CN111718497A - 一种pamps/phema/pedot水凝胶聚电解质及其制备方法与应用 - Google Patents

一种pamps/phema/pedot水凝胶聚电解质及其制备方法与应用 Download PDF

Info

Publication number
CN111718497A
CN111718497A CN202010474346.0A CN202010474346A CN111718497A CN 111718497 A CN111718497 A CN 111718497A CN 202010474346 A CN202010474346 A CN 202010474346A CN 111718497 A CN111718497 A CN 111718497A
Authority
CN
China
Prior art keywords
phema
pamps
pedot
hydrogel
edot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010474346.0A
Other languages
English (en)
Other versions
CN111718497B (zh
Inventor
林保平
王佳良
孙莹
张雪勤
杨洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010474346.0A priority Critical patent/CN111718497B/zh
Publication of CN111718497A publication Critical patent/CN111718497A/zh
Application granted granted Critical
Publication of CN111718497B publication Critical patent/CN111718497B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明提供了一种PAMPS/PHEMA/PEDOT水凝胶聚电解质及其制备方法与应用,该水凝胶聚电解质以AMPS、HEMA共同聚合形成的PAMPS/PHEMA为网络骨架,掺杂的EDOT单体在PAMPS/PHEMA中聚合生成PEDOT,所述水凝胶聚电解质中PAMPS、PHEMA、PEDOT的质量比为1:(7~9):(0.03~0.04)。该水凝胶聚电解质的制备以MBA为交联剂,以KPS为引发剂,对AMPS和HEMA进行聚合反应,形成的AMPS/PHEMA在EDOT/NaPSS乳浊液中浸润完全后置于Fe(NO3)3中反应,随后EDOT单体发生聚合形成PAMPS/PHEMA/PEDOT。PAMPS/PHEMA/PEDOT与H2SO4溶液,活性炭电极组成柔性超级电容器。本发明制备工艺简单,所得水凝胶聚电解质具有良好的离子电导率,优异的电化学性能,对超级电容器的比电容、功率密度和能量密度有较大提升;而且具有良好的柔韧性和可塑性,安全环保可用于柔性超级电容器。

Description

一种PAMPS/PHEMA/PEDOT水凝胶聚电解质及其制备方法与 应用
技术领域
本发明属于超级电容器电解质技术领域,具体涉及一种水凝胶聚电解质及其制备方法与应用。
背景技术
能源的开采与利用,是一个国家的经济发展重要的支柱和动力,经济的发展高度依赖于对能源的消耗。放眼全球,各大经济体以及广大发展中国家对能源的需求量均日渐增多,同时在时代发展的推动下,能源的种类也不断地进行着更新换代。在解决新型能源开发以及利用方面的一系列问题时,人们对储能设备的要求也水涨船高。超级电容器近年来正在加速发展,相比于锂离子电池,超级电容器具有更高的功率密度、迅速的充放电过程、较长的循环寿命;相比于传统的电介质电容器,超级电容器更加轻盈小型化,而且也具有更大的储能容量。其中柔性超级电容器因具备可折叠性、可塑形性等优点而成为当前发展的焦点。但是柔性超级电容器对电极材料、电解质膜材料具有更高的要求。
目前,用于超级电容器的水凝胶聚合物电解质主要以聚乙烯醇为基材,该类水凝胶聚电解质能达到较高的比电容,但力学性能不高,不能作可折叠性、可压缩的柔性材料。随着对水凝胶聚电解质材料研究的深入,PAMPS、PHEMA、PEDOT被陆续引入用于解决力学性能与电化学性能方面的问题,但是如何通过单体聚合将三者有机结合,实现高离子电导率、高比电容、高能量密度,同时又满足柔韧性和可塑性的要求还有待研究。
发明内容
本发明的目的在于提供一种PAMPS/PHEMA/PEDOT水凝胶聚电解质及其制备方法与应用,具有较高的离子电导率和高比电容,又较好的柔韧性和可塑性,在柔性超级电容器领域具有较好的应用前景。
本发明的目的可以通过以下技术方案来实现:
一种PAMPS/PHEMA/PEDOT水凝胶聚电解质,所述水凝胶聚电解质以AMPS、HEMA共同聚合形成的PAMPS/PHEMA为网络骨架,掺杂的EDOT单体在PAMPS/PHEMA中聚合生成PEDOT,所述水凝胶聚电解质中PAMPS、PHEMA、PEDOT的质量比为1:(7~9):(0.03~0.04) 。
其中,PAMPS为聚(2-丙烯酰胺基-2-甲基丙磺酸);PHEMA为聚甲基丙烯酸羟乙酯;PEDOT为聚(3,4-乙烯二氧噻吩);AMPS为2-丙烯酰胺基-2-甲基丙磺酸;HEMA为甲基丙烯酸羟乙酯;EDOT为3,4-乙烯二氧噻吩。
所述PAMPS/PHEMA为性能较为优异的水凝胶聚电解质,在其中引入PEDOT的方式增强了水凝胶聚电解质的离子电导率和电化学性能,提升了超级电容器的比电容、功率密度和能量密度。而且,最终形成的PAMPS/PHEMA/PEDOT为一种三维亲水性网状高分子聚合物的水凝胶聚电解质,该聚电解质可以吸收大量水分并保持溶胀但不溶解,并且价格低廉、绿色无污染。
一种如上所述的PAMPS/PHEMA/PEDOT水凝胶聚电解质的制备方法,包括以下步骤:
(1)在AMPS和HEMA溶液加入交联剂MBA和引发剂KPS后,进行聚合反应后倒入模具中密封,置于60 ℃的干燥箱中15 h。
(2)将EDOT单体和乙醇进行混合,搅拌均匀之后加入NaPSS水溶液,再次搅拌均匀得到EDOT/NaPSS乳浊液。
(3)PAMPS/PHEMA水凝胶在EDOT/NaPSS乳浊液中浸润完全后,置于Fe(NO3)3中,反应完后用蒸馏水除杂。
其中,MBA为N’N-亚甲基双丙烯酰胺;KPS为过硫酸钾;NaPSS为聚对苯乙烯磺酸钠。
优选地,所述聚合反应条件为超声或60 ℃水浴搅拌。
优选地,所述步骤(1)中所述AMPS和HEMA质量比为1:7~1:9。
优选地,所述步骤(1)中所述交联剂MBA用量为单体总质量的2.5~3.5%。
优选地,所述步骤(1)中所述引发剂KPS用量为单体总质量的0.4~0.6%。
优选地,所述步骤(2)中所述EDOT与乙醇的体积比为1:10,NaPSS水溶液的浓度为0.05 mol/L,EDOT/NaPSS乳浊液中EDOT的浓度为0.05~0.1mol/L。
优选地,所述步骤(3)中所述所述PAMPS/PHEMA水凝胶在浸润前,EDOT/NaPSS乳浊液需要超声1 h,Fe(NO3)3溶液浓度为1mol/L,隔1 h更换一次,连续反应10~12h。
一种如上所述的PAMPS/PHEMA/PEDOT水凝胶聚电解质的应用,包括以下步骤:将PAMPS/PHEMA/PEDOT水凝胶聚电解质浸入到1 M H2SO4溶液,待聚电解质均匀吸液后取出,裁切成圆形水凝胶膜,夹于活性炭电极中,并置于模具组成器件中。
优选地,所述自制活性炭电极主要由活性炭粉末、乙炔黑、聚偏氟乙烯组成,所述活性炭粉末、乙炔黑、聚偏氟乙烯的质量比为8:1:1。
相比于现有技术,本发明的的优点在于:
1. PAMPS/PHEMA/PEDOT水凝胶聚电解质具有较高的离子电导率和比电容,在1 MH2SO4溶液体系中比电容达到160.3 F/g,对功率密度和能量密度有较大提升。
2. PAMPS/PHEMA/PEDOT水凝胶聚电解质具有较好的柔韧性和可塑性,能够在不同形变下提供良好的电化学性能,经裁剪后依然能够保持稳定输出电压。
3.PAMPS/PHEMA/PEDOT水凝胶聚电解质的制备方法中所用溶剂是水,安全环保,成本低廉,且工艺流程简单,便于量化生产。
附图说明
图1为实施例1所制备的PAMPS/PHEMA的SEM图。
图2为实施例1所制备的PAMPS/PHEMA/PEDOT的SEM图。
图3为实施例1所制备的PAMPS/PHEMA/PEDOT水凝胶聚电解质组装成超级电容器后的循环伏安测试曲线。图中各曲线由内到外的扫描速率分别为5 mv/s、10 mv/s、20 mv/s、30 mv/s、50 mv/s、80 mv/s、100 mv/s。
图4为实施例1所制备的PAMPS/PHEMA/PEDOT水凝胶聚电解质组装成超级电容器后点亮小灯泡的试验。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明,但本发明要求保护的范围并不局限于此:
实施例1
步骤1:称取0.2 g的 AMPS粉末和1.4 g的HEMA液体,并在烧杯中加入10 mL蒸馏水,搅拌使其溶解。
步骤2:在烧杯中加入0.04 g的交联剂MBA,超声20 min。
步骤3:在烧杯中加入0.0064 g的引发剂KPS,超声20 min。
步骤4:将溶液倒入圆形模具中,用保鲜膜密封后置于60 ℃的干燥箱中干燥15 h,得到PAMPS水凝胶电解质。
步骤5: 按照EDOT:EtOH为1:10的体积比将EDOT单体和乙醇进行混合,搅拌均匀之后加入和混合液等体积的NaPSS水溶液,再次搅拌均匀得到EDOT/NaPSS乳浊液,其中EDOT的浓度为0.05 M。
步骤6:将PAMPS/PHEMA水凝胶浸润于EDOT/NaPSS乳浊液中24 h。
步骤7:将润胀有EDOT/NaPSS乳浊液的水凝胶置于1 M的Fe(NO3)3溶液中,隔1 h后更换Fe(NO3)3溶液,连续反应12 h后将水凝胶取出,多次在蒸馏水中浸泡洗涤除杂,得到PAMPS/PHEMA/PEDOT水凝胶聚电解质。
步骤8:将活性炭粉末、乙炔黑和聚偏氟乙烯以8:1:1的质量比进行混合,用研钵研细,混合均匀后向其滴入适量的N-甲基吡咯烷酮,继续研磨成均匀糊状物质。
步骤9: 将步骤8中制备的糊状物质涂抹在直径为15 mm的圆形碳纸片上,并置于80℃真空干燥箱中24h,得到自制活性炭电极。
步骤10:将制备的PAMPS/PHEMA/PEDOT水凝胶聚电解质浸入到1 MH2SO4溶液中0.5h,待电解质均匀吸液后取出,裁切成直径15 mm的圆形水凝胶膜,夹于自制的活性炭电极中,并置于自制的模具组成器件。
实施例2
步骤1:称取0.2 g的 AMPS粉末和1.8 g的HEMA液体,并在烧杯中加入10 mL蒸馏水,搅拌使其溶解。
步骤2:在烧杯中加入0.07 g的交联剂MBA,在60 ℃的水浴搅拌30 min。
步骤3:在烧杯中加入0.012 g的引发剂KPS,在60 ℃的水浴搅拌30 min。
步骤4:将溶液倒入圆形模具中,用保鲜膜密封后置于60 ℃的干燥箱中干燥15 h,得到PAMPS水凝胶电解质。
步骤5:按照EDOT:EtOH为1:10的体积比将EDOT单体和乙醇进行混合,搅拌均匀之后加入和混合液等体积的NaPSS水溶液,再次搅拌均匀得到EDOT/NaPSS乳浊液,其中EDOT的浓度为0.1 M。
步骤6:将PAMPS/PHEMA水凝胶浸润于EDOT/NaPSS乳浊液中24 h。
步骤7:将润胀有EDOT/NaPSS乳浊液的水凝胶置于1 M的Fe(NO3)3溶液中,隔1 h后更换Fe(NO3)3溶液,连续反应12 h后将水凝胶取出,多次在蒸馏水中浸泡洗涤除杂,得到PAMPS/PHEMA/PEDOT水凝胶聚电解质。
步骤8:将活性炭粉末、乙炔黑和聚偏氟乙烯以8:1:1的质量比进行混合,用研钵研细,混合均匀后向其滴入适量的N-甲基吡咯烷酮,继续研磨成均匀糊状物质。
步骤9:将步骤8中制备的糊状物质涂抹在直径为15 mm的圆形碳纸片上,并置于80℃真空干燥箱中24h,得到自制活性炭电极。
步骤10:将制备的PAMPS/PHEMA/PEDOT水凝胶聚电解质浸入到1 MH2SO4溶液中0.5h,待电解质均匀吸液后取出,裁切成直径15 mm的圆形水凝胶膜,夹于自制的活性炭电极中,并置于自制的模具组成器件。
图1为PAMPS/PHEMA水凝胶聚电解质的SEM图像。通过共聚法将AMPS、HEMA单体聚合得到PAMPS/PHEMA水凝胶聚电解质,SEM图像中可以明显观察到HEMA与AMPS聚合结构的形貌。PAMPS/PHEMA水凝胶聚电解质呈稳定的三维网络结构,其中孔洞较为致密,网络骨架结构明显。PAMPS/PHEMA不仅具有良好的吸水性,并有明显的离子传输通道。
图2为PAMPS/PHEMA/PEDOT水凝胶聚电解质的SEM图。掺杂的单体EDOT与PAMPS/PHEMA骨架形成聚合物,最终形成一种三维亲水性网状高分子聚合物,水凝胶的颜色也由白色逐渐变为蓝黑色。
图3为PAMPS/PHEMA/PEDOT水凝胶聚电解质组装成超级电容器后的循环伏安曲线图,该水凝胶在1 MH2SO4溶液体系中具有较高的比电容,达到160.3 F/g。
图4为PAMPS/PHEMA/PEDOT水凝胶聚电解质组装成超级电容器后点亮小灯泡的实验装置,小灯泡的发光电压在1.8 V~2 V,该器件能够提供较理想的电压窗口。PAMPS/PHEMA/PEDOT能够在不同形变下提供良好的电化学性能,在受到破坏(例如裁剪)之后依然能够保持稳定输出电压。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种PAMPS/PHEMA/PEDOT水凝胶聚电解质,所述水凝胶聚电解质以AMPS、HEMA共同聚合形成的PAMPS/PHEMA为网络骨架,掺杂的EDOT单体在PAMPS/PHEMA中聚合生成PEDOT,所述水凝胶聚电解质中PAMPS、PHEMA、PEDOT的质量比为1:(7~9):(0.03~0.04) 。
2.权利要求1所述的一种PAMPS/PHEMA/PEDOT水凝胶聚电解质的制备方法,其特征在于,包括以下步骤:
(1)在AMPS和HEMA溶液加入交联剂MBA和引发剂KPS后,进行聚合反应后倒入模具中密封,置于60 ℃的干燥箱中15 h;
(2)将EDOT单体和乙醇进行混合,搅拌均匀之后加入NaPSS水溶液,再次搅拌均匀得到EDOT/NaPSS乳浊液;
(3)PAMPS/PHEMA水凝胶在EDOT/NaPSS乳浊液中浸润完全后,置于大量Fe(NO3)3中,反应完后用蒸馏水除杂。
3.如权利要求2所述的一种PAMPS/PHEMA/PEDOT水凝胶聚电解质的制备方法,其特征在于,步骤(1)中所述聚合反应条件为超声或60 ℃水浴搅拌。
4.如权利要求2所述的一种PAMPS/PHEMA/PEDOT水凝胶聚电解质的制备方法,其特征在于,步骤(1)中所述AMPS和HEMA质量比为1:7~1:9。
5.如权利要求2所述的一种PAMPS/PHEMA/PEDOT水凝胶聚电解质的制备方法,其特征在于,步骤(1)中所述交联剂MBA用量为单体总质量的2.5~3.5%。
6.如权利要求2所述的一种PAMPS/PHEMA/PEDOT水凝胶聚电解质的制备方法,其特征在于,步骤(1)中所述引发剂KPS用量为单体总质量的0.4~0.6%。
7.如权利要求2所述的一种PAMPS/PHEMA/PEDOT水凝胶聚电解质的制备方法,其特征在于,步骤(2)中所述所述EDOT与乙醇的体积比为1:10,NaPSS水溶液的浓度为0.05 mol/L,EDOT/NaPSS乳浊液中EDOT的浓度为0.05~0.1mol/L。
8.如权利要求2所述的一种PAMPS/PHEMA/PEDOT水凝胶聚电解质的制备方法,其特征在于,步骤(3)中所述PAMPS/PHEMA水凝胶在浸润前,EDOT/NaPSS乳浊液需要超声1 h,Fe(NO3)3溶液浓度为1mol/L,隔1 h更换一次,连续反应10~12h。
9.权利要求1所述的一种PAMPS/PHEMA/PEDOT水凝胶聚电解质的应用,其特征在于,包括以下步骤:将PAMPS/PHEMA/PEDOT水凝胶聚电解质浸入到1 M H2SO4溶液,待聚电解质均匀吸液后取出,裁切成圆形水凝胶膜,夹于活性炭电极中,并置于模具组成器件中。
10.如权利要求9所述的一种PAMPS/PHEMA/PEDOT水凝胶聚电解质的应用,其特征在于,所述活性炭电极主要由活性炭粉末、乙炔黑、聚偏氟乙烯组成,所述活性炭粉末、乙炔黑、聚偏氟乙烯的质量比为8:1:1。
CN202010474346.0A 2020-05-29 2020-05-29 一种pamps/phema/pedot水凝胶聚电解质及其制备方法与应用 Active CN111718497B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010474346.0A CN111718497B (zh) 2020-05-29 2020-05-29 一种pamps/phema/pedot水凝胶聚电解质及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010474346.0A CN111718497B (zh) 2020-05-29 2020-05-29 一种pamps/phema/pedot水凝胶聚电解质及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111718497A true CN111718497A (zh) 2020-09-29
CN111718497B CN111718497B (zh) 2022-09-09

Family

ID=72565337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010474346.0A Active CN111718497B (zh) 2020-05-29 2020-05-29 一种pamps/phema/pedot水凝胶聚电解质及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111718497B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036262A (ja) * 2010-08-04 2012-02-23 Hokkaido Univ 高分子ゲル及びその製造方法
CN108586664A (zh) * 2018-04-24 2018-09-28 华中科技大学 一种制备全水凝胶可拉伸超级电容器的方法及该电容器
CN110148533A (zh) * 2018-02-14 2019-08-20 中国科学技术大学 一种导电水凝胶的制备方法及超级电容器
CN110256694A (zh) * 2019-06-10 2019-09-20 南京邮电大学 一种可拉伸透明导电水凝胶及其制备方法
CN110669305A (zh) * 2019-09-29 2020-01-10 上海应用技术大学 聚丙烯酸酯/噻吩类复合导电水凝胶及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036262A (ja) * 2010-08-04 2012-02-23 Hokkaido Univ 高分子ゲル及びその製造方法
CN110148533A (zh) * 2018-02-14 2019-08-20 中国科学技术大学 一种导电水凝胶的制备方法及超级电容器
CN108586664A (zh) * 2018-04-24 2018-09-28 华中科技大学 一种制备全水凝胶可拉伸超级电容器的方法及该电容器
CN110256694A (zh) * 2019-06-10 2019-09-20 南京邮电大学 一种可拉伸透明导电水凝胶及其制备方法
CN110669305A (zh) * 2019-09-29 2020-01-10 上海应用技术大学 聚丙烯酸酯/噻吩类复合导电水凝胶及其制备方法和应用

Also Published As

Publication number Publication date
CN111718497B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
Zhang et al. Selection of hydrogel electrolytes for flexible zinc–air batteries
CN102104156B (zh) 一种燃料电池用复合阴离子交换膜及其制备方法
CN109904010B (zh) 一种耐高低温的凝胶电解质超级电容器及其制备方法
CN105098233A (zh) 半互穿网络聚合物凝胶电解质膜的制备方法
CN103413974B (zh) 一种锂离子电池凝胶聚合物电解质的制备方法
CN110265232B (zh) 一种可自愈水凝胶电解质薄膜及其制备方法和应用
CN105958122A (zh) 三维交联网络聚合物凝胶电解质膜、制备方法及锂离子电池
CN107394265B (zh) 双溶剂分步转相制备聚甲基丙烯酸甲酯凝胶电解质微孔膜的方法
CN110767470B (zh) 一种基于抗冻水凝胶电解质的超级电容器及其制备方法
CN110085437B (zh) 一种聚乙撑二氧噻吩/聚苯胺复合材料及其制备方法与应用
CN103578774A (zh) 一种超级电容器电极的制备方法
CN101381429B (zh) 自支撑的锂离子电池凝胶聚合物电解质、其专用聚合物及其制备方法和应用
CN110943258A (zh) 一种pvdf-hfp复合木质纤维素凝胶聚合物电解质膜及其制备方法
CN113611545B (zh) 可拉伸、可压缩、抗冻有机水凝胶电解质基超级电容器及其制备方法
CN109473294B (zh) 一种柔性、固态超级电容器及其制备方法和应用
CN111718497B (zh) 一种pamps/phema/pedot水凝胶聚电解质及其制备方法与应用
CN107129592B (zh) 一种纤维素聚合物电解质膜及其制备方法和应用
CN116845194A (zh) 一种聚噻吩包覆多孔碳复合材料及其制备方法和应用
CN117219442A (zh) 一种导电聚吡咯纳米微球及其导电水凝胶电极材料
CN114853942B (zh) 用于锌锰电池的水凝胶电解质及其制备方法、锌锰电池及其制备方法
CN115424867B (zh) 柔性超级电容器及其制备方法
CN113174011B (zh) 一种仿蚂蚁巢穴水合离子液凝胶平台及其制备方法和应用
CN110415997B (zh) 一种自愈合柔性固态超级电容器的制备方法
CN112038109A (zh) 一种基于氧化还原电解液的低成本对称型全固态超级电容器及其制备方法
CN109346331A (zh) 一种双网络复合导电橡胶及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant