CN111715262B - 负载钯金富氮类氮化碳光催化剂的制备及c-c键合成 - Google Patents

负载钯金富氮类氮化碳光催化剂的制备及c-c键合成 Download PDF

Info

Publication number
CN111715262B
CN111715262B CN202010630757.4A CN202010630757A CN111715262B CN 111715262 B CN111715262 B CN 111715262B CN 202010630757 A CN202010630757 A CN 202010630757A CN 111715262 B CN111715262 B CN 111715262B
Authority
CN
China
Prior art keywords
carbon nitride
palladium
nrcn
gold
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010630757.4A
Other languages
English (en)
Other versions
CN111715262A (zh
Inventor
蒋和雁
成洪梅
徐洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Technology and Business University
Original Assignee
Chongqing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Technology and Business University filed Critical Chongqing Technology and Business University
Priority to CN202010630757.4A priority Critical patent/CN111715262B/zh
Publication of CN111715262A publication Critical patent/CN111715262A/zh
Application granted granted Critical
Publication of CN111715262B publication Critical patent/CN111715262B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/26Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • C07C17/266Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions of hydrocarbons and halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • C07C17/269Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions of only halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/861Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only halogen as hetero-atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了负载钯金富氮类氮化碳光催化剂的制备及C‑C键合成新方法,该催化剂制备方法为:以三聚氰胺为前驱物热聚合法制备氮化碳,然后将制备的氮化碳在氨水中进行热处理制备富N碳氮化物,使用浸渍法负载钯金,以硼氢化钠为还原剂制备钯金双金属负载的富氮类氮化碳光催化剂。光催化C‑C键合成的新方法为:以两种芳基卤化物或者芳基卤化物和烯烃为原料,在一定量的光催化剂、碱以及可见光的作用下,发生偶联得到Ullmann交叉偶联产物或Z型Heck偶联产物。该催化剂制备方法简单易操作,可用于光催化高效合成特定化学选择性或立体选择性的C‑C键,反应条件温和,而且目标产物的化学选择性或立体选择性较高,催化剂容易回收利用。

Description

负载钯金富氮类氮化碳光催化剂的制备及C-C键合成
技术领域
本发明涉及氮化碳合成修饰和C-C键合成技术领域,更具体涉及负载钯金双金属的富氮类氮化碳光催化剂的制备及光催化C-C键选择性合成反应。
背景技术
C-C偶联反应是大量天然产物、生物活性化合物以及许多有机结构单元合成的关机步骤。
C-C键的形成主要涉及Ullmann,Suzuki-Miyaura,Heck,Sonogashira, Stille和Hiyama等各种人名的反应,通常使用 Pd,Rh,Cu,Fe,Ni和Co等过渡金属作为催化剂。在许多常规的热催化体系中可以获得高收率的C-C键偶联产物,但是这些反应几乎会特异性地生成热力学上更有利的目标产物,并且通常在诸如高温等苛刻的条件下进行。此外,有机卤化物或假卤化物(三氟甲磺酸盐或锍盐)以及有机金属或准金属(有机硼,镁,锡或锌物质)对于上述命名反应中C-C交叉偶联生成高价值的不对称化合物通常是不可或缺的。因此,开发有效的策略以产生不对称芳基-芳基键和热力学上不利的C-C键偶联产物是必要且相当具有挑战性的。
为了适应环境友好型经济的发展,绿色清洁的光能资源受到了广泛的关注。可见光驱动的光催化方法作为一种环境友好的绿色技术在污染物的处理方面展现了良好的应用前景。聚合物氮化碳(CN)具有合适的带隙能,因其出色的化学稳定性、可见光捕获能力和易获得性而受到广泛关注,可广泛的用于光催化以及光催化材料的制备中。由于CN的光催化效率不仅与其晶体结构和孔隙率有关,而且与CN骨架的N含量密切相关。已经有研究报道富含N的CN可以有效提高材料的电子-空穴分离效率、电导率以及催化性能,所以制备新型的富N碳氮化物(NRCN)是提高光催化活性有效的策略。同时纳米金属的引用也用于改变NRCN催化性能,由于金属纳米粒子的插入使得NRCN的层内的长程有序度下降,材料的禁带宽度减少,光生电子和空穴的复合速度降低,提高了材料的光催化性能。
发明内容
本发明提供了负载钯金双金属的富氮类氮化碳光催化剂的制备及光催化C-C键合成新反应,本发明提供的制备方法简易、经济,可用于光催化Ullmann偶联,Ullmann交叉偶联和Heck偶联构建C-C键。
该方法利用上述制备出来的负载钯金双金属的富氮类氮化碳光催化剂在可见光下进行Ullmann偶联,Ullman交叉偶联和Heck偶联构建C-C键,不仅反应条件温和,转化率较高。
为了实现上述目的,本发明采用以下技术方案:
一种负载钯金双金属的富氮类氮化碳光催化剂,所述制备方法包括以下步骤:
1)在瓷坩埚中加入10g三聚氰胺,在空气中以5℃/min的升温速度加热到550℃保持4h得到纯氮化碳,简称CN。
2)将2.0g纯氮化碳和25mL饱和氨水溶液在50mL带聚四氟乙烯衬里的不锈钢高压釜中混合。通过电热套加热高压反应釜至150℃,保持2h后,自然冷却至室温。离心收集产物,去离子水洗涤至中性,最后60℃下真空干燥得到富氮类氮化碳,简称NRCN。
2)在剧烈搅拌的条件下将上述NRCN粉末(0.5g)分散在HAuCl4和PdCl2水溶液中。向混合物中加入赖氨酸水溶液,剧烈搅拌30min后用NaOH(0.1M)水溶液将混合物溶液的pH调节到8-9,并持续搅拌12h。然后用NaBH4水溶液还原后,继续搅拌24h。离心分离固体,分别用水和乙醇洗涤4次。真空干燥12后制得负载钯金双金属的富氮类氮化碳,简称AuPd@NRCN。用同样的方法制备了Pd@NRCN,Au@NRCN和AuPd@CN
所述的负载钯金双金属的富氮类氮化碳光催化剂中金属元素的质量分数为3wt%。
一种利用负载钯金双金属的富氮类氮化碳光催化剂的制备及光催化C-C键合成反应,包括如步骤:
将富氮类氮化碳负载钯金催化剂AuPd@NRCN和氢氧化钠放置在玻璃反应管中,加入卤苯溶液反应物,和3 ml甲醇溶液。在0.15 W cm-2蓝色LED灯照射下反应24h,通过GC和GC-MS分析卤苯的转化率和产物选择性。
进一步,所述的卤苯为碘苯,溴苯,4-甲基碘苯,3-甲基碘苯,2-甲氧基碘苯,3-甲氧基碘苯,4-甲氧基碘苯,4-氯碘苯,3-氯碘苯,4-硝基碘苯,4-腈基碘苯,4-甲氧基溴苯,氯苯。
进一步,Ullmann交叉偶联中所述的卤苯为两种不同的芳基卤化物。
进一步,Heck偶联中反应物为卤苯和烯烃。
进一步,所述的烯烃为苯乙烯衍生物和丙烯酸乙酯衍生物。
本发明与现有技术相比,具有以下优点和效果:
1、本发明的催化剂制备方法简单,该负载钯金双金属的富氮类氮化碳光催化剂由简单的浸渍还原法在室温下制得,不加任何模板便可得到。
2、本发明利用上述制备的新型催化剂用于光催化C-C键的合成,相对于现有的C-C键合成方法,其反应活性在光照就可以大大提升,反应条件温和。通过改变光源颜色,可以实现对不对称Ullmann交叉偶联产物的高化学选择性和对Z型Heck反应产物令人满意的立体选择性
说明书附图
图1是实施案例1制备的富氮类氮化碳NRCN的SEM图。
图2是实施案例1制备的催化剂的X射线衍射图谱(X-ray diffraction,XRD)。
图3是实施案例1的负载钯金双金属的富氮类氮化碳AuPd@NRCN的透射电镜图(transmission electron microscope,TEM);
具体实施方式
下面结合具体实施案例对本发明进行详细说明。
实施案例1:
本发明实施案例示出的负载钯金双金属的富氮类氮化碳AuPd@NRCN的制备方法包括以下步骤:
1)在瓷坩埚中加入10g三聚氰胺,在空气中以5℃/min的升温速度加热到550℃保持4h得到PCN。
2)将2.0g纯氮化碳和25mL饱和氨水溶液在50mL带聚四氟乙烯衬里的不锈钢高压釜中混合。通过电热套加热高压反应釜至150℃,保持2h后,自然冷却至室温。离心收集产物,去离子水洗涤至中性,最后60℃下真空干燥得到富氮氮化碳,简称NRCN。
3)在剧烈搅拌的条件下将上述NRCN粉末(0.5g)分散在HAuCl4和PdCl2水溶液中。向混合物中加入赖氨酸水溶液,剧烈搅拌30min后用NaOH(0.1M)水溶液将混合物溶液的pH调节到8-9,并持续搅拌12h。然后用NaBH4水溶液还原后,继续搅拌24h。离心分离固体,分别用水和乙醇洗涤4次。真空干燥12后制得负载钯金双金属的富氮类氮化碳,简称AuPd@NRCN。用同样的方法制备了Pd@NRCN,Au@NRCN和AuPd@CN。
图1是上述步骤(2)中经过氨水热处理后NRCN的SEM图,一般纯的氮化碳主要是由大颗粒组成,从图中可以看出制备的NRCN是以较小的不规则薄片存在,表明氨溶液热处理可以大大减小颗粒尺寸。
对本实施案例制备的催化剂材料分别进行XRD分析如图2所示,图中13.0°和27.5°两个特征峰分别对应CN的(100)和(002)两个晶面,而在所有NRCN样品的XRD中均表现出了与“melem hydrate”相对应的(110),(220),(202)和(550)的特征峰。在Pd@NRCN和Au@NRCN中分别发现了Pd(111)和Au(111)的特征峰,并且在AuPd@NRCN图谱中在Au(111)和Pd(111)之间出现了较弱的特征峰,表明AuPd合金的形成。
图3是上述步骤(3)所制备的AuPd@NRCN的TEM图,从图中可以看出AuPd纳米粒子均匀分散在NRCN上,图中的高分辨率TEM图明显观察到AuPd合金的(111)晶格条纹。
对上述步骤(3)所制备的AuPd@NRCN进行了X射线光电子能谱(XPS)表征,与CN相比,NRCN中N元素的含量从45.1%增加到50.7%,而C元素的含量基本不变,而且在XPS中明显可以观察到NRCN中代表C-N-H的峰的相对含量大幅度提升。所以氨水热处理增加了NRCN样品的氨基数量。同时,从Au 4f和Pd 3d高分辨率XPS图可以看出AuPd@NRCN中存在零价金和零价钯,而且Au的结合能呈现负位移,是由于Au比Pd更具负电性而导致电子在Au上的积聚引起的,这表明AuPd合金被成功负载并还原。紫外可见漫反射(UV-Vis DRS)表征证明了AuPd@NRCN相对于NRCN在紫外-可见区域对光的吸收能力增加。对CN、NRCN和AuPd@NRCN进行瞬态光电流测试,测试结果表明AuPd@NRCN的瞬态光电响应增强,促进了光生电子和空穴的生成。CN、NRCN和AuPd@NRCN的光致发光光谱(PL)表明了AuPd@NRCN的PL强度最低,减慢了AuPd@NRCN的光生电子和空穴的重组效率。
实施案例2(反应参见表1,条目1)
将15 mg制备的NRCN放置玻璃反应管中,加入0.15 mmol碘苯、0.6 mmol氢氧化钠和3 ml甲醇后,用橡胶帽密封反应器。蓝色LED照射(460 nm, 0.15 W cm-2)照射下反应24h,通过GC和GC-MS分析碘苯的转化率和产物选择性。未观察到碘苯的转化。
实施案例3(反应参见表1条目3)
将15 mg制备的AuPd@NRCN放置玻璃反应管中,加入0.15 mmol碘苯、0.6 mmol氢氧化钠和3 ml甲醇后,用橡胶帽密封反应器。通过水浴控制反应温度50℃,使用锡箔纸包裹反应管,反应24 h后,通过GC和GC-MS分析碘苯的转化率和产物选择性。碘苯的转化率为22%,联苯的选择性为99%。
实施案例4(反应参见表1条目4)
将15 mg制备的AuPd@CN放置玻璃反应管中,加入0.15 mmol碘苯、0.6 mmol氢氧化钠和3 ml甲醇后,用橡胶帽密封反应器。蓝色LED照射(460 nm, 0.15 W cm-2)照射下反应24h,通过GC和GC-MS分析碘苯的转化率和产物选择性。碘苯的转化率为16%,联苯的选择性为99%。
实施案例5(反应参见表1条目7)
将15 mg制备的AuPd@NRCN放置玻璃反应管中,加入0.15 mmol碘苯、0.6 mmol氢氧化钠和3 ml 甲醇后,用橡胶帽密封反应器。蓝色LED照射(460 nm, 0.15 W cm-2)照射下反应24 h,通过GC和GC-MS分析碘苯的转化率和产物选择性。碘苯的转化率为99%,联苯的选择性为99%。
实施案例6(反应参见表1条目8)
将15 mg制备的AuPd@NRCN放置玻璃反应管中,加入0.15 mmol碘苯、0.6 mmol氢氧化钠和3 ml N,N-二甲基甲酰胺(DMF)后,用橡胶帽密封反应器。蓝色LED照射(460 nm,0.15 W cm-2)照射下反应24 h,通过GC和GC-MS分析碘苯的转化率和产物选择性。碘苯的转化率为6%,联苯的选择性为74%。
实施案例7(反应参见表1条目12)
将15 mg制备的AuPd@NRCN放置玻璃反应管中,加入0.15 mmol碘苯、0.6 mmol碳酸铯和3 ml甲醇后,用橡胶帽密封反应器。蓝色LED照射(460 nm, 0.15 W cm-2)照射下反应24h,通过GC和GC-MS分析碘苯的转化率和产物选择性。碘苯的转化率为28%,联苯的选择性为97%。
实施案例8(反应参见表1条目13)
将15 mg制备的AuPd@NRCN和0.6 mmol氢氧化钠放置在密闭玻璃反应管中,使用氮气多次置换管内空气后,配备充满氮气的气球,加入0.15 mmol碘苯和3 ml甲醇。蓝色LED照射(460 nm, 0.15 W cm-2)照射下反应24 h,通过GC和GC-MS分析碘苯的转化率和产物选择性。碘苯的转化率为86%,联苯的选择性为98%。
表1.光催化Ullmann反应的条件优化[a]
Figure 817151DEST_PATH_IMAGE001
实施案例9(反应参见表2条目2)
将15 mg制备的AuPd@NRCN放置玻璃反应管中,加入0.15 mmol 4-甲基碘苯、0.6mmol氢氧化钠和3 ml甲醇后,用橡胶帽密封反应器。在光强0.15 W cm-2的照射下反应24 h,通过GC和GC-MS分析4-甲基碘苯的转化率。4-甲基碘苯的转化率为100%。
实施案例10(反应参见表2条目12)
将15 mg制备的AuPd@NRCN放置玻璃反应管中,加入0.15 mmol 氯苯、0.6 mmol氢氧化钠和3 ml甲醇后,用橡胶帽密封反应器。在光强 0.75 W cm-2的照射下反应48h,通过GC和GC-MS分析氯苯的转化率。氯苯的转化率为89%。
表2. 光催化不同底物的Ullmann自身偶联反应[a]
Figure 486029DEST_PATH_IMAGE002
从表2可以看出,负载钯金双金属的富氮类氮化碳AuPd@NRCN光催化Ullmann自身偶联反应在大多数芳基碘化物中表现出优异的光催化活性,在一些强吸电子基团底物中未观察到偶联产物。特别地,在调节光照射强度和反应时间之后,溴苯和氯苯也可以达到令人满意的转化率。
实施案例11(反应参见表3条目3)
将15 mg制备的AuPd@NRCN放置玻璃反应管中,加入0.15 mmol 3-氯碘苯、0.2mmol 4-甲基碘苯、0.6 mmol氢氧化钠和3 ml甲醇后,用橡胶帽密封反应器。蓝LED (460nm, 0.15 W cm-2)和绿LED (520 nm, 0.15 W cm-2)照射下反应24 h,通过GC和GC-MS分析3-氯碘苯的转化率和产物选择性。3-氯碘苯的转化率为100%,对应的交叉偶联产物的选择性为75%。
实施案例12(反应参见表3条目7)
将15 mg制备的AuPd@NRCN放置玻璃反应管中,加入0.15 mmol 4-硝基碘苯、0.2mmol碘苯、0.6 mmol氢氧化钠和3 ml甲醇后,用橡胶帽密封反应器。蓝LED (460 nm, 0.15W cm-2)和绿LED (520 nm, 0.15 W cm-2)照射下反应24 h,通过GC和GC-MS分析4-硝基碘苯的转化率和产物选择性。4-硝基碘苯的转化率为85%,对应的交叉偶联产物的选择性为8%
实施案例13(反应参见表3条目11)
将15 mg制备的AuPd@NRCN放置玻璃反应管中,加入0.15 mmol 4-甲氧基碘苯、0.2mmol碘苯、0.6 mmol氢氧化钠和3 ml甲醇后,用橡胶帽密封反应器。,蓝LED (460 nm, 0.15W cm-2)和绿LED (520 nm, 0.15 W cm-2)照射下反应24 h,通过GC和GC-MS分析4-甲氧基碘苯的转化率和产物选择性。4-甲氧基碘苯的转化率为99%,对应的交叉偶联产物的选择性为99%。
实施案例14(反应参见表3条目15)
将15 mg制备的AuPd@NRCN放置玻璃反应管中,加入0.15 mmol 3-氯碘苯、0.2mmol 4-硝基碘苯、0.6 mmol氢氧化钠和3 ml甲醇后,用橡胶帽密封反应器。,蓝LED (460nm, 0.15 W cm-2)和绿LED (520 nm, 0.15 W cm-2)照射下反应24 h,通过GC和GC-MS分析3-氯碘苯的转化率和产物选择性。3-氯碘苯的转化率为100%,未观察对应的交叉偶联产物生成。
表3.光催化Ullmann交叉偶联反应[a]
Figure 541710DEST_PATH_IMAGE003
从表3中可以看出,当一个底物含有中等吸电子基另一个底物含有供电子基交叉偶联产物的选择性更高,而当一个底物含有强吸电子基另一个底物含有供电子基,更容易发生自身偶联。而两个底物均含有供电子基,均具有出色的光催化活性和交叉偶联反应产物的化学选择性。当两个底物均含有吸电子基,未观察到交叉偶联产物。
实施案例15(反应参见表4条目1)
将15 mg制备的AuPd@NRCN放置玻璃反应管中,加入0.2 mmol碘苯、0.4 mmol 苯乙烯、0.5 mmol三乙胺和2 ml N,N-二甲基甲酰胺(DMF)后,用橡胶帽密封反应器。在空气中用白色LED照射(0.75 W cm-2)照射下反应24 h,通过GC和GC-MS分析碘苯的转化率和产物选择性。碘苯的转化率为98%,对应的Heck偶联产物的选择性为98%,其中Z:E=86:14。
表4.光催化Heck反应条件优化[a]
Figure 296039DEST_PATH_IMAGE004
实施案例15(反应参见表4条目4)
将15 mg制备的AuPd@NRCN放置玻璃反应管中,加入0.2 mmol碘苯、0.4 mmol 苯乙烯、0.5 mmol碳酸钾和2 ml甲醇后,用橡胶帽密封反应器。在空气中用白色LED照射(0.75 Wcm-2)照射下反应24 h,通过GC和GC-MS分析碘苯的转化率和产物选择性。碘苯的转化率为100%,未观察到对应的Heck偶联产物。
实施案例17(反应参见表5条目2)
将15 mg制备的AuPd@NRCN放置玻璃反应管中,加入0.2 mmol碘苯、0.4 mmol 丙烯酸乙酯、0.5 mmol三乙胺和2 ml N,N-二甲基甲酰胺(DMF)后,用橡胶帽密封反应器。在空气中用白色LED照射(0.75 W cm-2)照射下反应24 h,通过GC和GC-MS分析碘苯的转化率和产物选择性。碘苯的转化率为53%,对应的Heck偶联产物的选择性为93%,其中Z:E=95:5。在空气中用白色LED照射(0.75 W cm-2)照射下反应34 h后,碘苯的转化率为73%,对应的Heck偶联产物的选择性为88%,其中Z:E=99:1。
表5.光催化不同底物的Heck反应 [a]
Figure 33051DEST_PATH_IMAGE005
实施案例18(反应参见表5条目4)
将15 mg制备的AuPd@NRCN放置玻璃反应管中,加入0.2 mmol4-甲基碘苯、0.4mmol 苯乙烯、0.5 mmol三乙胺和2 ml N,N-二甲基甲酰胺(DMF)后,用橡胶帽密封反应器。在空气中用白色LED照射(0.75 W cm-2)照射下反应24 h,通过GC和GC-MS分析碘苯的转化率和产物选择性。4-甲基碘苯的转化率为57%,对应的Heck偶联产物的选择性为99%,其中Z:E=99:1。在空气中用白色LED照射(0.75 W cm-2)照射下反应48 h后,4-甲基碘苯的转化率为83%,对应的Heck偶联产物的选择性为96%,其中Z:E=95:5。
从表5中可以看出,对于大多数底物,均可以获得良好甚至优异的转化率、化学选择性和立体选择性。当烯烃底物为苯乙烯时,芳基碘底物上存在取代基均不利于光催化Heck反应活性的提高,且取代基的位置对产物的立体选择性有显著影响。当供电子基取代基位于芳基碘化物的对位时,会形成更多的Z-烯烃产物。当供电子基位于芳基碘化物的其他位置时,由于空间位阻影响,Z-烯烃的立体选择性大大降低。当吸电子基取代的芳基碘化物为底物时,也可以获得较高的Z-烯烃立体选择性。当丙烯酸乙酯用作烯烃底物时,可以获得高的Z-烯烃立体选择性。

Claims (7)

1.一种用于C-C键合成的负载金钯双金属富氮类氮化碳光催化剂的制备方法,其特征在于,以三聚氰胺为前驱物,通过热聚合法制备氮化碳,然后将制备的氮化碳在氨水中进行水热处理制备富N碳氮化物,以富N碳氮化物为载体,在赖氨酸和NaOH溶液辅助下采用浸渍法负载金钯,最后用硼氢化钠进行还原得到金钯双金属负载的富氮类氮化碳光催化剂。
2.根据权利要求1所述的用于C-C键合成的负载双金属金钯富氮类氮化碳光催化剂的制备方法,其特征在于,包括如下步骤:
1)在瓷坩埚中加入10g三聚氰胺,在空气中以5℃/min的升温速度加热到550℃保持4h得到纯氮化碳,简称CN;
2)将2.0g纯氮化碳和25mL饱和氨水溶液在50mL带聚四氟乙烯衬里的不锈钢高压釜中混合,通过电热套加热高压反应釜至150℃,保持2h后,自然冷却至室温,离心收集产物,去离子水洗涤至中性,最后60℃下真空干燥得到富氮类氮化碳,简称NRCN;
3)在剧烈搅拌的条件下将0.5g上述NRCN粉末分散在HAuCl4和PdCl2水溶液中,向混合物中加入赖氨酸水溶液,剧烈搅拌30min后用0.1M NaOH水溶液将混合物溶液的pH调节到8-9,并持续搅拌12h,然后用NaBH4水溶液还原后,继续搅拌24h,离心分离固体,分别用水和乙醇洗涤4次,真空干燥12h后制得负载金钯双金属的富氮类氮化碳,简称AuPd@NRCN。
3.根据权利要求1或2所述的方法得到的光催化剂在C-C键合成方面的应用,其特征在于,以两种芳基卤化物为原料,在一定量的光催化剂、碱以及可见光的作用下,发生Ullmann交叉偶联得到C-C键产物;或以芳基卤化物和烯烃为原料,在一定量的光催化剂、碱以及可见光的作用下,发生Z型Heck偶联得到C-C键产物。
4.根据权利要求3所述的应用,其特征在于,所述的碱包括氢氧化钠,氢氧化钾,氢氧化锂,碳酸钾,碳酸铯,三乙胺中的一种或几种。
5.根据权利要求3所述的应用,其特征在于,所述的芳基卤化物包括碘苯,溴苯,4-甲基碘苯,3-甲基碘苯,2-甲氧基碘苯,3-甲氧基碘苯,4-甲氧基碘苯,4-氯碘苯,3-氯碘苯,4-硝基碘苯,4-腈基碘苯,4-甲氧基溴苯,氯苯。
6.根据权利要求3所述的应用,其特征在于,所述的烯烃包括苯乙烯及其衍生物,丙烯酸乙酯及其衍生物。
7.根据权利要求3所述的应用,其特征在于,C-C键的合成是在溶剂中进行的,所述的溶液为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、甲醇、丙酮或乙醇,合成反应在空气或保护气中进行。
CN202010630757.4A 2020-07-03 2020-07-03 负载钯金富氮类氮化碳光催化剂的制备及c-c键合成 Active CN111715262B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010630757.4A CN111715262B (zh) 2020-07-03 2020-07-03 负载钯金富氮类氮化碳光催化剂的制备及c-c键合成

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010630757.4A CN111715262B (zh) 2020-07-03 2020-07-03 负载钯金富氮类氮化碳光催化剂的制备及c-c键合成

Publications (2)

Publication Number Publication Date
CN111715262A CN111715262A (zh) 2020-09-29
CN111715262B true CN111715262B (zh) 2022-07-08

Family

ID=72571445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010630757.4A Active CN111715262B (zh) 2020-07-03 2020-07-03 负载钯金富氮类氮化碳光催化剂的制备及c-c键合成

Country Status (1)

Country Link
CN (1) CN111715262B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11299395B2 (en) * 2020-01-14 2022-04-12 Qatar University Porous one-dimensional polymeric graphitic carbon nitride-based nanosystems for catalytic conversion of carbon monoxide and carbon dioxide under ambient conditions
CN115337945B (zh) * 2021-05-12 2024-02-20 中国科学院化学研究所 一种光催化剂及其制备方法和光催化制备烯烃类化合物的应用
CN114716394B (zh) * 2022-05-07 2023-07-28 重庆工商大学 CdS形貌与S空位调节C-H活化构筑惰性化学键

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103586064A (zh) * 2013-11-26 2014-02-19 中国科学院福建物质结构研究所 金属/类石墨氮化碳复合物催化剂及其制备方法
CN105777466A (zh) * 2016-03-31 2016-07-20 南京工业大学 一种可见光催化将卤代芳烃转化成芳烃的方法
CN108452821A (zh) * 2018-03-26 2018-08-28 陕西师范大学 Pd/结晶型氮化碳异质结光催化剂及制备方法和光催化乌尔曼偶联反应的应用
WO2018220477A1 (en) * 2017-06-01 2018-12-06 Sabic Global Technologies B.V. 3d cage type high nitrogen containing mesoporous carbon nitride from diaminoguanidine precursors for co 2 capture and conversion
CN109107601A (zh) * 2018-09-27 2019-01-01 景德镇陶瓷大学 一种石墨相氮化碳纳米片基复合光催化材料及其制备方法和应用
CN109438156A (zh) * 2018-12-29 2019-03-08 中国科学院理化技术研究所 一种光催化卤代烃脱卤转化的方法
CN110385138A (zh) * 2019-08-14 2019-10-29 重庆工商大学 一种铑负载的多孔管状氮化碳光催化剂的制备及其对氯酚的加氢脱氯催化反应
CN110803998A (zh) * 2019-11-12 2020-02-18 苏州大学 一种光催化制备不对称偶氮苯和氧化偶氮苯类化合物的方法
CN111135840A (zh) * 2018-11-06 2020-05-12 中国科学院大连化学物理研究所 负载型单原子分散贵金属催化剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101667222B1 (ko) * 2014-12-29 2016-10-18 한국화학연구원 카보닐화 반응에 의한 초산 제조용 Rh-C3N4 불균일 촉매

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103586064A (zh) * 2013-11-26 2014-02-19 中国科学院福建物质结构研究所 金属/类石墨氮化碳复合物催化剂及其制备方法
CN105777466A (zh) * 2016-03-31 2016-07-20 南京工业大学 一种可见光催化将卤代芳烃转化成芳烃的方法
WO2018220477A1 (en) * 2017-06-01 2018-12-06 Sabic Global Technologies B.V. 3d cage type high nitrogen containing mesoporous carbon nitride from diaminoguanidine precursors for co 2 capture and conversion
CN108452821A (zh) * 2018-03-26 2018-08-28 陕西师范大学 Pd/结晶型氮化碳异质结光催化剂及制备方法和光催化乌尔曼偶联反应的应用
CN109107601A (zh) * 2018-09-27 2019-01-01 景德镇陶瓷大学 一种石墨相氮化碳纳米片基复合光催化材料及其制备方法和应用
CN111135840A (zh) * 2018-11-06 2020-05-12 中国科学院大连化学物理研究所 负载型单原子分散贵金属催化剂的制备方法
CN109438156A (zh) * 2018-12-29 2019-03-08 中国科学院理化技术研究所 一种光催化卤代烃脱卤转化的方法
CN110385138A (zh) * 2019-08-14 2019-10-29 重庆工商大学 一种铑负载的多孔管状氮化碳光催化剂的制备及其对氯酚的加氢脱氯催化反应
CN110803998A (zh) * 2019-11-12 2020-02-18 苏州大学 一种光催化制备不对称偶氮苯和氧化偶氮苯类化合物的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AuPd alloy nanoparticles decorated graphitic carbon nitride as an excellent photocatalyst for the visible-light-enhanced SuzukieMiyaura cross-coupling reaction;Siyavash Kazemi Movahed et al.;《Journal of Alloys and Compounds》;20191115;第819卷;第152994页 *
Direct Thermal Polymerization Approach to N-Rich Holey Carbon Nitride Nanosheets and Their Promising Photocatalytic H2 Evolution and Charge-Storage Activities;Bindu Antil et al.;《ACS Sustainable Chem. Eng.》;20190417;第7卷(第10期);第9428-9438页 *
Efficient photocatalytic chemoselective and stereoselective C–C bond formation over AuPd@N-rich carbon nitride;Heyan Jiang et al.;《Catalysis Science & Technology》;20210107;第11卷;第219-229页 *
负载型钯金双金属-氮化碳纳米片催化剂的制备及催化应用;方伟;《中国优秀硕士学位论文全文数据库 (工程科技Ⅰ辑)》;20180715(第7期);第B014-594页 *

Also Published As

Publication number Publication date
CN111715262A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
CN111715262B (zh) 负载钯金富氮类氮化碳光催化剂的制备及c-c键合成
Wang et al. A facile hydrothermal synthesis of carbon dots modified gC 3 N 4 for enhanced photocatalytic H 2-evolution performance
CN109589991B (zh) 一种锌铟硫/铜铟硫二维异质结光催化剂、其制备方法及应用
Verma et al. Synthesis and characterization of a Pd/Ag bimetallic nanocatalyst on SBA-15 mesoporous silica as a plasmonic catalyst
CN109482235B (zh) 一种n-掺杂介孔碳负载的金属纳米催化剂的制备方法及其应用
CN110385138B (zh) 一种应用于氯酚加氢脱氯催化反应的铑负载多孔管状氮化碳光催化剂的制备方法
CN110280276B (zh) 负载型光催化剂NiSe2/CdS的制备方法及其应用
CN112691690B (zh) 一种负载型双金属氮化物催化剂及其制备方法与应用
CN107308967B (zh) 一种光催化分解甲酸制氢助催化剂、光催化体系及分解甲酸制氢的方法
CN113856730B (zh) 一种铜单原子材料及其制备方法和在光催化co2还原中的应用
Zhu et al. Fuel generation through photoreduction of CO2 on novel Cu/BiVO4
CN113145138B (zh) 热响应型复合光催化剂及其制备方法和应用
CN110624550A (zh) 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用
CN106582888A (zh) 一种TiO2‑Pd‑PPy复合光催化剂及其制备方法和应用
CN114177940A (zh) 一种单原子Cu锚定共价有机框架材料的制备及其应用
Yue et al. Efficiently selective oxidation of glycerol by Bi QDs/BiOBr–O v: promotion of molecular oxygen activation by Bi quantum dots and oxygen vacancies
CN113600221B (zh) 一种Au/g-C3N4单原子光催化剂及其制备方法和应用
CN107138169B (zh) 一种二维硫化物纳米结制氢光催化剂以及其制备方法和应用
Wang et al. Ultrasonic-assisted synthesis of porous S-doped carbon nitride ribbons for photocatalytic reduction of CO2
CN110860299A (zh) 一种硫铟锌/钛酸钡复合光催化剂的制备方法
Sun et al. Highly Efficient Conversion of Homocoupling and Heterocoupling of Terminal Alkynes Catalyzed by AuCu24/AC‐200
Fu et al. Interfacial engineering by creating Cu-based ternary heterostructures on C 3 N 4 tubes towards enhanced photocatalytic oxidative coupling of benzylamines
CN113351210A (zh) 一种Cu基催化剂及将其用于光催化水产氢-5-HMF氧化偶联反应
CN112920055A (zh) 一种可见光催化硝基芳烃与羧酸一锅加氢和酰胺化方法
CN111632612B (zh) 一种磷化铟-氧化铟p-n结多孔微球复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant