 2014-10-31 2015-03-11 徐东 一种表面富硫的铜铟镓硒硫薄膜光吸收层的制备方法
CN106531845A (zh) * 2016-12-08 2017-03-22 福建师范大学 化学水浴制备太阳能电池吸收层CuInS2薄膜的方法
CN108389977A (zh) * 2018-04-26 2018-08-10 西南石油大学 一种钙钛矿太阳能电池及其制备方法
CN109148642A (zh) * 2018-07-13 2019-01-04 北京化工大学 一种无机钙钛矿薄膜的制备方法及其在太阳能电池中的应用
CN109216560A (zh) * 2018-10-17 2019-01-15 重庆大学 一种具有硫化铟薄膜的无机钙钛矿太阳能电池制备方法及其产品
CN111106192A (zh) * 2019-12-30 2020-05-05 长沙理工大学 复合吸光层太阳能电池及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008017077B4 (de) * 2008-04-01 2011-08-11 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Verfahren zur Herstellung einer n-halbleitenden Indiumsulfid-Dünnschicht

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928575A (zh) * 2014-04-29 2014-07-16 中国科学院长春应用化学研究所 一种吸光层薄膜、其制备方法和铜基薄膜太阳能电池
CN104409563A (zh) * 2014-10-31 2015-03-11 徐东 一种表面富硫的铜铟镓硒硫薄膜光吸收层的制备方法
CN106531845A (zh) * 2016-12-08 2017-03-22 福建师范大学 化学水浴制备太阳能电池吸收层CuInS2薄膜的方法
CN108389977A (zh) * 2018-04-26 2018-08-10 西南石油大学 一种钙钛矿太阳能电池及其制备方法
CN109148642A (zh) * 2018-07-13 2019-01-04 北京化工大学 一种无机钙钛矿薄膜的制备方法及其在太阳能电池中的应用
CN109216560A (zh) * 2018-10-17 2019-01-15 重庆大学 一种具有硫化铟薄膜的无机钙钛矿太阳能电池制备方法及其产品
CN111106192A (zh) * 2019-12-30 2020-05-05 长沙理工大学 复合吸光层太阳能电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一步法合成高T_g可溶含偶氮三嗪发色团的新型侧链含氟聚酰亚胺;潘晓霞等;《高等学校化学学报》;20020815(第07期);全文 *

Also Published As

Publication number Publication date
CN111847500A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN108598268B (zh) 环境条件下印刷制备平面异质结钙钛矿太阳电池的方法
CN108796532B (zh) 氧化镍—氧化亚铜同质结光电阴极及其制备方法和在光催化中的应用
CN109216557B (zh) 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法
CN109037398B (zh) 一种铯锡碘薄膜的制备方法及基于其的光伏器件
CN109461821A (zh) 一种有机-无机杂化钙钛矿薄膜的制备方法
CN107359248B (zh) 一种稳定无光浴高效有机太阳能电池器件及其制备方法
CN111847500B (zh) 硫化铟薄膜及其制备方法、基于硫化铟薄膜的无机钙钛矿太阳能电池及其制备方法
CN109728169B (zh) 一种掺杂有功能添加剂的钙钛矿太阳电池及其制备方法
CN110246967A (zh) 一种低温制备柔性钙钛矿太阳能电池的方法
CN110635050B (zh) 一种压力协助制备高质量钙钛矿薄膜的方法
CN104282847A (zh) 一种可扰式钙钛矿型有机卤化物薄膜太阳能电池光阳极制备方法
CN113725368B (zh) 一种nh4no3界面修饰的钙钛矿太阳能电池
CN109742241A (zh) 一种钙钛矿薄膜太阳能电池及其制备方法
CN108461556A (zh) 制备高效czts太阳能电池的前驱体溶液及其电池制备与应用
CN103700725A (zh) 一种用于太阳能电池的基于纳米粒子铜铟硫硒薄膜的制备方法
CN108878657B (zh) 一种高效率碳基钙钛矿太阳能电池的制备方法
Wang et al. Glass rod-sliding and low pressure assisted solution processing composition engineering for high-efficiency perovskite solar cells
CN105161572B (zh) 一种铜锌锡硫太阳电池吸收层的墨水多层涂敷制备方法
CN108615671B (zh) 一种铜锌锡硫光电薄膜的制备方法
CN105789450A (zh) 一种大面积均质有机-无机钙钛矿薄膜的制备方法及其制品和应用
CN117479557A (zh) 一种半透明钙钛矿太阳电池及其制备方法
CN111403606A (zh) 一种掺杂番茄红素的钙钛矿太阳能电池及其制备方法
CN104393069B (zh) 二氧化钛纳米晶体颗粒及其制备方法以及在太阳能电池上的应用
CN111048668B (zh) 一种基于溶液法制备钙钛矿薄膜的方法、钙钛矿薄膜与应用
CN114583061A (zh) 三维结构的无铅锡基钙钛矿薄膜及其太阳能电池的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant