CN111825464A - 微波体衰减陶瓷材料及其制备方法和应用 - Google Patents

微波体衰减陶瓷材料及其制备方法和应用 Download PDF

Info

Publication number
CN111825464A
CN111825464A CN202010630856.2A CN202010630856A CN111825464A CN 111825464 A CN111825464 A CN 111825464A CN 202010630856 A CN202010630856 A CN 202010630856A CN 111825464 A CN111825464 A CN 111825464A
Authority
CN
China
Prior art keywords
microwave
phase
ceramic material
attenuation
attenuating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010630856.2A
Other languages
English (en)
Inventor
鲁燕萍
杨艳玲
臧向荣
刘钊
王帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
No 12 Research Institute Of Cetc
Original Assignee
No 12 Research Institute Of Cetc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by No 12 Research Institute Of Cetc filed Critical No 12 Research Institute Of Cetc
Priority to CN202010630856.2A priority Critical patent/CN111825464A/zh
Publication of CN111825464A publication Critical patent/CN111825464A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种微波体衰减陶瓷材料,该陶瓷材料包括基体相和微波衰减相,所述微波衰减相的平均粒径为1‑2μm;所述微波衰减相均匀地分布在所述基体相的晶粒间界,形成了晶界网络结构。该微波体衰减材料制备得到的大功率高频微波真空电子器件具有高导热率和好的衰减量。本发明还公开了该微波体衰减陶瓷材料的制备方法和应用。

Description

微波体衰减陶瓷材料及其制备方法和应用
技术领域
本发明涉及陶瓷材料领域。更具体地,涉及一种微波体衰减陶瓷材料及其制备方法和应用。
背景技术
在微波真空电子器件中,需要用到微波体衰减材料,来吸收非设计模式的波和消除边带振荡,从而保证器件的精准运行。由于电磁波在被微波体衰减材料吸收后会转化成热能,为防止产生的热量影响器件的正常运行,要求微波体衰减材料不仅需具有足够的衰减量,还需有良好的导热性和高温稳定性。
目前研究的微波体衰减材料均只能较好的应用在低频或中高频如X波段、K波段的微波真空电子器件中。适用于高频,尤其是W波段的大功率高频率的微波真空电子器件的微波体衰减材料的研究则相对很少或成本很高。主要原因在于,电子器件的频率越高,其体积就需越小,制备也越困难,从而需要微波体衰减材料具有更高的导热率以及更高的衰减量,但在现有的研究中,同时改善微波体衰减材料的导热率和衰减量是一个相互矛盾的过程。例如,在氮化铝-碳化硅复相衰减瓷中,微波衰减相碳化硅含量低(<20wt%)时,材料具有较好的导热性,但此时其在高频率波段的衰减量很小;而当微波衰减相碳化硅含量过高时,虽然其在高频率波段的衰减能提高,但热导率下降严重,且材料体系需要的烧结温度高。
因此,针对以上问题,需要提供一种新的适用于大功率高频率微波真空电子器件的微波体衰减材料。
发明内容
本发明的第一个目的在于提供一种微波体衰减陶瓷材料,将其应用于全频波段,尤其是高频,特别是W波段的大功率高频率微波真空电子器件中时同时兼具高的衰减量、好的导热性以及高温热稳定性。
本发明的第二个目的在于提供一种微波体衰减陶瓷材料的制备方法。
本发明的第三个目的在于提供一种微波体衰减陶瓷材料的应用。
为达到上述第一个目的,本发明提供一种微波体衰减陶瓷材料,该陶瓷材料包括基体相和微波衰减相,所述微波衰减相的平均粒径为1-2μm;所述微波衰减相均匀地分布在所述基体相的晶粒间界。
优选地,所述微波衰减相均匀地分布在所述基体相的双晶或三晶或多晶交汇处。
优选地,所述基体相选自氮化铝或氧化铝。
优选地,所述微波衰减相选自碳化硅、碳化钛和氮化钛中的一种或几种。
优选地,所述陶瓷材料中,基体相的含量为55-80wt%,微波衰减相的含量为20-45wt%。
优选地,所述陶瓷材料中,还包括3-10wt%的烧结助剂,所述烧结助剂包含氧化镁、氧化钙、氟化钙、二氧化钛和氧化铝中的至少一种,或者氧化钇、铝酸钇、氟化钇或镧系金属氧化物或氟化物其中一种或几种的组合。
为达到上述第二个目的,本发明提供一种微波体衰减陶瓷材料的制备方法,该制备方法包括如下步骤:
将包括基体相、微波衰减相的原料混合,成型,得预制体;
将所述预制体常压烧结,得所述微波体衰减陶瓷材料。
优选地,所述原料中还包括烧结助剂;所述混合为将基体相、微波衰减相和烧结助剂混合。
优选地,所述烧结助剂包含氧化镁、氧化钙、氟化钙、二氧化钛和氧化铝中的至少一种,或者氧化钇、铝酸钇、氟化钇或镧系金属氧化物或氟化物其中一种或几种的组合。
优选地,所述成型的方式为冷等静压成型。
优选地,所述常压烧结在氮气气氛中进行。
优选地,所述烧结温度为1600-2000℃,烧结时间为0.5-6h;
优选地,当所述基体相选自氮化铝时,所述烧结温度为1800-1960℃,烧结时间为2-6h,优选为2-4h。
优选地,当所述基体相选自氧化铝时,所述烧结温度为1600-1700℃。
为达到上述第三个目的,本发明还保护微波体衰减陶瓷材料在制备微波真空电子器件中的应用。
本发明的有益效果如下:
本发明的微波体衰减陶瓷材料中,控制微波衰减相材料的原粉平均粒径为1-2μm,烧结后的陶瓷微波衰减相保持原粉粒径大小并且均匀地分布在所述基体相的晶粒间界,形成致密的晶界网络结构,从而使该陶瓷材料同时兼具高的衰减量、好的导热性以及高温热稳定性,可较好的适用于高频,尤其是W波段的大功率高频率微波真空电子器件中。进一步地,由于原料易得,该可用于大功率高频率微波真空电子器件的微波体衰减陶瓷材料的制作成本低,易于获得。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1示出实施例1得到的微波体衰减陶瓷材料的微观结构形貌图。
图2示出实施例2得到的微波体衰减陶瓷材料的微观结构形貌图。
图3示出实施例3得到的微波体衰减陶瓷材料的微观结构形貌图。
图4示出对比例1得到的微波体衰减陶瓷材料的微观结构形貌图。
图5示出对比例2得到的微波体衰减陶瓷材料的微观结构形貌图。
图6示出实施例1与对比例1、对比例2得到的材料在W波段的介电性能的对比图。
图7示出本发明实施例在W波段实际应用测试结果。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
本发明的一个实施方式中提供一种微波体衰减陶瓷材料,该陶瓷材料包括基体相和微波衰减相,所述微波衰减相的平均粒径为1-2μm;所述微波衰减相均匀地分布在所述基体相的晶粒间界,形成了晶界网络结构。
现有的以SiC为衰减相的微波体衰减陶瓷材料中,通常采用纳米SiC材料作为微波衰减相,以降低烧结温度并改善得到的微波体衰减陶瓷材料的衰减量,也即损耗量。但这类微波体衰减陶瓷材料通常采用热压烧结,一般仅适用于频率较低的微波真空电子器件中,当其应用于大功率高频的微波真空电子器件中时,难以获得高的衰减量的问题。但当微波衰减相的粒径过大,依然存在烧结困难和散热困难的问题。
本发明实施方式中发现,微波衰减相材料(比如SiC等)的起始原料粒径直接影响得到的陶瓷材料的性能,当原粉粒径小于1μm时,在陶瓷烧结的过程中,一方面配料时存在颗粒易团聚,不容易分散均匀问题;另一方面因微波衰减相材料颗粒过小烧结过程中容易被包裹在所述基体相晶粒中,影响陶瓷基体晶粒的生长,同时小晶粒在基体晶界散乱无序分布,导致复合陶瓷材料整体的烧结致密度不佳,衰减相粒径较小时得到的衰减瓷导热性能不好,同时绝缘电阻率相对较低,绝缘性能较差,工作稳定性差;而当衰减相原粉粒径大于2μm时,由于大晶粒的存在,烧结阻力增加,阻碍了烧结致密化进程,因而得到的陶瓷材料的气孔率较高,陶瓷整体致密度低,导致复合陶瓷高频衰减性能较差,导热性能不佳。而当原料粒径严格控制在1-2μm的条件时,烧结过程伴随着基体晶粒的生长,在烧结推动力的作用下,微波衰减相在烧结后形成的陶瓷材料中极其规则有序地均匀分布于氮化铝或氧化铝基体的晶粒间界(双晶、三晶或多晶交汇处,形成晶界网络结构),所形成的陶瓷结构中衰减相的晶粒尺寸仍保持原料晶粒的1-2μm,得到的两相复合陶瓷结构致密,陶瓷材料高频衰减性能及散热性均较优。此外,微波衰减相材料的形态也影响其在基体相的分布,理想地当衰减相原粉形态为球形或类球形结构时,烧结阻力更小,会得到更加均匀致密的烧结结构,从而得到的陶瓷材料的高频衰减性能及散热性也能一定程度上得到进一步改善。特别的,当所述衰减相为类球形时,衰减相处于三晶或多晶交汇处,复合陶瓷结构更致密。但是由于本申请中的微波衰减相原料例如碳化硅原料是通过天然原料粉碎得到,实际中很难获得球形或类球形结构;而用球形度较好的氮化钛或碳化钛衰减相替代碳化硅衰减相获得的微波体衰减陶瓷材料比添加碳化硅衰减相的微波体衰减陶瓷材料的热导率明显提高。
从而,本实施方式的技术方案中,严格控制微波衰减相的粒径和形貌,在陶瓷烧结过程中微波衰减相均匀有序地分布在基体相的晶粒间界(如两相晶界处、三相晶界处),形成致密的两相陶瓷结构,从而得到的陶瓷材料具有高的衰减量、好的导热性以及高温热稳定性,可用于高频,特别是W波段的大功率高频率微波真空电子器件中。
适用于微波体衰减陶瓷材料的基体相也即为陶瓷介质相,陶瓷介质相材质可为氮化铝或氧化铝等衰减材料。
在一个优选示例中,微波衰减相的材质可为碳化硅、碳化钛和氮化钛中的一种或几种。
本实施方式中,1-2μm的微波衰减相可通过商业购买获得此外,能够制备得到1-2μm上述材质也可用作微波衰减相材料。
在一个优选示例中,所述陶瓷材料中基体相的含量为55-80wt%,微波衰减相的含量为20-45wt%。此原料组成的陶瓷材料的物理机械性能能更好的适应其应用于微波真空电子器件中。
微波体衰减陶瓷材料中通常还包括烧结助剂,以防止烧结形成该材料时产生孔隙,难以实现致密结构。在一个优选示例中,所述材料中还包括3-10wt%的烧结助剂,所述烧结助剂包含氧化镁、氧化钙、氟化钙、二氧化钛和氧化铝中的至少一种,或者氧化钇、氟化钇或镧系金属氧化物或氟化物中至少一种。
本发明的又一个实施方式提供一种上述微波体衰减陶瓷材料的制备方法,该方法包括如下步骤:
将包括基体相、微波衰减相的原料混合,成型,得预制体;
将所述预制体常压烧结,得所述微波体衰减陶瓷材料。
其中,微波衰减相的粒径为1-2μm。
通过该制备方法能够使得微波衰减相均匀地分布在所述陶瓷介质相的晶粒间界,使制备得到的微波体衰减陶瓷材料具有上述第一个实施方式中提到的性能。
本领域技术人员应当明了,该制备方法中,在将基体相、微波衰减相混合后,还包括球磨、干燥、过筛等步骤。
为了防止烧结形成该材料时产生孔隙,难以实现致密结构,所述原料中还包括烧结助剂;所述混合为将基体相、微波衰减相和烧结助剂混合。
在一个优选示例中,所述成型的方式为冷等静压成型。
在一个优选示例中,所述常压烧结在氮气气氛中进行。
在一个优选示例中,当所述基体相选自氮化铝时,所述烧结温度为1800-1960℃,烧结时间为2-6h。该烧结温度下烧结更有利于得到结构致密的微波体衰减陶瓷材料。在进一步地一个更优选的示例中,所述烧结温度为1800-1860℃。此时,烧结温度低易于实施且得到的微波体衰减陶瓷材料结构更致密,同时兼具更高的衰减量和更高的导热率。在又一些具体示例中,所述烧结温度包括但不限于为1810℃、1820℃、1830℃、1840℃等。
在又一个优选示例中,当所述基体相选自氧化铝时,所述烧结温度为1600-1700℃。
本发明的再一个实施方式提供上述微波体衰减陶瓷材料在制备微波真空电子器件中的应用。
将得到的该微波体衰减陶瓷材料用于微波真空电子器件中的制备中,制备得到的微波真空电子器件、包括大功率微波真空电子器件在全频波段,尤其是高频,特别是W波段的条件下使用时兼具高的衰减量、好的导热性以及高温热稳定性。
以下,结合一些具体实施例对本发明进行详细说明:
实施例1
一种微波体衰减陶瓷材料的制备方法,包括如下步骤:
将氮化铝、平均粒径为1-2μm的碳化硅和烧结助剂氧化钇按质量比80:20:3均匀混合后,在球磨机中搅拌24小时,得均匀粉末;
将该粉末于150℃温度下干燥,并过100目筛;
在300MPa等静压成型,得到预制体;
在氮气气氛中,将该预制体在1840℃温度下常压烧结4-6h,得到微波体衰减陶瓷材料。
该微波体衰减陶瓷材料的SEM图如图1所示,其中,图中细的白色箭头所示为SiC晶粒,粗的白色箭头所示为氮化铝晶粒。从图中可知,该材料的结构中,平均粒径为1-2μm的SiC均匀有序地分布在所述氮化铝晶粒间界,结构致密,有助于性能的提升。
通过矢量网络分析仪,测得其W波段介电损耗为0.5-0.9,通过激光导热仪测得其在室温下的导热率为45.5W/(m·K);通过绝缘电阻测量仪,测得其常温100V下的电阻率为6.0×108Ω·cm。
实施例2
一种微波体衰减陶瓷材料的制备方法,包括如下步骤:
将氮化铝、平均粒径为1-2μm的氮化钛和烧结助剂氧化钇按质量比80:20:3均匀混合后,在球磨机中搅拌24小时,得均匀粉末;
将该粉末于150℃温度下干燥,并过100目筛;
在300MPa等静压成型,得到预制体;
在氮气气氛中,将该预制体在1820℃温度下常压烧结3h,得到微波体衰减陶瓷材料。
该微波体衰减陶瓷材料的结构与实施例1中相近,粒径为1-2μm的氮化钛均匀分布在所述氮化铝晶粒间界(三晶或多晶交汇处),如图2所示SEM相貌(其中,图中细的白色箭头所示为TiN晶粒,粗的白色箭头所示为氮化铝晶粒),结构较致密。
通过矢量网络分析仪,测得其W波段介电损耗为0.30-0.5,通过激光导热仪测得其在室温下的导热率为74.0W/(m·K);通过绝缘电阻测量仪,测得其常温100V下的电阻率为1.2×109Ω·cm。
实施例3
一种微波体衰减陶瓷材料的制备方法,包括如下步骤:
将氮化铝、平均粒径为1-2μm的碳化钛和烧结助剂氧化钇按质量比80:20:3均匀混合后,在球磨机中搅拌24小时,得均匀粉末;
将该粉末于150℃温度下干燥,并过100目筛;
在300MPa等静压成型,得到预制体;
在氮气气氛中,将该预制体在1880℃温度下常压烧结3h,得到微波体衰减陶瓷材料。
该微波体衰减陶瓷材料的结构与实施例1中相近,粒径为1-2μm的氮化硅均匀分布在所述氮化铝晶粒间界(三晶或多晶交汇处),气孔较少,结构较致密。SEM微观结构如图3所示(其中,图中细的白色箭头所示为TiC晶粒,粗的白色箭头所示为氮化铝晶粒)。
通过矢量网络分析仪,测得其W波段介电损耗为0.4-0.8,通过激光导热仪测得其在室温下的导热率为64.5W/(m·K);通过绝缘电阻测量仪,测得其常温100V下的电阻率为3.4×107Ω·cm。
对比例1
重复实施例1,区别在于,使用的碳化硅的平均粒径为40-400nm,其余条件不变,制备得到微波体衰减陶瓷材料,由显微结构可知,该陶瓷材料的结构中碳化硅颗粒在氮化铝晶界处散乱无序分布,原始SiC晶粒没有明显长大迹象,AlN基体相晶粒大小不一,晶粒发育不完整,衰减相和基体相AlN之间明显界限,样品中孔洞较多,复合陶瓷整体致密度明显较低。SEM微观结构如图4所示(图中白色圆圈所示为弥散分布的SiC晶粒,白色箭头所示为氮化铝晶粒)。
通过矢量网络分析仪,测得其W波段介电损耗为0.3-0.6,通过激光导热仪测得在室温下的导热率为37.7W/(m·K);通过绝缘电阻测量仪,测得其常温100V下的电阻率为2.6×105Ω·cm。
对比例2
重复实施例1,区别在于,使用的碳化硅的平均粒径为3-5μm,其余条件不变,制备得到微波体衰减陶瓷材料。该陶瓷材料的结构中氮化铝晶粒尺寸增大,烧结后的复合陶瓷结构为不致密的多孔状态,致密度很低且强度低下,研磨加工时脆性较大,加工成品率低,相应的热导率也随之降低。SEM微观结构如图5所示((图中细的白色箭头所示为SiC晶粒,粗的白色箭头所示为氮化铝晶粒))。
通过矢量网络分析仪,测得其W波段介电损耗为0.1-0.6,通过激光导热仪测得其在室温下的导热率为30.0W/(m·K);通过绝缘电阻测量仪,测得其常温100V下的电阻率为6.8×109Ω·cm。
图6示出了实施例1与对比例1和对比例2在W波段的介电性能的对比图,其中,A为介电常数对比图,B为介电损耗对比图。
图7示出了本发明实施例在W波段实际应用测试结果。
上述各实施例及对比例得到的微波体衰减陶瓷材料的热导率结果如下表1所示。
表1本发明的热导率对比情况
Figure BDA0002568604930000081
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (10)

1.一种微波体衰减陶瓷材料,包括基体相和微波衰减相,其特征在于,
所述微波衰减相的平均粒径为1-2μm;
所述微波衰减相均匀地分布在所述基体相的晶粒间界。
2.根据权利要求1所述的微波体衰减陶瓷材料,其特征在于,所述微波衰减相均匀地分布在所述基体相的双晶或三晶或多晶交汇处。
3.根据权利要求1所述的微波体衰减陶瓷材料,其特征在于,所述基体相选自氮化铝或氧化铝;
优选地,所述微波衰减相选自碳化硅、碳化钛和氮化钛中的一种或几种。
4.根据权利要求1所述的微波体衰减陶瓷材料,其特征在于,所述陶瓷材料中,基体相的含量为55-80wt%,微波衰减相的含量为20-45wt%。
5.根据权利要求1所述的微波体衰减陶瓷材料,其特征在于,所述陶瓷材料中,还包括3-10wt%的烧结助剂,所述烧结助剂包含氧化镁、氧化钙、氟化钙、二氧化钛和氧化铝中的至少一种,或者氧化钇、铝酸钇、氟化钇或镧系金属氧化物或氟化物一种或几种复合。
6.如权利要求1-5任一项所述的微波体衰减陶瓷材料的制备方法,其特征在于,包括如下步骤:
将包括基体相、微波衰减相的原料混合,成型,得预制体;
将所述预制体常压烧结,得所述微波体衰减陶瓷材料。
7.根据权利要求6所述的制备方法,其特征在于,所述原料中还包括烧结助剂;所述混合为将基体相、微波衰减相和烧结助剂混合。
8.根据权利要6所述的制备方法,其特征在于,所述成型的方式为冷等静压成型;优选地,所述常压烧结在氮气气氛或氩气气氛中进行。
9.根据权利要求6所述的制备方法,其特征在于,所述烧结温度为1600-2000℃,烧结时间为0.5-6h;
优选地,当所述基体相选自氮化铝时,所述烧结温度为1800-1960℃,烧结时间为2-4h;
优选地,当所述基体相自氧化铝时,所述烧结温度为1600-1700℃。
10.如权利要求1-4任一项所述的微波体衰减陶瓷材料在制备微波真空电子器件中的应用。
CN202010630856.2A 2020-07-03 2020-07-03 微波体衰减陶瓷材料及其制备方法和应用 Pending CN111825464A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010630856.2A CN111825464A (zh) 2020-07-03 2020-07-03 微波体衰减陶瓷材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010630856.2A CN111825464A (zh) 2020-07-03 2020-07-03 微波体衰减陶瓷材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111825464A true CN111825464A (zh) 2020-10-27

Family

ID=72899684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010630856.2A Pending CN111825464A (zh) 2020-07-03 2020-07-03 微波体衰减陶瓷材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111825464A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634566A (en) * 1966-10-14 1972-01-11 Hughes Aircraft Co Method for providing improved lossy dielectric structure for dissipating electrical microwave energy
CA2058075A1 (en) * 1990-12-26 1992-06-27 Akira Yamakawa Composite ceramic powder and production process thereof
JP2003201179A (ja) * 2002-12-12 2003-07-15 Toshiba Corp 窒化アルミニウム焼結体およびその製造方法
US6733890B2 (en) * 2001-10-23 2004-05-11 Fujitsu Limited Integrated ceramic module and microwave dielectric composition
US20050121833A1 (en) * 2003-12-09 2005-06-09 Jenn-Shing Wang Processing method for ceramic
US20060014623A1 (en) * 2004-07-15 2006-01-19 Biljana Mikijelj High thermal conductivity AIN-SiC composite artificial dielectric material
CN102515773A (zh) * 2011-12-26 2012-06-27 中国电子科技集团公司第十二研究所 一种微波体衰减陶瓷材料及其制备方法
CN104086182A (zh) * 2014-07-02 2014-10-08 南京三乐电子信息产业集团有限公司 陶瓷介质微波衰减材料及其制备方法
CN106977210A (zh) * 2017-03-09 2017-07-25 中国科学院上海硅酸盐研究所 一种高热导微波体衰减陶瓷材料及其制备方法
CN109687074A (zh) * 2018-12-18 2019-04-26 中国电子科技集团公司第十二研究所 一种集中衰减器及包括该衰减器的折叠波导行波管

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634566A (en) * 1966-10-14 1972-01-11 Hughes Aircraft Co Method for providing improved lossy dielectric structure for dissipating electrical microwave energy
CA2058075A1 (en) * 1990-12-26 1992-06-27 Akira Yamakawa Composite ceramic powder and production process thereof
US5356842A (en) * 1990-12-26 1994-10-18 Sumitomo Electric Industries, Ltd. Composite ceramic powder and production process thereof
US6733890B2 (en) * 2001-10-23 2004-05-11 Fujitsu Limited Integrated ceramic module and microwave dielectric composition
JP2003201179A (ja) * 2002-12-12 2003-07-15 Toshiba Corp 窒化アルミニウム焼結体およびその製造方法
US20050121833A1 (en) * 2003-12-09 2005-06-09 Jenn-Shing Wang Processing method for ceramic
US20060014623A1 (en) * 2004-07-15 2006-01-19 Biljana Mikijelj High thermal conductivity AIN-SiC composite artificial dielectric material
CN102515773A (zh) * 2011-12-26 2012-06-27 中国电子科技集团公司第十二研究所 一种微波体衰减陶瓷材料及其制备方法
CN104086182A (zh) * 2014-07-02 2014-10-08 南京三乐电子信息产业集团有限公司 陶瓷介质微波衰减材料及其制备方法
CN106977210A (zh) * 2017-03-09 2017-07-25 中国科学院上海硅酸盐研究所 一种高热导微波体衰减陶瓷材料及其制备方法
CN109687074A (zh) * 2018-12-18 2019-04-26 中国电子科技集团公司第十二研究所 一种集中衰减器及包括该衰减器的折叠波导行波管

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
SERBENYUK, T. B.等: "Structure, mechanical and functional properties of aluminum nitride-silicon carbide ceramic material", 《JOURNAL OF SUPERHARD MATERIALS》 *
XIANGRONG ZANG等: "Preparation and dielectric properties at high frequency of AlN-based composited ceramic", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *
YANPINGLU等: "Investigation of the effect of the SiC particle size on the properties of the AlN–SiC composite ceramic", 《MATERIALS CHEMISTRY AND PHYSICS》 *
方勇 等: "Al2O3-SiC复相微波衰减材料的性能研究", 《电子元件与材料》 *
杨艳玲等: "AlN-SiC微波衰减材料的高频介电性能研究", 《硅酸盐通报》 *
高鹏: "高导热氮化铝基微波衰减材料的制备及性能研究", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
CN113045332B (zh) 一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法
CN109851369B (zh) 一种制备高热导率氮化硅陶瓷的方法
CN103145422B (zh) 一种碳化硼-硼化钛-碳化硅高硬陶瓷复合材料及其制备方法
US7737065B2 (en) Process for producing aluminum nitride sintered compacts
CN110002873B (zh) 一种多孔钽酸盐陶瓷及其制备方法
CN110002871A (zh) 一种两相稀土钽酸盐陶瓷及其制备方法
CN109928752A (zh) 一种氧化铝增韧钽酸铝陶瓷及其制备方法
CN108863393A (zh) 一种高导热和高强度氮化铝陶瓷的制备方法
CN107337453A (zh) 一种结合气固反应法制备重结晶碳化硅多孔陶瓷的方法
JP2882575B2 (ja) 高熱伝導窒化ケイ素セラミックスならびにその製造方法
CN113416073A (zh) 一种多相组成的钽/铌酸盐复合陶瓷及其制备方法
CN108689715A (zh) 一种氮化铝粉体及其制备方法
CN115057706A (zh) 一种超高孔隙率的复相高熵超高温陶瓷材料及制备方法
CN106977210B (zh) 一种高热导微波体衰减陶瓷材料及其制备方法
CN111825464A (zh) 微波体衰减陶瓷材料及其制备方法和应用
CN115159973B (zh) 一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法
CN116178022A (zh) 一种高致密度、高导热的碳化硅-氧化铍复合陶瓷及其制备方法
CN104098335B (zh) 一种高电阻率碳化硅陶瓷及其制备方法
CN110862257A (zh) 一种石墨陶瓷合闸电阻及其制备方法
JPH0345561A (ja) 立方晶窒化硼素焼結体およびその製造方法
CN114031417A (zh) 一种多孔硅酸锆粉体及其制备方法
Suvaci et al. Seeding of the Reaction‐Bonded Aluminum Oxide Process
JPS60131865A (ja) 窒化ケイ素セラミツクスの製造方法
Cheng et al. Boron nitride–aluminum nitride ceramic composites fabricated by transient plastic phase processing
JPS6081062A (ja) 高強度セラミツクス材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201027