CN111834223A - 半导体器件和制造方法 - Google Patents

半导体器件和制造方法 Download PDF

Info

Publication number
CN111834223A
CN111834223A CN201910758142.7A CN201910758142A CN111834223A CN 111834223 A CN111834223 A CN 111834223A CN 201910758142 A CN201910758142 A CN 201910758142A CN 111834223 A CN111834223 A CN 111834223A
Authority
CN
China
Prior art keywords
work function
function layer
metal work
layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910758142.7A
Other languages
English (en)
Inventor
李欣怡
童宣瑜
许经佑
洪正隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN111834223A publication Critical patent/CN111834223A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28247Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon passivation or protection of the electrode, e.g. using re-oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/82345MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823468MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0886Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41791Source or drain electrodes for field effect devices for transistors with a horizontal current flow in a vertical sidewall, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7855Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with at least two independent gates

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本公开涉及半导体器件和制造方法。提供了半导体器件和制造半导体器件的方法。在实施例中,使用钝化工艺以减少栅极堆叠内的功函数层内的悬空键和缺陷。钝化工艺引入钝化元素,该钝化元素将与悬空键反应以钝化悬空键。另外,在一些实施例中,钝化元素将捕获其他元素,并减少或防止它们扩散到结构的其他部分中。

Description

半导体器件和制造方法
技术领域
本公开涉及半导体器件和制造方法。
背景技术
半导体器件用于各种电子应用,例如,个人计算机、蜂窝电话、数码相机、和其他电子设备。半导体器件通常通过以下步骤来制造:在半导体衬底上方按顺序沉积绝缘或电介质材料层、导电材料层、和半导体材料层,并使用光刻来图案化各种材料层以在其上形成电路组件和元件。
半导体工业通过不断减小最小特征大小来继续改善各种电子组件(例如,晶体管、二极管、电阻器、电容器等)的集成密度,这允许更多组件被集成到给定区域中。但是,随着最小特征大小的减小,出现了应该解决的其他问题。
发明内容
根据本公开的一个实施例,提供了一种制造半导体器件的方法,所述方法包括:在半导体鳍上方沉积栅极电介质;在所述栅极电介质上方沉积第一p金属功函数层;在所述第一p金属功函数层上方沉积第一n金属功函数层;以及将所述第一n金属功函数层暴露于含氟气体中。
根据本公开的另一实施例,提供了一种制造半导体器件的方法,所述方法包括:在位于半导体鳍上方的第一p金属功函数层和栅极电介质上方并且与所述第一p金属功函数层物理接触地沉积第一n金属功函数层;以及将第一元素捕获在所述第一n金属功函数层内,所述捕获至少部分地通过将所述第一n金属功函数层暴露于钝化前体来执行。
根据本公开的又一实施例,提供了一种半导体器件,包括:半导体鳍;栅极电介质,位于所述半导体鳍上方;第一p金属功函数层,位于所述栅极电介质上方;第一n金属功函数层,位于所述第一p金属功函数层上方并且与所述第一p金属功函数层物理接触,所述第一n金属功函数层包括具有非零钨浓度的区域;以及铝,位于所述第一p金属功函数层和所述第一n金属功函数层两者内,其中,所述铝的浓度梯度从所述第一n金属功函数层和所述第一p金属功函数层延伸,但在延伸到所述栅极电介质之前结束。
附图说明
当结合附图阅读时,从以下详细描述中可以最好地理解本公开的各方面。应注意,根据工业中的标准实践,各种特征未按比例绘制。实际上,为了清楚讨论,可以任意增加或减小各种特征的尺寸。
图1示出了根据一些实施例的半导体鳍的形成的透视图。
图2示出了根据一些实施例的源极/漏极区域的形成。
图3示出了根据一些实施例的用于栅极堆叠的材料的形成。
图4示出了根据一些实施例的钝化工艺。
图5示出了根据一些实施例的填充材料的沉积。
图6示出了根据一些实施例的帽盖(cap)的形成。
具体实施方式
以下公开内容提供了用于实现本发明的不同特征的许多不同实施例或示例。以下描述组件和布置的具体示例以简化本公开。当然,这些仅仅是示例,而不是限制性的。例如,在以下描述中在第二特征上或之上形成第一特征可以包括其中第一和第二特征以直接接触被形成的实施例,并且还可以包括其中附加特征可以在第一和第二特征之间被形成,使得第一和第二特征可能不直接接触的实施例。另外,本公开可以在各种示例中重复参考数字和/或字母。该重复是出于简单和清楚的目的,并且本身并不表示所讨论的各种实施例和/或配置之间的关系。
此外,本文可以使用空间相对术语(例如,“下”、“之下”、“下方”、“之上”、“上方”等)以便于描述,以描述一个元件或特征与如图所示的另一个(或多个)元件或特征的关系。除了图中所示的取向之外,空间相对术语旨在包括使用或操作中的设备的不同取向。装置可以以其他方式来定向(旋转90度或在其他取向上),并且同样可以相应地解释本文所使用的空间相对描述符。
现在将关于包括finFET器件的特定示例来描述实施例,该finFET器件具有用于5nm或3nm技术节点的多个阈值电压。然而,实施例不限于本文提供的示例,并且可以在多种实施例中实现这些想法。
现在参考图1,示出了诸如finFET器件之类的半导体器件100的透视图。在实施例中,半导体器件100包括衬底101和第一沟槽103。衬底101可以是硅衬底,但也可以使用诸如绝缘体上半导体(SOI)、应变SOI、和绝缘体上的硅锗之类的其他衬底。衬底101可以是p型半导体,但是在其他实施例中,它可以是n型半导体。
在其他实施例中,衬底101可以选择为将特别提高由衬底101形成的器件的性能(例如,提高载流子迁移率)的材料。例如,在一些实施例中,衬底101的材料可以选择为外延生长的半导体材料层,例如,外延生长的硅锗,其有助于提高由外延生长的硅锗形成的器件的一些性能测量。然而,虽然使用这些材料可能能够提高器件的一些性能特性,但是使用这些相同的材料可能会影响器件的其他性能特性。例如,使用外延生长的硅锗可能恶化(相对于硅)器件的界面和电荷缺陷(Dit)。本文描述的实施例可有助于改善界面和电荷缺陷(Dit)的恶化。
可以作为最终形成第一隔离区域105的初始步骤来形成第一沟槽103。可以使用掩模层(图1中未单独示出)以及合适的蚀刻工艺来形成第一沟槽103。例如,掩模层可以是包括通过诸如化学气相沉积(CVD)之类的工艺形成的氮化硅的硬掩模,但也可以使用其他材料(例如,氧化物、氮氧化物、碳化硅、这些的组合等)以及其他工艺(例如,等离子体增强化学气相沉积(PECVD)、低压化学气相沉积(LPCVD)、或者甚至在氧化物形成之后进行氮化)。一旦被形成,则掩模层可以通过合适的光刻工艺来图案化,以暴露衬底101的将被去除以形成第一沟槽103的那些部分。
然而,如本领域技术人员将认识到的,上述用于形成掩模层的工艺和材料不是可用于在保护衬底101的一部分的同时暴露衬底101的其他部分以形成第一沟槽103的唯一方法。可以使用任何合适的工艺(例如,图案化和显影光致抗蚀剂)来暴露衬底101的要被去除以形成第一沟槽103的部分。所有这些方法完全旨在被包括在本实施例的范围内。
一旦掩模层已被形成并图案化,则在衬底101中形成第一沟槽103。暴露的衬底101可以通过诸如反应离子蚀刻(RIE)之类的合适工艺来去除,以在衬底101中形成第一沟槽103,但也可以使用任何合适的工艺。在实施例中,第一沟槽103可以被形成为具有距衬底101的表面小于约
Figure BDA0002169406610000041
的第一深度,例如,约
Figure BDA0002169406610000042
然而,如本领域普通技术人员将认识到的,上述用于形成第一沟槽103的工艺仅是一个可能的工艺,并不意味着是唯一的实施例。相反,可以使用通过其第一沟槽103可以被形成的任何合适的工艺,并且可以使用包括任何数目的掩模和去除步骤的任何合适的工艺。
除了形成第一沟槽103之外,掩模和蚀刻工艺还附加地从衬底101的保持未被去除的那些部分形成鳍107。为方便起见,在图中已经通过虚线将鳍107示出为与衬底101分离,但分离的物理指示可能存在或可能不存在。如下所讨论的,可以使用这些鳍107来形成多栅极FinFET晶体管的沟道区域。虽然图1仅示出了从衬底101形成的三个鳍107,但是可以使用任何数目的鳍107。
鳍107可以形成为使得它们在衬底101的表面处具有约5nm和约80nm之间的宽度,例如,约30nm。另外,鳍107可以彼此间隔开约10nm和约100nm之间的距离,例如,约50nm。通过以这种方式间隔鳍107,鳍107可以各自形成单独的沟道区域,同时仍足够接近以共享公共栅极(下面进一步讨论)。
此外,可以通过任何合适的方法来图案化鳍107。例如,可以使用一个或多个光刻工艺来图案化鳍107,包括双图案化或多图案化工艺。通常,双图案化或多图案化工艺组合光刻和自对准工艺,这允许如下图案被创建:具有例如比使用单个直接光刻工艺可获得的更小的间距的图案。例如,在一个实施例中,牺牲层在衬底上被形成并使用光刻工艺来图案化。使用自对准工艺在经图案化的牺牲层旁边形成间隔物。然后去除牺牲层,并且然后可以使用剩余的间隔物来图案化鳍107。
一旦形成了第一沟槽103和鳍107,就可以用电介质材料填充第一沟槽103,并且可以使电介质材料在第一沟槽103内凹陷以形成第一隔离区域105。电介质材料可以是氧化物材料、高密度等离子体(HDP)氧化物等。电介质材料可以在对第一沟槽103的可选的清洁和形成衬里之后,使用化学气相沉积(CVD)方法(例如,HARP工艺)、高密度等离子体CVD方法、或本领域已知的其他合适的形成方法来形成。
可以通过如下步骤来填充第一沟槽103:用电介质材料过填充(overfill)第一沟槽103和衬底101,然后通过合适的工艺(例如,化学机械抛光(CMP)、蚀刻、这些的组合等)来去除第一沟槽103和鳍107外部的多余材料。在实施例中,去除工艺还去除位于鳍107上方的任何电介质材料,使得对电介质材料的去除将使鳍107的表面暴露于进一步的工艺步骤。
一旦已用电介质材料填充了第一沟槽103,则然后电介质材料可以远离鳍107的表面而凹陷。可以执行凹陷以暴露与鳍107的顶表面相邻的鳍107的侧壁的至少一部分。可以通过将鳍107的顶表面浸入诸如HF之类的蚀刻剂来使用湿法蚀刻使电介质材料凹陷,但也可以使用其他蚀刻剂(例如,H2)以及其他方法(例如,反应离子蚀刻、使用诸如NH3/NF3之类的蚀刻剂的干法蚀刻、化学氧化物去除、或干法化学清洁)。电介质材料可以被凹陷到距鳍107的表面约
Figure BDA0002169406610000051
和约
Figure BDA0002169406610000052
之间的距离,例如,约
Figure BDA0002169406610000053
Figure BDA0002169406610000054
另外,凹陷还可以去除位于鳍107上方的任何剩余的电介质材料,以确保鳍107被暴露以用于进一步的工艺。
然而,如本领域普通技术人员将认识到的,上述步骤可以仅是用于填充和凹陷电介质材料的整个工艺流程的一部分。例如,形成衬里步骤、清洁步骤、退火步骤、间隙填充步骤、这些的组合等也可用于利用电介质材料形成和填充第一沟槽103。所有可能的工艺步骤完全旨在被包括在本实施例的范围内。
在形成了第一隔离区域105之后,可以在每个鳍107上方形成虚设栅极电介质109、虚设栅极电介质109上方的虚设栅极电极111、和第一间隔物113。在实施例中,虚设栅极电介质109可以通过热氧化、化学气相沉积、溅射、或本领域已知并用于形成栅极电介质的任何其他方法来形成。根据栅极电介质形成技术,鳍107顶部上的虚设栅极电介质109厚度可以与鳍107的侧壁上的栅极电介质厚度不同。
虚设栅极电介质109可以包括诸如二氧化硅或氮氧化硅之类的材料,该材料具有范围为从约3埃到约100埃的厚度,例如,约10埃。虚设栅极电介质109可以由高介电常数(高k)材料(例如,相对介电常数大于约5)(例如,氧化镧(La2O3)、氧化铝(Al2O3)、氧化铪(HfO2)、氧氮化铪(HfON)、或氧化锆(ZrO2)、或它们的组合)形成,该材料具有约0.5埃至约100埃的等效氧化物厚度,例如,约10埃或更小。另外,二氧化硅、氮氧化硅、和/或高k材料的任何组合也可以用于虚设栅极电介质109。
虚设栅极电极111可以包括导电或非导电材料,并且可以选自包括以下各项的群组:多晶硅、W、Al、Cu、AlCu、W、Ti、TiAlN、TaC、TaCN、TaSiN、Mn、Zr、TiN、Ta、TaN、Co、Ni、它们的组合等。虚设栅极电极111可以通过化学气相沉积(CVD)、溅射沉积、或本领域已知并用于沉积导电材料的其他技术来沉积。虚设栅极电极111的厚度可以在约
Figure BDA0002169406610000061
至约
Figure BDA0002169406610000062
的范围内。虚设栅极电极111的顶表面可以具有非平面顶表面,并且可以在对虚设栅极电极111的图案化或栅极蚀刻之前被平面化。此时可以或者可以不将离子引入虚设栅极电极111。例如,可以通过离子注入技术引入离子。
一旦被形成,虚设栅极电介质109和虚设栅极电极111可以被图案化以在鳍107上方形成一系列堆叠115。堆叠115限定了位于虚设栅极电介质109下方的鳍107的每一侧上的多个沟道区域。堆叠115可以通过使用例如本领域已知的沉积和光刻技术在虚设栅极电极111上沉积和图案化栅极掩模(图1中未单独示出)来形成。栅极掩模可以包含常用的掩模和牺牲材料,例如(但不限于)氧化硅、氮氧化硅、SiCON、SiC、SiOC、和/或氮化硅,并且可以沉积到约
Figure BDA0002169406610000063
至约
Figure BDA0002169406610000064
之间的厚度。可以使用干法蚀刻工艺来蚀刻虚设栅极电极111和虚设栅极电介质109,以形成经图案化的堆叠115。
一旦堆叠115已经被图案化,就可以形成第一间隔物113。第一间隔物113可以形成在堆叠115的相对侧上。第一间隔物113通常通过在先前形成的结构上层状沉积(blanketdeposit)间隔层(图1中未单独示出)来形成。间隔层可以包括SiN、氮氧化物、SiC、SiON、SiOCN、SiOC、氧化物等,并且可以通过用于形成这种层的方法(例如,化学气相沉积(CVD)、等离子体增强CVD、溅射、和本领域已知的其他方法)来形成。间隔层可以包括具有不同蚀刻特性的不同材料或与第一隔离区域105内的电介质材料相同的材料。然后可以对第一间隔物113进行图案化,例如通过一次或多次蚀刻以从结构的水平表面去除间隔层以形成第一间隔物113。
在实施例中,第一间隔物113可以被形成为具有约
Figure BDA0002169406610000071
和约
Figure BDA0002169406610000072
之间的厚度。另外,一旦第一间隔物113已被形成,和一个堆叠115相邻的第一间隔物113可以与和另一堆叠115相邻的第一间隔物113分开约5nm至约200nm之间的距离,例如,约20nm。然而,可以使用任何合适的厚度和距离。
图2示出了从未受堆叠115和第一间隔物113保护的那些区域中去除鳍107以及源极/漏极区域201的再生长。从未受堆叠115和第一间隔物113保护的那些区域中去除鳍107可以通过以下各项来执行:将堆叠115和第一间隔物113用作硬掩模的反应离子蚀刻(RIE),或者任何其他合适的去除工艺。去除可以继续进行,直到鳍107与第一隔离区域105的表面同平面(如图所示)或低于第一隔离区域105的表面。
一旦鳍107的这些部分已被去除,就放置并图案化硬掩模(未单独示出)以覆盖虚设栅极电极111以防止生长,并且可以以与每个鳍107接触的方式再生长源极/漏极区域201。在实施例中,可以再生长源极/漏极区域201,并且在一些实施例中,可以再生长源极/漏极区域201以形成应力源(stressor),该应力源将对位于堆叠115下方的鳍107的沟道区域施加应力。在其中鳍107包括硅并且FinFET是p型器件的实施例中,源极/漏极区域201可以通过选择性外延工艺来再生长,该选择性外延工艺使用诸如硅之类的材料或者具有与沟道区域不同的晶格常数的诸如硅锗之类的材料。外延生长工艺可以使用诸如硅烷、二氯硅烷、锗烷等之类的前体,并且可以持续约5分钟和约120分钟之间的时间,例如,约30分钟。
在实施例中,源极/漏极区域201可以被形成为具有约
Figure BDA0002169406610000081
和约
Figure BDA0002169406610000082
之间的厚度,以及在第一隔离区域105上方的约
Figure BDA0002169406610000083
和约
Figure BDA0002169406610000084
之间的高度,例如,约
Figure BDA0002169406610000085
在该实施例中,源极/漏极区域201可以被形成为具有在第一隔离区域105的上表面上方的约5nm和约250nm之间的高度,例如,约100nm。然而,可以使用任何合适的高度。
一旦源极/漏极区域201被形成,就可以通过以下方式来将掺杂剂注入到源极/漏极区域201中:注入适当的掺杂剂来补充鳍107中的掺杂剂。例如可以注入诸如硼、镓、铟等之类的p型掺杂剂以形成PMOS器件。替代地,可以注入诸如磷、砷、锑等之类的n型掺杂剂以形成NMOS器件。这些掺杂剂可以通过将堆叠115和第一间隔物113用作掩模来注入。应注意,本领域普通技术人员将认识到,可以使用许多其他工艺、步骤等来注入掺杂剂。例如,本领域普通技术人员将认识到,可以使用间隔物和衬垫的各种组合来执行多次注入,以形成具有适合于特定目的的特定形状或特性的源极/漏极区域。可以使用这些工艺中的任何一种来注入掺杂剂,并且以上描述并不意味着将本实施例限制于上述步骤。
此外,此时,去除在形成源极/漏极区域201期间覆盖虚设栅极电极111的硬掩模。在实施例中,可以使用例如对硬掩模的材料具有选择性的湿法或干法蚀刻工艺来去除硬掩模。然而,可以使用任何合适的去除工艺。
图2还示出了在堆叠115和源极/漏极区域201上方形成层间电介质(ILD)层203(在图2中以虚线示出,以便更清楚地示出下面的结构)。ILD层203可以包括诸如硼磷硅酸盐玻璃(BPSG)之类的材料,但也可以使用任何合适的电介质。可以使用诸如PECVD之类的工艺来形成ILD层203,但是可以替代地使用诸如LPCVD之类的其他工艺。ILD层203可以被形成为约
Figure BDA0002169406610000086
和约
Figure BDA0002169406610000087
之间的厚度。一旦被形成,ILD层203可以使用例如平面化工艺(例如,化学机械抛光工艺)来进行与第一间隔物113的平面化,但也可以使用任何合适的工艺。
图3示出了图2沿着线3-3’的横截面图,以便更好地示出虚设栅极电极111和虚设栅极电介质109的材料的去除和替换。在实施例中,虚设栅极电极111和虚设栅极电介质109可以使用例如一个或多个湿法或干法蚀刻工艺来去除,该蚀刻工艺利用对虚设栅极电极111和虚设栅极电介质109的材料具有选择性的蚀刻剂。然而,可以使用任何合适的(一个或多个)去除工艺。
一旦虚设栅极电极111和虚设栅极电介质109已被去除,就可以通过沉积一系列层来开始用于形成第一栅极堆叠603的工艺。在实施例中,该一系列层可以包括界面层301、第一电介质材料303、第一金属材料305、和第一p金属功函数层307。
可选地,可以在形成第一电介质材料303之前形成界面层301。在实施例中,界面层301可以是诸如二氧化硅之类的材料,该材料通过诸如原位蒸汽生成(in situ steamgeneration,ISSG)之类的工艺或沉积工艺(例如,化学气相沉积或原子层沉积)来形成。在另一实施例中,界面层301可以是高k材料(例如,HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、LaO、ZrO、Ta2O5、这些的组合等),其具有约
Figure BDA0002169406610000091
和约
Figure BDA0002169406610000092
之间的第一厚度,例如,约
Figure BDA0002169406610000093
在利用沉积工艺的实施例中,界面层301可以如图所示一致地被形成,而在利用ISSG的实施例中,界面层301可以沿着开口的底部被形成而不沿着第一隔离物113的侧壁延伸。
一旦界面层301被形成,第一电介质材料303可以被形成为界面层301上方的帽盖层。在实施例中,第一电介质材料303是通过诸如原子层沉积、化学气相沉积等之类的工艺而沉积的高k材料,例如,HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、LaO、ZrO、Ta2O5、这些的组合等。可以将第一电介质材料303沉积到约
Figure BDA0002169406610000094
和约
Figure BDA0002169406610000095
之间的第二厚度,但也可以使用任何合适的材料和厚度。
可选地,第一金属材料305或金属栅极帽盖层可以与第一电介质材料303相邻地形成为阻挡层,并且可以由诸如以下各项之类的金属材料形成:TaN、Ti、TiAlN、TaC、TaCN、TaSiN、Mn、Zr、TiN、Ru、Mo、WN、其他金属氧化物、金属氮化物、金属硅酸盐、过渡金属氧化物、过渡金属氮化物、过渡金属硅酸盐、金属氧氮化物、金属铝酸盐、硅酸锆、铝酸锆、这些的组合等。可以使用诸如原子层沉积、化学气相沉积、溅射等之类的沉积工艺将第一金属材料305沉积至约
Figure BDA0002169406610000101
和约
Figure BDA0002169406610000102
之间的第三厚度,但也可以使用任何合适的沉积工艺或厚度。
第一p金属功函数层307可以与第一金属材料305相邻地形成,并且在特定实施例中,可以与第一金属材料305类似。例如,第一p金属功函数层307可以由诸如以下各项之类的金属材料来形成:TiN、Ti、TiAlN、TaC、TaCN、TaSiN、TaSi2、NiSi2、Mn、Zr、ZrSi2、TaN、Ru、Al、Mo、MoSi2、WN、其他金属氧化物、金属氮化物、金属硅酸盐、过渡金属氧化物、过渡金属氮化物、过渡金属硅酸盐、金属氮氧化物、金属铝酸盐、硅酸锆、铝酸锆、这些的组合等。另外,可以使用诸如原子层沉积、化学气相沉积、溅射等之类的沉积工艺来将第一p金属功函数层307沉积到约
Figure BDA0002169406610000103
和约
Figure BDA0002169406610000104
之间的第四厚度,但也可以使用任何合适的沉积工艺或厚度。
图3还示出了第一n金属功函数层309的沉积。在实施例中,第一n金属功函数层309可以是诸如以下各项之类的材料:TiAlC、TiAlN、Ti、Ag、Al、TaAl、TaAlC、TaC、TaCN、TaSiN、Mn、Zr、其他合适的n型功函数材料、或它们的组合。例如,可以使用原子层沉积(ALD)工艺、CVD工艺等将第一n金属功函数层309沉积到约
Figure BDA0002169406610000105
和约
Figure BDA0002169406610000106
之间的第六厚度,例如约
Figure BDA0002169406610000107
然而,可以使用任何合适的材料和工艺来形成第一n金属功函数层309。
然而,在沉积第一n金属功函数层309之后,第一n金属功函数层309的材料(例如,TiAlC)不具有所期望的高质量。具体地,第一n金属功函数层309将具有大量悬空键和缺陷。如果在沉积第一n金属功函数层309时单独留下,则悬空键和缺陷将导致一些元素(例如,铝)远离第一n金属功函数层309的不期望的扩散,这可能导致位于界面层301和鳍107内的下面的沟道之间的器件的界面缺陷(Dit)的恶化。这种恶化可能导致器件的整体性能降低。
图4示出了钝化工艺(在图4中由标记为401的箭头表示)或处理工艺,其被执行以在不增加结构的总厚度的情况下帮助钝化所存在的悬空键,并且还帮助捕获否则可能扩散的元素。在实施例中,钝化工艺401可以利用沉积工艺并采用一种或多种合适的钝化元素(例如,氟等)来原位执行。
在使用氟的具体实施例中,可以利用含有氟原子的气态前体将氟引入第一n金属功函数层309。例如,在一些实施例中,可以通过引入诸如含氟前体(例如,氟化钨(WFx)、氟化氮(NFx)、氟化钛(TiFx)、氟化钽(TaFx)、氟化铪(HfFx)、这些的组合等,其中,x可以在1和6之间)之类的钝化前体来将氟引入第一n金属功函数层309。然而,可以使用基于所需钝化元素的任何合适的钝化前体。
在实施例中,可以通过将钝化前体引入钝化室内的第一n金属功函数层309来发起钝化工艺401。可以通过使用诸如氩气之类的载气将这种钝化前体带入钝化室来执行这种引入。可以以约100sccm和约6,000sccm之间的流速将组合的钝化前体和载气引入钝化室。
在钝化室内,钝化前体可以与第一n金属功函数层309接触,以在第一n金属功函数层309内引发化学反应。在一些实施例中,化学反应可以是在约25℃和约500℃的温度(例如,约300℃)下,并且在约0.5托和约50托之间的压力下在钝化室内进行。然而,可以使用任何合适的参数。
在利用氟前体作为钝化前体的实施例中,通过利用钝化工艺401,存在于氟前体(例如,WF6)内的氟将与第一n金属功函数层309内的铝反应。这种反应会产生氟副产物,如氟化铝。
在一些实施例中,可以执行钝化工艺401以将氟结合到第一n金属功函数层309中。这样,钝化工艺401可以执行约1秒和约1小时之间的时间,例如,约30秒和约60秒之间。对于这些时间段,钝化工艺401可以使第一n金属功函数层309具有约1%原子和约30%原子之间的氟浓度。然而,可以使用任何合适浓度的氟以及任何合适的时间段。
另外,在一些实施例中,存在于氟前体内的其他元素可以至少部分地结合在第一n金属功函数层309的顶表面内。例如,在使用氟化钨(WF6)作为氟前体的实施例中,氟化钨中的钨的至少一部分将结合到第一n金属功函数层309的顶表面中(在氟与铝反应之后)。在一些实施例中,钨沿着第一n金属功函数层309的顶表面可以具有小于10%重量的浓度,例如,在约2%重量和约3%重量之间。然而,可以使用任何合适的浓度。
通过利用钝化工艺401,存在于钝化前体内的钝化元素(例如,氟)将扩散到结构中并反应。这样,在第一p金属功函数层307、第一金属材料305、第一电介质材料303和界面层301中的每一个内将存在浓度梯度,从而可以改善Dit
通过将钝化元素(例如,氟)引入结构中,将通过引入钝化元素(例如,氟)来减少否则将存在的悬空键和缺陷。另外,可以在不引起第一n金属功函数层309的厚度增加的情况下实现这种减小。具体地,钝化元素将与悬空键反应,从而钝化悬空键并修复缺陷。这样,通过钝化工艺401将减少悬空键的数量和缺陷的数量,而第一n金属功函数层309保持在第六厚度。
另外,在第一n金属功函数层309包括可具有一种或多种可能不期望的扩散的元素(例如,材料TiAlC内的铝)的材料的实施例中,钝化工艺401具有额外的益处,其有助于减少或消除元素的扩散。例如,钝化元素(例如,氟)将与存在于第一n金属功函数层309内的至少一些铝反应。通过将氟与第一n金属功函数层309内存在的铝键合以形成氟化铝,铝至少部分地被捕获并且不能如此多地扩散到结构的其他区域中。因此,尽管在每个下面的层中仍可能存在浓度梯度,但是可以减少浓度梯度,或者在一些实施例中,消除浓度梯度。
在具体实施例中,通过用氟捕获铝,键合到钝化元素的铝不能扩散到下面的结构中,例如,第一p金属功函数层307、第一金属材料305、第一电介质材料303和界面层301。通过减少能够扩散的铝的量,还可以减少将扩散到这些下面的层中的铝的总量。在一些实施例中,可以完全防止铝扩散到第一电介质材料303和界面层301中。
图5示出了胶层501和填充材料503的沉积。一旦第一n金属功函数层309已被形成,就可以形成胶层501以帮助将上覆的填充材料503与下面的第一n金属功函数层309粘附,以及提供用于形成填充材料503的成核层。在实施例中,胶层501可以是诸如氮化钛之类的材料,或者可以是与第一n金属功函数层309类似的材料,并且可以使用类似的工艺(例如,ALD)来形成至约
Figure BDA0002169406610000131
和约
Figure BDA0002169406610000132
之间的第七厚度,例如,约
Figure BDA0002169406610000133
然而,可以使用任何合适的材料和工艺。
一旦胶层501已被形成,则沉积填充材料503以使用胶层501来填充开口的剩余部分。在实施例中,填充材料503可以是诸如以下各项之类的材料:钨、Al、Cu、AlCu、W、Ti、TiAlN、TaC、TaCN、TaSiN、Mn、Zr、TiN、Ta、TaN、Co、Ni、这些的组合等,并且可以使用诸如以下各项之类的沉积工艺来形成:电镀、化学气相沉积、原子层沉积、物理气相沉积、这些的组合等。另外,填充材料503可以被沉积到约
Figure BDA0002169406610000134
到约
Figure BDA0002169406610000135
之间的厚度,例如,约
Figure BDA0002169406610000136
然而,可以使用任何合适的材料。
图6示出了在填充材料503已被沉积以填充和过填充开口之后,可以使材料平面化以形成第一栅极堆叠603。在实施例中,可以使用例如化学机械抛光工艺来对材料进行与第一隔离物113的平面化,但也可以使用任何合适的工艺,例如,研磨或蚀刻。
在第一栅极堆叠603的材料已被形成并被平面化之后,第一栅极堆叠603的材料可以被凹陷并且被加盖以帽盖层601。在实施例中,第一栅极堆叠603的材料可以使用例如湿法或干法蚀刻工艺来凹陷,该湿法或干法蚀刻工艺使用对第一栅极堆叠603的材料有选择性的蚀刻剂。在实施例中,第一栅极堆叠603的材料可以被凹陷约5nm和约150nm之间的距离,例如,约120nm。然而,可以使用任何合适的工艺和距离。
一旦第一栅极堆叠603的材料已被凹陷,就可以沉积帽盖层601并对其进行与第一间隔物113的平面化。在实施例中,帽盖层601是使用诸如原子层沉积、化学气相沉积、溅射等之类的沉积工艺来沉积的诸如SiN、SiON、SiCON、SiC、SiOC、这些的组合等之类的材料。可以将帽盖层601沉积至约
Figure BDA0002169406610000137
和约
Figure BDA0002169406610000138
之间的厚度,并且然后使用诸如化学机械抛光之类的平面化工艺来对其进行平面化,使得帽盖层601与第一间隔物113同平面。
通过利用本文描述的实施例,可以减少或消除铝从第一n金属功函数层309的扩散。因此,较少的铝扩散到各个层,并且具体地,可以最小化扩散到第一电介质材料303和界面层301并负面地影响第一电介质材料303和界面层301的界面和电荷缺陷(Dit)的铝的量。除了通常的帮助之外,这种电荷缺陷的减少在诸如硅锗之类的材料(其可能是更优选,但具有更高的界面和电荷缺陷)被用作鳍107内的沟道的材料时变得特别有用。
另外,减少扩散的影响的益处可以减少,而不减少后续工艺窗口。具体地,通过利用如本文所述的钝化工艺401,在沉积第一n金属功函数层309之前或之后不需要额外的层,并且钝化工艺401将不向第一n金属添加额外的厚度。这样,用于后续处理(例如,填充材料503的沉积)的间隙填充窗口可以保持宽阔,同时仍获得期望的益处。
在实施例中,一种制造半导体器件的方法,该方法包括:在半导体鳍上方沉积栅极电介质;在栅极电介质上方沉积第一p金属功函数层;在第一p金属功函数层上方沉积第一n金属功函数层;以及将第一n金属功函数层暴露于含氟气体中。在实施例中,含氟气体是氟化钨。在实施例中,沉积第一n金属功函数层对碳化铝钛进行沉积。在实施例中,氟化钨与碳化铝钛中的铝进行反应。在实施例中,暴露增加第一n金属功函数层的顶表面内的钨浓度。在实施例中,该方法还包括:在暴露第一n金属功函数层之后在第一n金属功函数层上方沉积胶层。在实施例中,第一n金属功函数层在暴露第一n金属功函数层之前具有第一厚度,并且在暴露第一n金属功函数层之后也具有该第一厚度。
在另一实施例中,一种制造半导体器件的方法,该方法包括:在位于半导体鳍上方的第一p金属功函数层和栅极电介质上方并且与第一p金属功函数层物理接触地沉积第一n金属功函数层;以及将第一元素捕获在第一n金属功函数层内,所述捕获至少部分地通过将第一n金属功函数层暴露于钝化前体来执行。在实施例中,钝化前体是含氟气体。在实施例中,含氟气体是氟化钨。在实施例中,含氟气体是氟化氮。在实施例中,含氟气体是氟化钨铪。在实施例中,含氟气体是氟化钽。在实施例中,暴露第一n金属功函数层是在25℃和500℃之间的温度下进行的,并且持续30秒和60秒之间的时间。
在又一实施例中,一种半导体器件包括:半导体鳍;栅极电介质,位于半导体鳍上方;第一p金属功函数层,位于栅极电介质上方;第一n金属功函数层,位于第一p金属功函数层上方并且与第一p金属功函数层物理接触,第一n金属功函数层包括具有非零钨浓度的区域;以及铝,位于第一p金属功函数层和第一n金属功函数层两者内,其中,铝的浓度梯度从第一n金属功函数层和第一p金属功函数层延伸,但在延伸到栅极电介质之前结束。在实施例中,第一n金属功函数层包含碳化铝钛。在实施例中,第一p金属功函数层包括氮化钛。在实施例中,第一n金属功函数层内的氟浓度在约1%原子和约30%原子之间。在实施例中,非零钨浓度在约2%重量至约3%重量之间。在实施例中,半导体器件还包括:胶层,位于第一n金属功函数层上方;填充材料,位于胶层上方;以及电介质帽盖层,位于填充材料上方。
以上概述了若干实施例的特征,使得本领域技术人员可以更好地理解本公开的各方面。本领域技术人员应当理解,他们可以容易地使用本公开作为设计或修改其他工艺和结构以实现本文介绍的实施例的相同目的和/或实现本文介绍的实施例的相同优点的基础。本领域技术人员还应该认识到,这样的等同构造不脱离本公开的精神和范围,并且他们可以在不脱离本公开的精神和范围的情况下在本文中进行阿各种改变、替换和变更。
示例1是一种制造半导体器件的方法,所述方法包括:在半导体鳍上方沉积栅极电介质;在所述栅极电介质上方沉积第一p金属功函数层;在所述第一p金属功函数层上方沉积第一n金属功函数层;以及将所述第一n金属功函数层暴露于含氟气体中。
示例2是示例1所述的方法,其中,所述含氟气体是氟化钨。
示例3是示例2所述的方法,其中,沉积所述第一n金属功函数层对碳化铝钛进行沉积。
示例4是示例3所述的方法,其中,所述氟化钨与所述碳化铝钛中的铝进行反应。
示例5是示例4所述的方法,其中,所述暴露增加所述第一n金属功函数层的顶表面内的钨浓度。
示例6是示例1所述的方法,还包括:在暴露所述第一n金属功函数层之后,在所述第一n金属功函数层上方沉积胶层。
示例7是示例1所述的方法,其中,所述第一n金属功函数层在暴露所述第一n金属功函数层之前具有第一厚度,并且在暴露所述第一n金属功函数层之后也具有所述第一厚度。
示例8是一种制造半导体器件的方法,所述方法包括:在位于半导体鳍上方的第一p金属功函数层和栅极电介质上方并且与所述第一p金属功函数层物理接触地沉积第一n金属功函数层;以及将第一元素捕获在所述第一n金属功函数层内,所述捕获至少部分地通过将所述第一n金属功函数层暴露于钝化前体来执行。
示例9是示例8所述的方法,其中,所述钝化前体是含氟气体。
示例10是示例9所述的方法,其中,所述含氟气体是氟化钨。
示例11是示例9所述的方法,其中,所述含氟气体是氟化氮。
示例12是示例9所述的方法,其中,所述含氟气体是氟化钨铪。
示例13是示例9所述的方法,其中,所述含氟气体是氟化钽。
示例14是示例9所述的方法,其中,暴露所述第一n金属功函数层是在25℃和500℃之间的温度下进行的,并且持续30秒和60秒之间的时间。
示例15是一种半导体器件,包括:半导体鳍;栅极电介质,位于所述半导体鳍上方;第一p金属功函数层,位于所述栅极电介质上方;第一n金属功函数层,位于所述第一p金属功函数层上方并且与所述第一p金属功函数层物理接触,所述第一n金属功函数层包括具有非零钨浓度的区域;以及铝,位于所述第一p金属功函数层和所述第一n金属功函数层两者内,其中,所述铝的浓度梯度从所述第一n金属功函数层和所述第一p金属功函数层延伸,但在延伸到所述栅极电介质之前结束。
示例16是示例15所述的半导体器件,其中,所述第一n金属功函数层包含碳化铝钛。
示例17是示例15所述的半导体器件,其中,所述第一p金属功函数层包括氮化钛。
示例18是示例15所述的半导体器件,其中,所述第一n金属功函数层内的氟浓度在约1%原子和约30%原子之间。
示例19是示例15所述的半导体器件,其中,所述非零钨浓度在约2%重量至约3%重量之间。
示例20是示例15所述的半导体器件,还包括:胶层,位于所述第一n金属功函数层上方;填充材料,位于所述胶层上方;以及电介质帽盖层,位于所述填充材料上方。

Claims (10)

1.一种制造半导体器件的方法,所述方法包括:
在半导体鳍上方沉积栅极电介质;
在所述栅极电介质上方沉积第一p金属功函数层;
在所述第一p金属功函数层上方沉积第一n金属功函数层;以及
将所述第一n金属功函数层暴露于含氟气体中。
2.根据权利要求1所述的方法,其中,所述含氟气体是氟化钨。
3.根据权利要求2所述的方法,其中,沉积所述第一n金属功函数层对碳化铝钛进行沉积。
4.根据权利要求3所述的方法,其中,所述氟化钨与所述碳化铝钛中的铝进行反应。
5.根据权利要求4所述的方法,其中,所述暴露增加所述第一n金属功函数层的顶表面内的钨浓度。
6.根据权利要求1所述的方法,还包括:在暴露所述第一n金属功函数层之后,在所述第一n金属功函数层上方沉积胶层。
7.根据权利要求1所述的方法,其中,所述第一n金属功函数层在暴露所述第一n金属功函数层之前具有第一厚度,并且在暴露所述第一n金属功函数层之后也具有所述第一厚度。
8.一种制造半导体器件的方法,所述方法包括:
在位于半导体鳍上方的第一p金属功函数层和栅极电介质上方并且与所述第一p金属功函数层物理接触地沉积第一n金属功函数层;以及
将第一元素捕获在所述第一n金属功函数层内,所述捕获至少部分地通过将所述第一n金属功函数层暴露于钝化前体来执行。
9.根据权利要求8所述的方法,其中,所述钝化前体是含氟气体。
10.一种半导体器件,包括:
半导体鳍;
栅极电介质,位于所述半导体鳍上方;
第一p金属功函数层,位于所述栅极电介质上方;
第一n金属功函数层,位于所述第一p金属功函数层上方并且与所述第一p金属功函数层物理接触,所述第一n金属功函数层包括具有非零钨浓度的区域;以及
铝,位于所述第一p金属功函数层和所述第一n金属功函数层两者内,其中,所述铝的浓度梯度从所述第一n金属功函数层和所述第一p金属功函数层延伸,但在延伸到所述栅极电介质之前结束。
CN201910758142.7A 2019-04-18 2019-08-16 半导体器件和制造方法 Pending CN111834223A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/388,200 2019-04-18
US16/388,200 US11257921B2 (en) 2019-04-18 2019-04-18 Semiconductor device and method of manufacture

Publications (1)

Publication Number Publication Date
CN111834223A true CN111834223A (zh) 2020-10-27

Family

ID=72660602

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910758142.7A Pending CN111834223A (zh) 2019-04-18 2019-08-16 半导体器件和制造方法

Country Status (5)

Country Link
US (2) US11257921B2 (zh)
KR (1) KR102244329B1 (zh)
CN (1) CN111834223A (zh)
DE (1) DE102019110533B4 (zh)
TW (1) TWI764132B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022133652A1 (zh) * 2020-12-21 2022-06-30 华为技术有限公司 场效应晶体管及其制造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826213A (en) * 1971-06-15 1974-07-30 R Riebandt Self-steering system
US3729634A (en) * 1971-09-20 1973-04-24 Recognition Systems Automatic beam ratio control system for holography
US3887106A (en) * 1973-11-07 1975-06-03 Ibm Ticket cartridge and hopper and stacker therefor
US9312260B2 (en) * 2010-05-26 2016-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits and manufacturing methods thereof
US8487378B2 (en) 2011-01-21 2013-07-16 Taiwan Semiconductor Manufacturing Company, Ltd. Non-uniform channel junction-less transistor
US8887106B2 (en) 2011-12-28 2014-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. Method of generating a bias-adjusted layout design of a conductive feature and method of generating a simulation model of a predefined fabrication process
US8586436B2 (en) 2012-03-20 2013-11-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a variety of replacement gate types including replacement gate types on a hybrid semiconductor device
TWI597783B (zh) 2012-04-26 2017-09-01 應用材料股份有限公司 製造金屬閘極的方法
US8729634B2 (en) 2012-06-15 2014-05-20 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET with high mobility and strain channel
US8826213B1 (en) 2013-03-11 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Parasitic capacitance extraction for FinFETs
US8943455B2 (en) * 2013-03-12 2015-01-27 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for layout verification for polysilicon cell edge structures in FinFET standard cells
US20150132938A1 (en) * 2013-11-13 2015-05-14 Intermolecular, Inc. Methods and Systems for Forming Reliable Gate Stack on Semiconductors
US9564489B2 (en) 2015-06-29 2017-02-07 Taiwan Semiconductor Manufacturing Company, Ltd. Multiple gate field-effect transistors having oxygen-scavenged gate stack
US9978601B2 (en) * 2015-10-20 2018-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Methods for pre-deposition treatment of a work-function metal layer
US9972694B2 (en) * 2015-10-20 2018-05-15 Taiwan Semiconductor Manufacturing Company, Ltd. Atomic layer deposition methods and structures thereof
US9502307B1 (en) * 2015-11-20 2016-11-22 International Business Machines Corporation Forming a semiconductor structure for reduced negative bias temperature instability
US10276390B2 (en) * 2016-04-13 2019-04-30 Globalfoundries Inc. Method and apparatus for reducing threshold voltage mismatch in an integrated circuit
US10879370B2 (en) * 2016-12-15 2020-12-29 Taiwan Semiconductor Manufacturing Company, Ltd. Etching back and selective deposition of metal gate
US10854459B2 (en) * 2017-09-28 2020-12-01 Taiwan Semiconductor Manufacturing Co., Ltd. Gate structure passivating species drive-in method and structure formed thereby
JP7418331B2 (ja) * 2017-12-15 2024-01-19 インテグリス・インコーポレーテッド プラズマフラッドガン(pfg)の動作のためにフッ素含有ガスおよび不活性ガスを使用する方法および組立体
US20190252259A1 (en) * 2018-02-11 2019-08-15 United Microelectronics Corp. Method for forming semiconductor structure
US10304835B1 (en) * 2018-08-15 2019-05-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
US10867864B2 (en) * 2018-09-27 2020-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufacture
EP3636590A1 (en) * 2018-10-09 2020-04-15 IMEC vzw A method for forming a silicide gate for a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022133652A1 (zh) * 2020-12-21 2022-06-30 华为技术有限公司 场效应晶体管及其制造方法

Also Published As

Publication number Publication date
TWI764132B (zh) 2022-05-11
US20220173222A1 (en) 2022-06-02
DE102019110533B4 (de) 2024-02-22
TW202040700A (zh) 2020-11-01
KR102244329B1 (ko) 2021-04-27
KR20200123370A (ko) 2020-10-29
DE102019110533A1 (de) 2020-10-22
US11257921B2 (en) 2022-02-22
US20200335598A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
US20200043803A1 (en) Semiconductor Device and Method
US20190123048A1 (en) Semiconductor Device and Method
US11616132B2 (en) Semiconductor device and methods of manufacture
CN107689395B (zh) 半导体器件和方法
CN110957270B (zh) 半导体器件和制造方法
CN111261703B (zh) 半导体器件及制造方法
CN109427901B (zh) 半导体器件和方法
US20220173222A1 (en) Semiconductor Device and Method of Manufacture
US20210327761A1 (en) Semiconductor device and method of manufacture
US11127857B2 (en) Semiconductor device and method of manufacture
US20220376077A1 (en) Semiconductor Device and Method of Manufacture
KR102374899B1 (ko) 반도체 디바이스 및 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination