CN111704465A - 原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法 - Google Patents
原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法 Download PDFInfo
- Publication number
- CN111704465A CN111704465A CN202010515748.0A CN202010515748A CN111704465A CN 111704465 A CN111704465 A CN 111704465A CN 202010515748 A CN202010515748 A CN 202010515748A CN 111704465 A CN111704465 A CN 111704465A
- Authority
- CN
- China
- Prior art keywords
- solid solution
- silicon carbide
- aluminum nitride
- condition
- situ generated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/581—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
一种原位生成氮化铝‑碳化硅固溶体复相陶瓷及其制备方法。其技术方案是:将Al4SiC4粉末和粘结剂混合,在5~50MP条件下预压成型,于100~300MPa条件下等静压成型,在110℃烘干,得到预制坯体。将预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在≤0.1mbar条件下以5~10℃/min的速率从室温加热至1100~1200℃,在保温条件下充N2至2~10MPa,保压条件下以1~5℃/min的速率再加热至1900~2200℃,保压保温2~5h,自然冷却至室温,即得原位生成氮化铝‑碳化硅固溶体复相陶瓷。本发明工艺简单和操作方便,制备的原位生成氮化铝‑碳化硅固溶体复相陶瓷的密度低、质量轻、结构均匀致密、耐高温、抗氧化性能、抗水化性和强度高。
Description
技术领域
本发明属于氮化铝-碳化硅固溶体复相陶瓷技术领域。具体涉及一种原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法。
背景技术
AlN材料热导率高、电绝缘性好、强度大、硬度高、耐腐蚀、耐磨损和热膨胀系数低的良好的性能,在半导体材料、微波电子衰减材料及耐火材料等领域得到广泛应用。SiC热膨胀系数小、硬度高、机械强度大、抗化学腐蚀、耐磨性优良和化学性能稳定,被广泛应用于高温陶瓷、航空航天等许多领域。氮化铝和碳化硅虽是性能优异的陶瓷材料,但其本身也存在一些固有的缺点和局限性,在一定程度上限制了它们的发展和应用。目前制备复合材料是提高材料性能的一种有效途径,而AlN和α-SiC在原子尺寸、分子量、晶体结构、密度以及高温性能上均具有相似性,所以能够在较大的化学组成区域形成固溶体,两者之间具有在非氧化物陶瓷中极为罕见的强共价键,进一步增加了二者复合的可能性,有望改善两者固有缺点,提高材料的性能。
为了获得高性能的AlN/SiC固溶体复相陶瓷,国内外学者采用不同的技术路线和方法,如Wei等人(Wei W C J,Lee R R.Pressureless sintering of AlN-SiC composites[J].Journal ofMaterials Science,1991,26(11):2930-2936)采用无压烧结的方法制得AlN-SiC复合材料,发现添加烧结助剂Y2O3比CaO和Al2O3能更好地促进烧结体的致密化;且由于α-SiC与AlN结构相似,晶格常数相差极小,所以它比β-SiC能更好地与AlN致密结合并形成固溶体。谭寿洪等人(谭寿洪,岳勇.SiC-AlN固溶体的XRD和NMR研究[J].硅酸盐学报,1997,(3):345-349)同样采用无压烧结的方法,以6H-SiC为原料掺入少量A1N,在Ar气氛下于2050℃无压烧结制得了单相4H型SiC-AlN固溶体。Ruh等人(Ruh R,ZangvilA.Composition and properties of hot-pressed SiC-AIN solidsolutions[J].Journalof the American Ceramic Society,2010,65(5):260-265)采用热压烧结的方法,以β-SiC和AlN为原料在Ar气氛下于2100℃烧结,当AlN含量范围是35~100wt%时,合成了2H型固溶体。
上述方法制备AlN/SiC固溶体复相陶瓷,常采用多种原料机械混合后进行高温烧结,复相陶瓷内物相的分散性及均匀性不易控制,导致材料性能调控困难,同时长时间球磨AlN也会导致其水解,从而改变材料的化学组分,导致材料性能的降低。
另外,“一种AlN-SiC固溶体晶须及其制备方法”(CN 201710875873.0)同样采用单一的三元碳化物Al4SiC4为原料制得AlN/SiC固溶体晶须,但是对于块状致密试样,晶须仅在试样表面生成,其试样内部是否完全反应生成AlN/SiC固溶体,该专利技术并未说明。
发明内容
本发明旨在克服现有技术缺陷,目的在于提供一种工艺简单、操作方便的原位生成氮化铝-碳化硅固溶体复相陶瓷的制备方法,用该方法制备的原位生成氮化铝-碳化硅固溶体复相陶瓷的密度低、质量轻、结构均匀致密、耐高温、抗氧化性能、抗水化性和力学性能优异。
为实现上述目的,本发明采用的技术方案是:
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶2~5,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料。
所述Al4SiC4粉末的纯度≥98.0wt%,Al4SiC4粉末的粒度≤150μm。
步骤二、将所述混合料在5~50MP条件下预压成型,再于100~300MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干1~5h,得到预制坯体。
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在≤0.1mbar条件下以5~10℃/min的速率从室温加热至1100~1200℃,保温条件下充N2至2~10MPa,在保压条件下以1~5℃/min的速率再加热至1900~2200℃,保压保温2~5h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
所述粘结剂为酚醛树脂、环氧树脂、丙烯酸、硅溶胶和磷酸二氢铝中的一种以上。
所述氮气的纯度为≥98.5%。
采用上述方案,本发明与现有制备技术相比有以下优点:
本发明采用三元碳化物Al4SiC4粉末为单一原料,添加一定量的粘结剂,在气压烧结工艺下即得原位生成氮化铝-碳化硅固溶体复相陶瓷,工艺简单、操作方便。
本发明采用的Al4SiC4粉末具有优异的抗氧化性和抗水化性,能够显著提高原位生成氮化铝-碳化硅固溶体复相陶瓷的抗氧化性和抗水化性。
本发明预制坯体随着烧结温度的升高会发生氮化反应生成AlN和SiC,不需要机械混合物相就能均匀的分布在制品中,且随着温度的进一步升高至1900~2100℃,AlN与SiC会发生固溶,由于材料中各物相的蒸发和扩散传质速率不同,固溶体会生成于AlN和SiC两者之间,并且各相之间结合紧密没有明显的界面,因此,制备的原位生成氮化铝-碳化硅固溶体复相陶瓷结构均匀致密、耐高温和三点弯曲强度为120~195MPa。
本发明采用气压烧结法,能使较为致密的Al4SiC4坯体充分氮化,所制备的原位生成氮化铝-碳化硅固溶体复相陶瓷质量轻,密度为2.21~2.406kg/m3。
因此,本发明工艺简单和操作方便,制备的原位生成氮化铝-碳化硅固溶体复相陶瓷的密度低、质量轻、结构均匀致密、耐高温、抗氧化性能、抗水化性和强度高。
具体实施方式
本发明提供的制备方法所使用的粘结剂不受限制,只要能与粉末材料均匀混合,并可以制备成块状试样均可适用。下面结合具体实施方式对本发明作进一步的描述及说明,应理解下述具体实例仅用来说明本发明而非对其保护范围的限制。
本具体实施方式中:
所述Al4SiC4粉末纯度≥98.0wt%,粒度≤150μm;
所述氮气的纯度≥98.5%;
所述粘结剂为酚醛树脂、环氧树脂、丙烯酸、硅溶胶和磷酸二氢铝中的一种以上。
实施例1
一种原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法。
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶3,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料;
步骤二、将所述混合料在5MPa条件下预压成型,再于200MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干1h,得倒预制坯体;
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在真空≤0.1mbar条件下以10℃/min的速率从室温加热至1100℃,保温条件下充N2至2MPa,在保压条件下以5℃/min的速率再加热至1900℃,保压保温2h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
本实施例制备的原位生成氮化铝-碳化硅固溶体复相陶瓷经检测:三点弯曲强度为160.36±22MPa;密度为2.32±0.06kg/m3。
实施例2
一种原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法。
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶2,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料;
步骤二、将所述混合料在20MPa条件下预压成型,再于240MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干3h,得倒预制坯体;
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在真空≤0.1mbar条件下以6℃/min的速率从室温加热至1200℃,保温条件下充N2至8MPa,在保压条件下以2℃/min的速率再加热至2000℃,保压保温3h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
本实施例制备的原位生成氮化铝-碳化硅固溶体复相陶瓷经检测:三点弯曲强度为150.19±18MPa;密度为2.30±0.04kg/m3。
实施例3
一种原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法。
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶4,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料;
步骤二、将所述混合料在50MPa条件下预压成型,再于100MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干3h,得倒预制坯体;
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在真空≤0.1mbar条件下以5℃/min的速率从室温加热至1100℃,保温条件下充N2至4MPa,在保压条件下以4℃/min的速率再加热至1900℃,保压保温2h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
本实施例制备的原位生成氮化铝-碳化硅固溶体复相陶瓷经检测:三点弯曲强度为170.74±20MPa;密度为2.34±0.06kg/m3。
实施例4
一种原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法。
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶3,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料;
步骤二、将所述混合料在40MPa条件下预压成型,再于300MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干5h,得倒预制坯体;
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在真空≤0.1mbar条件下以8℃/min的速率从室温加热至1200℃,保温条件下充N2至10MPa,在保压条件下以1℃/min的速率再加热至2200℃,保压保温5h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
本实施例制备的原位生成氮化铝-碳化硅固溶体复相陶瓷经检测:三点弯曲强度为145.03±25MPa;密度为2.29±0.04kg/m3。
实施例5
一种原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法。
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶5,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料;
步骤二、将所述混合料在30MPa条件下预压成型,再于150MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干2h,得倒预制坯体;
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在真空≤0.1mbar条件下以7℃/min的速率从室温加热至1100℃,保温条件下充N2至5MPa,在保压条件下以3℃/min的速率再加热至2010℃,保压保温4h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
本实施例制备的原位生成氮化铝-碳化硅固溶体复相陶瓷经检测:三点弯曲强度为152.03±23MPa;密度为2.27±0.05kg/m3。
实施例6
一种原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法。
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶3,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料;
步骤二、将所述混合料在10MPa条件下预压成型,再于180MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干1h,得倒预制坯体;
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在真空≤0.1mbar条件下以6℃/min的速率从室温加热至1050℃,保温条件下充N2至7MPa,在保压条件下以2℃/min的速率再加热至2000℃,保压保温3h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
本实施例制备的原位生成氮化铝-碳化硅固溶体复相陶瓷经检测:三点弯曲强度为160.17±20MPa;密度为2.30±0.04kg/m3。
本具体实施方式与现有制备技术相比有以下优点:
本具体实施方式采用三元碳化物Al4SiC4粉末为单一原料,添加一定量的粘结剂,在气压烧结工艺下即得原位生成氮化铝-碳化硅固溶体复相陶瓷,工艺简单、操作方便。
本具体实施方式采用的Al4SiC4粉末具有优异的抗氧化性和抗水化性,能够显著提高原位生成氮化铝-碳化硅固溶体复相陶瓷的抗氧化性和抗水化性。
本具体实施方式预制坯体随着烧结温度的升高会发生氮化反应生成AlN和SiC,不需要机械混合物相就能均匀的分布在制品中,且随着温度的进一步升高至1900~2100℃,AlN与SiC会发生固溶,由于材料中各物相的蒸发和扩散传质速率不同,固溶体会生成于AlN和SiC两者之间,并且各相之间结合紧密没有明显的界面,因此,制备的原位生成氮化铝-碳化硅固溶体复相陶瓷结构均匀致密、耐高温和三点弯曲强度为120~191MPa。
本具体实施方式采用气压烧结法,能使较为致密的Al4SiC4坯体充分氮化,所制备的原位生成氮化铝-碳化硅固溶体复相陶瓷质量轻,密度为2.21~2.406kg/m3。
因此,本具体实施方式工艺简单和操作方便,制备的原位生成氮化铝-碳化硅固溶体复相陶瓷的密度低、质量轻、结构均匀致密、耐高温、抗氧化性能、抗水化性和强度高。
Claims (4)
1.一种原位生成氮化铝-碳化硅固溶体复相陶瓷的制备方法,其特征在于:
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶2~5,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料;
所述Al4SiC4粉末的纯度≥98.0wt%,Al4SiC4粉末的粒度≤150μm;
步骤二、将所述混合料在5~50MP条件下预压成型,再于100~300MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干1~5h,得到预制坯体;
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在≤0.1mbar条件下以5~10℃/min的速率从室温加热至1100~1200℃,保温条件下充N2至2~10MPa,在保压条件下以1~5℃/min的速率再加热至1900~2200℃,保压保温2~5h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
2.根据权利要求1所述的原位生成氮化铝-碳化硅固溶体复相陶瓷的制备方法,其特征在于所述粘结剂为酚醛树脂、环氧树脂、丙烯酸、硅溶胶和磷酸二氢铝中的一种以上。
3.根据权利要求1所述的原位生成氮化铝-碳化硅固溶体复相陶瓷的制备方法,其特征在于所述氮气的纯度为≥98.5%。
4.一种原位生成氮化铝-碳化硅固溶体复相陶瓷,其特征在于原位生成氮化铝-碳化硅固溶体复相陶瓷是根据权利要求1~3中任一项所述原位生成氮化铝-碳化硅固溶体复相陶瓷的制备方法所制备的原位生成氮化铝-碳化硅固溶体复相陶瓷。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010515748.0A CN111704465A (zh) | 2020-06-09 | 2020-06-09 | 原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010515748.0A CN111704465A (zh) | 2020-06-09 | 2020-06-09 | 原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111704465A true CN111704465A (zh) | 2020-09-25 |
Family
ID=72539166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010515748.0A Pending CN111704465A (zh) | 2020-06-09 | 2020-06-09 | 原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111704465A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116621585A (zh) * | 2023-05-15 | 2023-08-22 | 北方民族大学 | 一种高强度SiC复相陶瓷及其制备方法 |
CN118271097A (zh) * | 2024-05-29 | 2024-07-02 | 株洲艾森达新材料科技有限公司 | 一种芯片封装用氮化铝陶瓷的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4569922A (en) * | 1982-12-08 | 1986-02-11 | Asahi Glass Company Ltd. | Silicon carbide-aluminum nitride sintered article and process for its production |
US5371049A (en) * | 1989-01-09 | 1994-12-06 | Fmc Corporation | Ceramic composite of silicon carbide and aluminum nitride |
WO1997005081A1 (en) * | 1995-07-26 | 1997-02-13 | Nyfotek A/S | Manufacture of composites of silicon carbide and aluminium nitride |
CN107675260A (zh) * | 2017-09-25 | 2018-02-09 | 武汉科技大学 | 一种AlN‑SiC固溶体晶须及其制备方法 |
-
2020
- 2020-06-09 CN CN202010515748.0A patent/CN111704465A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4569922A (en) * | 1982-12-08 | 1986-02-11 | Asahi Glass Company Ltd. | Silicon carbide-aluminum nitride sintered article and process for its production |
US5371049A (en) * | 1989-01-09 | 1994-12-06 | Fmc Corporation | Ceramic composite of silicon carbide and aluminum nitride |
WO1997005081A1 (en) * | 1995-07-26 | 1997-02-13 | Nyfotek A/S | Manufacture of composites of silicon carbide and aluminium nitride |
CN107675260A (zh) * | 2017-09-25 | 2018-02-09 | 武汉科技大学 | 一种AlN‑SiC固溶体晶须及其制备方法 |
Non-Patent Citations (7)
Title |
---|
KIYOSHI ITATANI: "Al4SiC4氮化法制备AlN-SiC纳米复合粉末", 《现代冶金》 * |
KIYOSHI ITATANI: "Al4SiC4氮化法制备AlN-SiC纳米复合粉末", 《现代冶金》, no. 1, 31 December 2005 (2005-12-31), pages 30 - 32 * |
KIYOSHI ITATANI等: "Densification and mechanical properties of 4AlN·SiC ceramics - Utilization of nanocomposite powders prepared by the nitridation of aluminum silicon carbide", 《KEY ENGINEERING MATERIALS》 * |
KIYOSHI ITATANI等: "Densification and mechanical properties of 4AlN·SiC ceramics - Utilization of nanocomposite powders prepared by the nitridation of aluminum silicon carbide", 《KEY ENGINEERING MATERIALS》, vol. 247, 15 August 2003 (2003-08-15), pages 91 - 94 * |
唐婕等: "《环保陶瓷生产与应用》", 31 January 2018, 中国建材工业出版社, pages: 119 * |
江尧忠: "《工业电炉》", 31 December 1993, 清华大学出版社, pages: 525 - 527 * |
第二版编辑委员会: "《电气工程师手册》", 30 June 2000, 机械工业出版社, pages: 1198 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116621585A (zh) * | 2023-05-15 | 2023-08-22 | 北方民族大学 | 一种高强度SiC复相陶瓷及其制备方法 |
CN118271097A (zh) * | 2024-05-29 | 2024-07-02 | 株洲艾森达新材料科技有限公司 | 一种芯片封装用氮化铝陶瓷的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Promising high-thermal-conductivity substrate material for high-power electronic device: silicon nitride ceramics | |
US5656218A (en) | Method for making high performance self-reinforced silicon carbide using a pressureless sintering process | |
US4332755A (en) | Sintered silicon carbide - aluminum nitride articles and method of making such articles | |
CN111704465A (zh) | 原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法 | |
CN111285692A (zh) | 一种高导热Si3N4陶瓷及其制备方法 | |
CN109180161B (zh) | 一种高纯钛硅化碳/氧化铝复合材料及其制备方法 | |
Lao et al. | Effects of various sintering additives on the properties of β-SiAlON–SiC ceramics obtained by liquid phase sintering | |
Fan et al. | Fabrication and properties of Si2N2O ceramics for microwave sintering furnace | |
US5773733A (en) | Alumina-aluminum nitride-nickel composites | |
CN108863395B (zh) | 一种高热导率、高强度氮化硅陶瓷材料及其制备方法 | |
JP2002003276A (ja) | 炭化ケイ素−窒化ホウ素複合材料の反応合成 | |
Tiegs et al. | Cost‐effective sintered reaction‐bonded silicon nitride for structural ceramics | |
CN104844214A (zh) | 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法 | |
CN111635233A (zh) | 原位生成AlN/SiC结合C复合材料及其制备方法 | |
JP4014765B2 (ja) | 炭化ケイ素長繊維強化セラミックス基複合材料 | |
Liu et al. | Pressureless sintered Al4SiC4 ceramics with Y2O3 addition | |
CN113173800B (zh) | 一种β-Sialon多孔陶瓷及其制备方法 | |
JPH0881275A (ja) | SiC基繊維複合材料の製造方法 | |
Komeya et al. | Liquid phase sintering of aluminum nitride | |
Li et al. | Thermal Conductivity and Flexural Strength of Two-Step Hot-Pressed SiC Ceramics | |
JP3932349B2 (ja) | 非酸化物系窒化ホウ素複合材料の反応合成 | |
CN114133250B (zh) | 一种反应烧结制备组分可调的含bn复相陶瓷制备方法 | |
JPS60255672A (ja) | 炭化珪素質焼結体の製造方法 | |
JPH01252584A (ja) | 複合セラミックス焼結体およびその製造方法 | |
JPH03109269A (ja) | 炭素繊維強化サイアロン基セラミックス複合材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200925 |