CN111704465A - 原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法 - Google Patents

原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法 Download PDF

Info

Publication number
CN111704465A
CN111704465A CN202010515748.0A CN202010515748A CN111704465A CN 111704465 A CN111704465 A CN 111704465A CN 202010515748 A CN202010515748 A CN 202010515748A CN 111704465 A CN111704465 A CN 111704465A
Authority
CN
China
Prior art keywords
solid solution
silicon carbide
aluminum nitride
condition
situ generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010515748.0A
Other languages
English (en)
Inventor
余超
郑永翔
邓承继
丁军
祝洪喜
吴欣欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Wuhan University of Science and Technology WHUST
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202010515748.0A priority Critical patent/CN111704465A/zh
Publication of CN111704465A publication Critical patent/CN111704465A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

一种原位生成氮化铝‑碳化硅固溶体复相陶瓷及其制备方法。其技术方案是:将Al4SiC4粉末和粘结剂混合,在5~50MP条件下预压成型,于100~300MPa条件下等静压成型,在110℃烘干,得到预制坯体。将预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在≤0.1mbar条件下以5~10℃/min的速率从室温加热至1100~1200℃,在保温条件下充N2至2~10MPa,保压条件下以1~5℃/min的速率再加热至1900~2200℃,保压保温2~5h,自然冷却至室温,即得原位生成氮化铝‑碳化硅固溶体复相陶瓷。本发明工艺简单和操作方便,制备的原位生成氮化铝‑碳化硅固溶体复相陶瓷的密度低、质量轻、结构均匀致密、耐高温、抗氧化性能、抗水化性和强度高。

Description

原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法
技术领域
本发明属于氮化铝-碳化硅固溶体复相陶瓷技术领域。具体涉及一种原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法。
背景技术
AlN材料热导率高、电绝缘性好、强度大、硬度高、耐腐蚀、耐磨损和热膨胀系数低的良好的性能,在半导体材料、微波电子衰减材料及耐火材料等领域得到广泛应用。SiC热膨胀系数小、硬度高、机械强度大、抗化学腐蚀、耐磨性优良和化学性能稳定,被广泛应用于高温陶瓷、航空航天等许多领域。氮化铝和碳化硅虽是性能优异的陶瓷材料,但其本身也存在一些固有的缺点和局限性,在一定程度上限制了它们的发展和应用。目前制备复合材料是提高材料性能的一种有效途径,而AlN和α-SiC在原子尺寸、分子量、晶体结构、密度以及高温性能上均具有相似性,所以能够在较大的化学组成区域形成固溶体,两者之间具有在非氧化物陶瓷中极为罕见的强共价键,进一步增加了二者复合的可能性,有望改善两者固有缺点,提高材料的性能。
为了获得高性能的AlN/SiC固溶体复相陶瓷,国内外学者采用不同的技术路线和方法,如Wei等人(Wei W C J,Lee R R.Pressureless sintering of AlN-SiC composites[J].Journal ofMaterials Science,1991,26(11):2930-2936)采用无压烧结的方法制得AlN-SiC复合材料,发现添加烧结助剂Y2O3比CaO和Al2O3能更好地促进烧结体的致密化;且由于α-SiC与AlN结构相似,晶格常数相差极小,所以它比β-SiC能更好地与AlN致密结合并形成固溶体。谭寿洪等人(谭寿洪,岳勇.SiC-AlN固溶体的XRD和NMR研究[J].硅酸盐学报,1997,(3):345-349)同样采用无压烧结的方法,以6H-SiC为原料掺入少量A1N,在Ar气氛下于2050℃无压烧结制得了单相4H型SiC-AlN固溶体。Ruh等人(Ruh R,ZangvilA.Composition and properties of hot-pressed SiC-AIN solidsolutions[J].Journalof the American Ceramic Society,2010,65(5):260-265)采用热压烧结的方法,以β-SiC和AlN为原料在Ar气氛下于2100℃烧结,当AlN含量范围是35~100wt%时,合成了2H型固溶体。
上述方法制备AlN/SiC固溶体复相陶瓷,常采用多种原料机械混合后进行高温烧结,复相陶瓷内物相的分散性及均匀性不易控制,导致材料性能调控困难,同时长时间球磨AlN也会导致其水解,从而改变材料的化学组分,导致材料性能的降低。
另外,“一种AlN-SiC固溶体晶须及其制备方法”(CN 201710875873.0)同样采用单一的三元碳化物Al4SiC4为原料制得AlN/SiC固溶体晶须,但是对于块状致密试样,晶须仅在试样表面生成,其试样内部是否完全反应生成AlN/SiC固溶体,该专利技术并未说明。
发明内容
本发明旨在克服现有技术缺陷,目的在于提供一种工艺简单、操作方便的原位生成氮化铝-碳化硅固溶体复相陶瓷的制备方法,用该方法制备的原位生成氮化铝-碳化硅固溶体复相陶瓷的密度低、质量轻、结构均匀致密、耐高温、抗氧化性能、抗水化性和力学性能优异。
为实现上述目的,本发明采用的技术方案是:
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶2~5,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料。
所述Al4SiC4粉末的纯度≥98.0wt%,Al4SiC4粉末的粒度≤150μm。
步骤二、将所述混合料在5~50MP条件下预压成型,再于100~300MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干1~5h,得到预制坯体。
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在≤0.1mbar条件下以5~10℃/min的速率从室温加热至1100~1200℃,保温条件下充N2至2~10MPa,在保压条件下以1~5℃/min的速率再加热至1900~2200℃,保压保温2~5h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
所述粘结剂为酚醛树脂、环氧树脂、丙烯酸、硅溶胶和磷酸二氢铝中的一种以上。
所述氮气的纯度为≥98.5%。
采用上述方案,本发明与现有制备技术相比有以下优点:
本发明采用三元碳化物Al4SiC4粉末为单一原料,添加一定量的粘结剂,在气压烧结工艺下即得原位生成氮化铝-碳化硅固溶体复相陶瓷,工艺简单、操作方便。
本发明采用的Al4SiC4粉末具有优异的抗氧化性和抗水化性,能够显著提高原位生成氮化铝-碳化硅固溶体复相陶瓷的抗氧化性和抗水化性。
本发明预制坯体随着烧结温度的升高会发生氮化反应生成AlN和SiC,不需要机械混合物相就能均匀的分布在制品中,且随着温度的进一步升高至1900~2100℃,AlN与SiC会发生固溶,由于材料中各物相的蒸发和扩散传质速率不同,固溶体会生成于AlN和SiC两者之间,并且各相之间结合紧密没有明显的界面,因此,制备的原位生成氮化铝-碳化硅固溶体复相陶瓷结构均匀致密、耐高温和三点弯曲强度为120~195MPa。
本发明采用气压烧结法,能使较为致密的Al4SiC4坯体充分氮化,所制备的原位生成氮化铝-碳化硅固溶体复相陶瓷质量轻,密度为2.21~2.406kg/m3
因此,本发明工艺简单和操作方便,制备的原位生成氮化铝-碳化硅固溶体复相陶瓷的密度低、质量轻、结构均匀致密、耐高温、抗氧化性能、抗水化性和强度高。
具体实施方式
本发明提供的制备方法所使用的粘结剂不受限制,只要能与粉末材料均匀混合,并可以制备成块状试样均可适用。下面结合具体实施方式对本发明作进一步的描述及说明,应理解下述具体实例仅用来说明本发明而非对其保护范围的限制。
本具体实施方式中:
所述Al4SiC4粉末纯度≥98.0wt%,粒度≤150μm;
所述氮气的纯度≥98.5%;
所述粘结剂为酚醛树脂、环氧树脂、丙烯酸、硅溶胶和磷酸二氢铝中的一种以上。
实施例1
一种原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法。
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶3,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料;
步骤二、将所述混合料在5MPa条件下预压成型,再于200MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干1h,得倒预制坯体;
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在真空≤0.1mbar条件下以10℃/min的速率从室温加热至1100℃,保温条件下充N2至2MPa,在保压条件下以5℃/min的速率再加热至1900℃,保压保温2h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
本实施例制备的原位生成氮化铝-碳化硅固溶体复相陶瓷经检测:三点弯曲强度为160.36±22MPa;密度为2.32±0.06kg/m3
实施例2
一种原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法。
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶2,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料;
步骤二、将所述混合料在20MPa条件下预压成型,再于240MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干3h,得倒预制坯体;
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在真空≤0.1mbar条件下以6℃/min的速率从室温加热至1200℃,保温条件下充N2至8MPa,在保压条件下以2℃/min的速率再加热至2000℃,保压保温3h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
本实施例制备的原位生成氮化铝-碳化硅固溶体复相陶瓷经检测:三点弯曲强度为150.19±18MPa;密度为2.30±0.04kg/m3
实施例3
一种原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法。
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶4,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料;
步骤二、将所述混合料在50MPa条件下预压成型,再于100MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干3h,得倒预制坯体;
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在真空≤0.1mbar条件下以5℃/min的速率从室温加热至1100℃,保温条件下充N2至4MPa,在保压条件下以4℃/min的速率再加热至1900℃,保压保温2h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
本实施例制备的原位生成氮化铝-碳化硅固溶体复相陶瓷经检测:三点弯曲强度为170.74±20MPa;密度为2.34±0.06kg/m3
实施例4
一种原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法。
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶3,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料;
步骤二、将所述混合料在40MPa条件下预压成型,再于300MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干5h,得倒预制坯体;
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在真空≤0.1mbar条件下以8℃/min的速率从室温加热至1200℃,保温条件下充N2至10MPa,在保压条件下以1℃/min的速率再加热至2200℃,保压保温5h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
本实施例制备的原位生成氮化铝-碳化硅固溶体复相陶瓷经检测:三点弯曲强度为145.03±25MPa;密度为2.29±0.04kg/m3
实施例5
一种原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法。
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶5,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料;
步骤二、将所述混合料在30MPa条件下预压成型,再于150MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干2h,得倒预制坯体;
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在真空≤0.1mbar条件下以7℃/min的速率从室温加热至1100℃,保温条件下充N2至5MPa,在保压条件下以3℃/min的速率再加热至2010℃,保压保温4h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
本实施例制备的原位生成氮化铝-碳化硅固溶体复相陶瓷经检测:三点弯曲强度为152.03±23MPa;密度为2.27±0.05kg/m3
实施例6
一种原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法。
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶3,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料;
步骤二、将所述混合料在10MPa条件下预压成型,再于180MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干1h,得倒预制坯体;
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在真空≤0.1mbar条件下以6℃/min的速率从室温加热至1050℃,保温条件下充N2至7MPa,在保压条件下以2℃/min的速率再加热至2000℃,保压保温3h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
本实施例制备的原位生成氮化铝-碳化硅固溶体复相陶瓷经检测:三点弯曲强度为160.17±20MPa;密度为2.30±0.04kg/m3
本具体实施方式与现有制备技术相比有以下优点:
本具体实施方式采用三元碳化物Al4SiC4粉末为单一原料,添加一定量的粘结剂,在气压烧结工艺下即得原位生成氮化铝-碳化硅固溶体复相陶瓷,工艺简单、操作方便。
本具体实施方式采用的Al4SiC4粉末具有优异的抗氧化性和抗水化性,能够显著提高原位生成氮化铝-碳化硅固溶体复相陶瓷的抗氧化性和抗水化性。
本具体实施方式预制坯体随着烧结温度的升高会发生氮化反应生成AlN和SiC,不需要机械混合物相就能均匀的分布在制品中,且随着温度的进一步升高至1900~2100℃,AlN与SiC会发生固溶,由于材料中各物相的蒸发和扩散传质速率不同,固溶体会生成于AlN和SiC两者之间,并且各相之间结合紧密没有明显的界面,因此,制备的原位生成氮化铝-碳化硅固溶体复相陶瓷结构均匀致密、耐高温和三点弯曲强度为120~191MPa。
本具体实施方式采用气压烧结法,能使较为致密的Al4SiC4坯体充分氮化,所制备的原位生成氮化铝-碳化硅固溶体复相陶瓷质量轻,密度为2.21~2.406kg/m3
因此,本具体实施方式工艺简单和操作方便,制备的原位生成氮化铝-碳化硅固溶体复相陶瓷的密度低、质量轻、结构均匀致密、耐高温、抗氧化性能、抗水化性和强度高。

Claims (4)

1.一种原位生成氮化铝-碳化硅固溶体复相陶瓷的制备方法,其特征在于:
步骤一、按照Al4SiC4粉末∶粘结剂的质量比为100∶2~5,将所述Al4SiC4粉末和所述粘结剂混合,即得混合料;
所述Al4SiC4粉末的纯度≥98.0wt%,Al4SiC4粉末的粒度≤150μm;
步骤二、将所述混合料在5~50MP条件下预压成型,再于100~300MPa条件下等静压成型,然后置于恒温干燥箱中,在110℃条件下烘干1~5h,得到预制坯体;
步骤三、将所述预制坯体装入石墨坩埚内,然后将所述石墨坩埚置于热压炉内,在≤0.1mbar条件下以5~10℃/min的速率从室温加热至1100~1200℃,保温条件下充N2至2~10MPa,在保压条件下以1~5℃/min的速率再加热至1900~2200℃,保压保温2~5h,自然冷却至室温,即得原位生成氮化铝-碳化硅固溶体复相陶瓷。
2.根据权利要求1所述的原位生成氮化铝-碳化硅固溶体复相陶瓷的制备方法,其特征在于所述粘结剂为酚醛树脂、环氧树脂、丙烯酸、硅溶胶和磷酸二氢铝中的一种以上。
3.根据权利要求1所述的原位生成氮化铝-碳化硅固溶体复相陶瓷的制备方法,其特征在于所述氮气的纯度为≥98.5%。
4.一种原位生成氮化铝-碳化硅固溶体复相陶瓷,其特征在于原位生成氮化铝-碳化硅固溶体复相陶瓷是根据权利要求1~3中任一项所述原位生成氮化铝-碳化硅固溶体复相陶瓷的制备方法所制备的原位生成氮化铝-碳化硅固溶体复相陶瓷。
CN202010515748.0A 2020-06-09 2020-06-09 原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法 Pending CN111704465A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010515748.0A CN111704465A (zh) 2020-06-09 2020-06-09 原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010515748.0A CN111704465A (zh) 2020-06-09 2020-06-09 原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN111704465A true CN111704465A (zh) 2020-09-25

Family

ID=72539166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010515748.0A Pending CN111704465A (zh) 2020-06-09 2020-06-09 原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111704465A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116621585A (zh) * 2023-05-15 2023-08-22 北方民族大学 一种高强度SiC复相陶瓷及其制备方法
CN118271097A (zh) * 2024-05-29 2024-07-02 株洲艾森达新材料科技有限公司 一种芯片封装用氮化铝陶瓷的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569922A (en) * 1982-12-08 1986-02-11 Asahi Glass Company Ltd. Silicon carbide-aluminum nitride sintered article and process for its production
US5371049A (en) * 1989-01-09 1994-12-06 Fmc Corporation Ceramic composite of silicon carbide and aluminum nitride
WO1997005081A1 (en) * 1995-07-26 1997-02-13 Nyfotek A/S Manufacture of composites of silicon carbide and aluminium nitride
CN107675260A (zh) * 2017-09-25 2018-02-09 武汉科技大学 一种AlN‑SiC固溶体晶须及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569922A (en) * 1982-12-08 1986-02-11 Asahi Glass Company Ltd. Silicon carbide-aluminum nitride sintered article and process for its production
US5371049A (en) * 1989-01-09 1994-12-06 Fmc Corporation Ceramic composite of silicon carbide and aluminum nitride
WO1997005081A1 (en) * 1995-07-26 1997-02-13 Nyfotek A/S Manufacture of composites of silicon carbide and aluminium nitride
CN107675260A (zh) * 2017-09-25 2018-02-09 武汉科技大学 一种AlN‑SiC固溶体晶须及其制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KIYOSHI ITATANI: "Al4SiC4氮化法制备AlN-SiC纳米复合粉末", 《现代冶金》 *
KIYOSHI ITATANI: "Al4SiC4氮化法制备AlN-SiC纳米复合粉末", 《现代冶金》, no. 1, 31 December 2005 (2005-12-31), pages 30 - 32 *
KIYOSHI ITATANI等: "Densification and mechanical properties of 4AlN·SiC ceramics - Utilization of nanocomposite powders prepared by the nitridation of aluminum silicon carbide", 《KEY ENGINEERING MATERIALS》 *
KIYOSHI ITATANI等: "Densification and mechanical properties of 4AlN·SiC ceramics - Utilization of nanocomposite powders prepared by the nitridation of aluminum silicon carbide", 《KEY ENGINEERING MATERIALS》, vol. 247, 15 August 2003 (2003-08-15), pages 91 - 94 *
唐婕等: "《环保陶瓷生产与应用》", 31 January 2018, 中国建材工业出版社, pages: 119 *
江尧忠: "《工业电炉》", 31 December 1993, 清华大学出版社, pages: 525 - 527 *
第二版编辑委员会: "《电气工程师手册》", 30 June 2000, 机械工业出版社, pages: 1198 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116621585A (zh) * 2023-05-15 2023-08-22 北方民族大学 一种高强度SiC复相陶瓷及其制备方法
CN118271097A (zh) * 2024-05-29 2024-07-02 株洲艾森达新材料科技有限公司 一种芯片封装用氮化铝陶瓷的制备方法

Similar Documents

Publication Publication Date Title
Hu et al. Promising high-thermal-conductivity substrate material for high-power electronic device: silicon nitride ceramics
US5656218A (en) Method for making high performance self-reinforced silicon carbide using a pressureless sintering process
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
CN111704465A (zh) 原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法
CN111285692A (zh) 一种高导热Si3N4陶瓷及其制备方法
CN109180161B (zh) 一种高纯钛硅化碳/氧化铝复合材料及其制备方法
Lao et al. Effects of various sintering additives on the properties of β-SiAlON–SiC ceramics obtained by liquid phase sintering
Fan et al. Fabrication and properties of Si2N2O ceramics for microwave sintering furnace
US5773733A (en) Alumina-aluminum nitride-nickel composites
CN108863395B (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
JP2002003276A (ja) 炭化ケイ素−窒化ホウ素複合材料の反応合成
Tiegs et al. Cost‐effective sintered reaction‐bonded silicon nitride for structural ceramics
CN104844214A (zh) 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法
CN111635233A (zh) 原位生成AlN/SiC结合C复合材料及其制备方法
JP4014765B2 (ja) 炭化ケイ素長繊維強化セラミックス基複合材料
Liu et al. Pressureless sintered Al4SiC4 ceramics with Y2O3 addition
CN113173800B (zh) 一种β-Sialon多孔陶瓷及其制备方法
JPH0881275A (ja) SiC基繊維複合材料の製造方法
Komeya et al. Liquid phase sintering of aluminum nitride
Li et al. Thermal Conductivity and Flexural Strength of Two-Step Hot-Pressed SiC Ceramics
JP3932349B2 (ja) 非酸化物系窒化ホウ素複合材料の反応合成
CN114133250B (zh) 一种反应烧结制备组分可调的含bn复相陶瓷制备方法
JPS60255672A (ja) 炭化珪素質焼結体の製造方法
JPH01252584A (ja) 複合セラミックス焼結体およびその製造方法
JPH03109269A (ja) 炭素繊維強化サイアロン基セラミックス複合材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200925