CN111672543B - 一种低温等离子体和改性分子筛催化剂协同一步转化ch4和co2制乙酸的方法 - Google Patents

一种低温等离子体和改性分子筛催化剂协同一步转化ch4和co2制乙酸的方法 Download PDF

Info

Publication number
CN111672543B
CN111672543B CN202010525560.4A CN202010525560A CN111672543B CN 111672543 B CN111672543 B CN 111672543B CN 202010525560 A CN202010525560 A CN 202010525560A CN 111672543 B CN111672543 B CN 111672543B
Authority
CN
China
Prior art keywords
molecular sieve
acetic acid
plasma
sieve catalyst
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010525560.4A
Other languages
English (en)
Other versions
CN111672543A (zh
Inventor
王丽
杜晓敏
徐红丽
朱益民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN202010525560.4A priority Critical patent/CN111672543B/zh
Publication of CN111672543A publication Critical patent/CN111672543A/zh
Application granted granted Critical
Publication of CN111672543B publication Critical patent/CN111672543B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/185Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7084MTW-type, e.g. ZSM-12, NU-13, TPZ-12 or Theta-3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/15Preparation of carboxylic acids or their salts, halides or anhydrides by reaction of organic compounds with carbon dioxide, e.g. Kolbe-Schmitt synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种低温等离子体和改性分子筛催化剂协同一步转化CH4和CO2制乙酸的方法,属于CH4和CO2转化利用领域。本发明所述制备方法包括如下步骤:①用水蒸气钝化法、酸处理法、碱处理法、碱金属改性、碱土金属改性和稀土金属改性中的至少一种方法将分子筛改性;②将步骤①所得产品在等离子体气氛中350‑500℃焙烧0.5‑3h。本发明实现了在低温、常压条件下利用一步法将CH4和CO2转化为高附加值的乙酸,工艺简单,方法绿色,原子经济性高,解决了常规催化CH4和CO2反应需要高温(通常>700℃)的问题,同时提高了二者转化产物的附加值。

Description

一种低温等离子体和改性分子筛催化剂协同一步转化CH4和 CO2制乙酸的方法
技术领域
本发明涉及一种低温等离子体和改性分子筛催化剂协同一步转化CH4和CO2制乙酸的方法,属于CH4和CO2转化利用领域。
背景技术
CH4和CO2是大气中的两种主要温室气体,是加剧温室效应与全球气候变暖的主要原因,同时也是一碳化学的重要原料。CH4在自然界中分布广泛,是天然气、沼气、油田气和煤矿坑道气的主要成分,同时也是廉价易得、储量丰富的碳源与氢源。大气中的CO2主要来自化石燃料燃烧等人类活动,且其浓度与平均年排放量呈现出逐年增长趋势,预计到2040年CO2全球排放量约为357亿吨。因此,将CH4和CO2在温和条件下直接转化为高值化学品对于能源化工、石油化工与环境保护都具有重要意义。
目前,工业上由CH4出发制乙酸的反应工艺通常分三步进行,过程复杂,操作条件苛刻,催化剂寿命短,能耗高,成本高。首先,由CH4与水蒸气在800℃高温和Ni基催化剂作用下重整制合成气(CH4+H2O→CO+3H2,ΔH0 298K=206.2kJ/mol);其次,合成气在约100atm高压和Cu-Zn-Al催化剂作用下合成甲醇(CO+2H2→CH3OH,ΔH0 298K=-90.7kJ/mol);最后,甲醇和CO在贵金属Rh或Ir催化剂及碘化锂助催化剂的作用下羰基化生成乙酸(CH3OH+CO→CH3COOH,ΔH0 298K=-175kJ/mol)。
CH4和CO2反应制乙酸是原子利用率100%的理想反应(CH4+CO2→CH3COOH,ΔG298K=71.17kJ/mol),但二者化学性质稳定,低温反应受动力学和热力学双重限制,而高温反应不利于乙酸生成。针对此问题,国内外研究团队采取两种办法,如下:
(1)采用两步梯阶转化技术实现CH4和CO2转化制乙酸,所用催化剂为Cu/Co双金属基催化剂(Journal of Catalysis,2001,201,100)、Pd/C和Pt/Al2O3催化剂(CatalysisToday,2003,88,83)、Pd/SiO2和Rh/SiO2催化剂(Fuel Processing Technology,2007,88,319)。所谓阶梯转化技术的实质是分步进料,先进料CH4并与催化剂作用形成CHx物种,然后将CH4切换为CO2,使CO2与催化剂表面的CHx物种反应生成乙酸,进而实现多相催化转化CH4和CO2制乙酸。但是,由于两步梯阶转化方式属于间歇生产,导致乙酸产率低,反应周期长,操作复杂。
(2)最近,利用催化法一步转化CH4和CO2制取乙酸获得极大关注,但目前的研究主要停留在理论模拟阶段(Catalysis Science&Technology,2019,9,6297;AppliedCatalysis B:Environmental,2018,229,237;ACS Catalysis,2017,7,6719;J.Am.Chem.Soc.,2016,138,10191)。只有极少数在催化转化CH4和CO2的实验研究中检测到微量乙酸,所用催化剂分别是Cu/M+-ZSM-5催化剂,M=Li+、Na+、K+、Ca++(Applied CatalysisB:Environmental,2017,215,50);ZnO-CeO2催化剂(Applied Catalysis B:Environmental,2018,229,237)和Zn/H-ZSM-5催化剂(Journal of the AmericanChemical Society,2013,135,13567),由于CH4和CO2分子热力学稳定性高,导致两者转化率和乙酸收率极低,已报道的最高乙酸生成速率仅是0.875mmol·gcat-1·h-1(AppliedCatalysis B:Environmental,2018,229,237)。
由于等离子体技术能够突破CH4和CO2转化制乙酸的热力学限制,因此被广泛应用于CH4与CO2转化,但得到的主要产物大多为合成气或烃类化合物(CN109867261A,CN108408690A,CN109264671A,CN104071747A,CN1180058C,CN109663593A,CN109759074A,CN109529857A,KR1743954B1,KR2016077957A,PT105078A1,JP2002037601A,JP11322638A,JP11278802A)。未见公开专利报道等离子体或等离子体催化甲烷干重整制乙酸的研究。
此外,以下公开文献涉及利用等离子体技术一步转化CH4和CO2制乙酸。
公开文献《Applied Catalysis B:Environmental,2020,261,118228》报道了一种介质阻挡放电等离子体催化甲烷和二氧化碳制液态产物的方法。其特点是:重点研究Co/SiO2与Fe/SiO2气凝胶催化剂对产物分布的影响,除了气相CO、氢气和低碳烃外,还获得液态含氧产物甲醇和乙酸。
公开文献《Plasma Chem Plasma Process,2018,38,517》报道了Ar对表面介质阻挡放电等离子体中CH4与CO2制合成气和液体燃料的影响。其特点是:重点研究添加气Ar对反应性能的影响,反应产物除合成气外还检测到乙烷、乙烯以及10多种含氧液态燃料。
公开文献《Angewandte Chemie International Edition,2017,56,13679》报道了一种介质阻挡放电等离子体转化甲烷和二氧化碳制高值化学品的方法。其特点是:重点研究介质阻挡放电反应器结构对反应性能的影响,发现水电极等离子体反应器结构最好,所得气相产物是CO、氢气、低碳烃,液相产物包括甲醇、乙醇、乙酸、甲醛和丙酮;此外,还发现将γ-Al2O3载体负载的Pt、Au和Cu催化剂填充到等离子体放电区对反应影响较小。
公开文献《Plasma Processes and Polymers,2014,11,624》报道了一种DBD等离子体催化转化甲烷和二氧化碳的方法。其特点是:重点研究放电电极材质(镍、铜和不锈钢)对反应的影响,发现采用镍和铜作为放电高压电极有利于生成C1-C4酸,尤其促进甲酸生成;在最优反应条件下,酸类产物总选择性小于1.5%。
公开文献《Plasma Processes and Polymers,2011,8,25》报道了一种CH4/CO2介质阻挡放电制备液态有机化合物的方法。其特点是:所得液态产物主要包括烃类和少量醇、酮、酯和酸类等含氧产物;当能量密度为64kJ/L时,液体产物总重量约20%,含氧化合物总选择性仅1%。
公开文献《Plasma Chemistry and Plasma Processing,2003,23,69》报道了一种促进甲烷和二氧化碳介质阻挡放电制备含氧化合物的方法。其特点是:将淀粉涂抹在介质阻挡放电石英反应器内表面,其能够抑制液态碳氢化合物生成,提高甲醛、甲醇、乙醇、甲酸和乙酸等氧合物选择性。在最佳反应条件下,乙酸选择性可达到11.2%。
公开文献《Energy&Fuels,2002,16,864》报道了一种利用介质阻挡放电等离子体直接转化甲烷与二氧化碳的方法。其特点是:主要产物包括合成气(H2和CO)、气态烃(C2到C5)、液态烃(C5到C11+)和含氧化合物(酸类和醇类)。较高的CH4/CO2进料比、较宽的放电间隙(1.8mm)有利于甲醇和乙醇生成;放电间隙越窄(1.1mm),尤其是存在余辉区时,更有利于乙酸生成。
公开文献《Fuel Chemistry Division Preprints,2002,47,328》报道了一种DBD等离子体转化甲烷和二氧化碳制含氧产物的方法。其特点是:研究认为放电电极的表面性质对含氧产物的形成起着重要作用,CO、气态烃与固态烃类为主要产物,还检测到少量液态含氧产物;当原料中CH4的体积浓度为66.8%时,乙酸选择性达到5.2%。
公开文献《Chemistry Letters,2001,1304》报道了一种甲烷和二氧化碳介质阻挡放电直接制乙酸的方法。其特点是:利用介质阻挡放电可以实现甲烷和二氧化碳制乙酸,当原料气中CH4的体积浓度为67.4%时,乙酸选择性达到5.3%。
显然,上述利用等离子体技术转化CH4和CO2一步合成乙酸的报道中,研究重点集中在等离子体反应参数、等离子体反应器和添加气方面,未见分子筛与等离子体协同转化CH4和CO2一步合成乙酸的报道。
发明内容
本发明所要解决的技术问题为:CH4和CO2反应制乙酸是原子利用率100%的理想反应(CH4+CO2→CH3COOH,ΔG298K=71.17kJ/mol)。但由于CH4和CO2分子化学性质稳定,在低温条件下反应受动力学和热力学双重限制,导致反应难以进行;然而高温(通常>700℃)能够有效活化CH4和CO2分子,但是生成的乙酸不稳定会进一步分解为CO和H2,导致最终产物是合成气(CO和H2)。针对上述问题,本发明采取以下技术方案。
本发明提供了一种改性分子筛催化剂的制备方法,所述制备方法包括如下步骤:①用水蒸气钝化法、酸处理法、碱处理法、碱金属改性、碱土金属改性和稀土金属改性中的至少一种方法将分子筛改性;②将步骤①所得产品在等离子体气氛中350-500℃焙烧0.5-3h。
本发明所述水蒸气钝化法优选为:将分子筛加入到钝化管内,进行分子筛水蒸气钝化,350-750℃钝化1-5h,进水流量为1-5mL/h;钝化后用0.1-1.0mol/L的硝酸溶液进行酸洗1-5h,再用去离子水洗至中性,干燥。
本发明所述酸处理法优选为:在60-80℃下将分子筛浸泡于0.2-5.0mol/L的硝酸溶液中,浸泡3-6h后抽滤,干燥。
本发明所述碱处理法优选为:在60-80℃下将分子筛浸泡于0.1-0.3mol/L的碱溶液中,碱溶液为NaOH溶液或氨水,浸泡0.5-3h后抽滤,干燥。
本发明所述碱金属改性、碱土金属改性或稀土金属改性优选为:将分子筛与过量体积的金属盐溶液混匀,金属盐溶液的浓度为0.1-0.5mol/L,60-80℃搅拌1-2h,抽滤,用去离子水洗涤,干燥。
本发明所述碱金属优选为锂、钠、钾、铷、铯和钫中的至少一种。
本发明所述碱土金属优选为铍、镁、钙、锶、钡和镭中的至少一种。
本发明所述稀土金属优选为钪、钇、镧和铈中的至少一种。
本发明优选为所述分子筛为ZSM-5、ZSM-11、ZSM-12、TS-1、SAPO-34、S-1和MOR中的至少一种。
本发明优选为所述等离子体气氛为氢气、氩气、氦气、氮气和氧气中的至少一种。
本发明另一目的为提供一种上述方法制备的改性分子筛催化剂。
本发明又一目的为提供一种一步转化CH4和CO2制乙酸的方法,所述方法为:采用低温等离子体和上述改性分子筛催化剂的协同作用,活化CH4和CO2选择性生成乙酸。
本发明所述制乙酸的方法利用介质阻挡放电产生等离子体中的高能电子非弹性碰撞活化惰性CH4和CO2分子生成高活性物种(如CH4*、CO2*、CO*、CHx、H等),并在改性分子筛催化剂的作用下将活性物种转化为乙酸。
本发明优选为所述改性分子筛催化剂填充于介质阻挡放电等离子体区内。
本发明优选为所述CH4和CO2的摩尔比为0.5-2:1。
本发明优选为反应温度为25-200℃。
本发明优选为所述CH4和CO2在介质阻挡放电等离子体区的停留时间为4-8s。
本发明有益效果为:
CH4和CO2反应制乙酸是原子利用率100%的理想反应。本发明实现了在低温、常压条件下利用一步法将CH4和CO2转化为高附加值的乙酸,工艺简单,方法绿色,原子经济性高,解决了常规催化CH4和CO2反应需要高温(通常>700℃)的问题,同时提高了二者转化产物的附加值;
本发明提供了一种改性分子筛催化剂,在等离子体条件下具有较高的CH4和CO2转化率与乙酸选择性,乙酸选择性可达到55.4%,此时CH4和CO2的转化率分别为24.0%与25.5%。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
对比例1
一种催化CH4/CO2重整制乙酸的方法,采用催化剂活化CH4和CO2选择性生成乙酸;
反应条件为:所述催化剂由Si/Al为30的HZSM-5分子筛经550℃水蒸气钝化3h,进水流量为3mL/h,钝化后用0.6mol/L硝酸溶液酸洗3h,再用去离子水洗至中性,干燥得到;反应温度为60℃,所述CH4和CO2的摩尔比为1:1。
结论:在单独催化剂作用及上述反应条件下,CH4和CO2不发生转化。主要是因为CH4和CO2分子稳定性极高,采用常规催化法需要在高温(通常>700℃)下才能使CH4和CO2发生有效转化。
对比例2
一种等离子体CH4/CO2重整制乙酸的方法,采用低温等离子体活化CH4和CO2选择性生成乙酸;
反应器由两个同轴圆柱形玻璃管组成,内玻璃管外侧和外玻璃管内侧之间有水循环,用作接地电极;反应器的高压电极置于同轴玻璃管的轴线上;由无水乙醇和液氮的混合物组成冷阱置于反应器底部,以防止液态产物挥发;反应器的放电区长度为45mm,放电间隙为3mm;
反应条件为:反应温度为60℃,所述CH4和CO2的摩尔比为1:1,所述CH4和CO2在介质阻挡放电等离子体区的停留时间为5.65s,电源输入电压为40V,输入电流为1.00A,放电频率为9.0kHz。
结论:在上述反应条件下,采用等离子体技术可以实现CH4和CO2转化为乙酸,但乙酸选择性低,产物主要是CO和H2
对比例3
一种等离子体催化CH4/CO2重整制乙酸的方法,采用对比例2所述装置与所述反应条件通过等离子体催化活化CH4和CO2选择性生成乙酸;
与对比例2的区别为:将未改性的Si/Al为30的HZSM-5分子筛催化剂填充于介质阻挡放电等离子体区内。
结论:对比例3与对比例2相比,在介质阻挡放电等离子体区内引入未改性的分子筛催化剂后,原料气转化率与乙酸选择性略有提高,但原料气转化率与乙酸选择性仍较低。
实施例1
一种等离子体催化CH4/CO2重整制乙酸的方法,采用介质阻挡放电等离子体和改性HZSM-5分子筛催化剂的协同作用,活化CH4和CO2选择性生成乙酸;
与对比例3的区别为:利用改性后的HZSM-5分子筛催化剂与介质阻挡放电等离子体的协同作用来转化CH4和CO2;所述改性后的HZSM-5分子筛催化剂由Si/Al为30的HZSM-5分子筛经550℃水蒸气钝化3h,进水流量为3mL/h,钝化后用0.6mol/L硝酸溶液酸洗3h,再用去离子水洗至中性,干燥,并于N2/O2(N2占75%)的等离子体气氛中450℃焙烧3h得到;
反应条件为:反应温度为60℃,所述CH4和CO2的摩尔比为1:1,所述CH4和CO2在介质阻挡放电等离子体区的停留时间为5.65s,电源输入电压为40V,输入电流为1.00A,放电频率为9.0kHz。
结论:实施例1与对比例3相比,原料气转化率与乙酸选择性大幅提高,说明水蒸气钝化改性能够显著提高HZSM-5分子筛催化剂的反应性能。
实施例2
一种等离子体催化CH4/CO2重整制乙酸的方法,与实施例1的区别为:钝化温度为400℃。
实施例3
一种等离子体催化CH4/CO2重整制乙酸的方法,与实施例1的区别为:钝化温度为700℃。
结论:实施例1、2、3仅改变水蒸气钝化温度,所得原料气转化率和乙酸选择性差异显著,表明水蒸气钝化温度对改性后的HZSM-5分子筛催化剂的反应性能具有显著影响。
实施例4
一种等离子体催化CH4/CO2重整制乙酸的方法,与实施例1的区别为:所述改性后的HZSM-5分子筛催化剂由Si/Al为30的HZSM-5分子筛在80℃下将分子筛浸泡于0.2mol/L硝酸溶液中,浸泡3h后抽滤,干燥,并于N2/O2(N2占75%)的等离子体气氛中450℃焙烧3h得到。
实施例5
一种等离子体催化CH4/CO2重整制乙酸的方法,与实施例1的区别为:所述改性后的HZSM-5分子筛催化剂由Si/Al为30的HZSM-5分子筛在80℃下将分子筛浸泡于0.2mol/L氨水中,浸泡3h后抽滤,干燥,并于N2/O2(N2占75%)的等离子体气氛中450℃焙烧3h得到。
实施例6
一种等离子体催化CH4/CO2重整制乙酸的方法,与实施例1的区别为:所述改性后的HZSM-5分子筛催化剂由Si/Al为30的HZSM-5分子筛与过量体积的Na盐溶液混匀,Na盐溶液的浓度为0.2mol/L,80℃搅拌2h,抽滤,用去离子水洗涤,干燥,并于N2/O2(N2占75%)的等离子体气氛中450℃焙烧3h得到。
结论:实施例1、4、5、6仅改变分子筛的改性方法,所得原料气转化率和乙酸选择性差异显著,表明改性方法对改性HZSM-5分子筛催化剂的反应性能具有显著影响。
实施例7
一种等离子体催化CH4/CO2重整制乙酸的方法,与实施例6的区别为:所述分子筛为TS-1。
实施例8
一种等离子体催化CH4/CO2重整制乙酸的方法,与实施例6的区别为:所述分子筛为S-1。
结论:实施例6、7、8仅改变分子筛种类,所得原料气转化率和乙酸选择性差异显著,表明分子筛的种类对改性分子筛催化剂的反应性能具有显著影响。
实施例9
一种等离子体催化CH4/CO2重整制乙酸的方法,与实施例1的区别为:于H2的等离子体气氛中焙烧。
实施例10
一种等离子体催化CH4/CO2重整制乙酸的方法,与实施例1的区别为:于He的等离子体气氛中焙烧。
结论:实施例1、9、10仅改变焙烧气氛,所得原料气转化率和乙酸选择性有差异,表明焙烧气氛对改性分子筛催化剂的反应性能有影响。
上述对比例1-3、实施例1-10的结果见下表1。
表1
CO2转化率 CH4转化率 乙酸选择性
对比例1 0.0% 0.0% 0.0%
对比例2 6.8% 15.9% 7.1%
对比例3 7.8% 19.4% 16.8%
实施例1 27.6% 23.0% 52.5%
实施例2 12.5% 21.1% 29.3%
实施例3 19.6% 22.7% 31.0%
实施例4 17.3% 21.9% 27.1%
实施例5 7.2% 16.5% 13.9%
实施例6 24.9% 22.8% 43.6%
实施例7 22.5% 20.1% 38.6%
实施例8 17.9% 19.4% 33.1%
实施例9 26.9% 25.6% 45.2%
实施例10 25.5% 24.0% 55.4%

Claims (1)

1.一种低温等离子体和改性分子筛催化剂协同一步转化CH4和CO2制乙酸的方法,其特征在于:采用介质阻挡放电等离子体和改性分子筛催化剂的协同作用,活化CH4和CO2选择性生成乙酸;
所述分子筛为ZSM-5;所述改性分子筛催化剂为水蒸气钝化法改性:分子筛350-750℃钝化1-5h,钝化后酸洗,再水洗至中性,干燥;所述改性分子筛催化剂填充于介质阻挡放电等离子体区内,改性分子筛催化剂在等离子体气氛中350-500℃焙烧0.5-3h,所述等离子体气氛为氦气、氧气、氮气中的至少一种;
所述CH4和CO2的摩尔比为0.5-2:1,活化的反应温度为25-200℃,CH4和CO2在介质阻挡放电等离子体区的停留时间为4-8s。
CN202010525560.4A 2020-06-10 2020-06-10 一种低温等离子体和改性分子筛催化剂协同一步转化ch4和co2制乙酸的方法 Active CN111672543B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010525560.4A CN111672543B (zh) 2020-06-10 2020-06-10 一种低温等离子体和改性分子筛催化剂协同一步转化ch4和co2制乙酸的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010525560.4A CN111672543B (zh) 2020-06-10 2020-06-10 一种低温等离子体和改性分子筛催化剂协同一步转化ch4和co2制乙酸的方法

Publications (2)

Publication Number Publication Date
CN111672543A CN111672543A (zh) 2020-09-18
CN111672543B true CN111672543B (zh) 2023-07-04

Family

ID=72454399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010525560.4A Active CN111672543B (zh) 2020-06-10 2020-06-10 一种低温等离子体和改性分子筛催化剂协同一步转化ch4和co2制乙酸的方法

Country Status (1)

Country Link
CN (1) CN111672543B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425362B (zh) * 2020-10-14 2023-10-31 中国石油化工股份有限公司 合成低碳烯烃的催化剂及其制备方法和应用
CN115970742B (zh) * 2022-12-20 2024-10-08 太原理工大学 一种低温氧化ch4偶联co2直接制含氧化物的催化剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2486192A1 (en) * 2003-10-29 2005-04-29 Nippon Shokubai Co., Ltd. Modifying catalyst for partial oxidation and method for modification
CN101143335A (zh) * 2007-10-11 2008-03-19 福州大学 等离子体反应器催化剂及其制备方法和用途
JP2010285339A (ja) * 2009-05-11 2010-12-24 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 木酢液の低温改質方法
CN107442106A (zh) * 2017-07-25 2017-12-08 南通斐腾新材料科技有限公司 VOCs催化分解用复合金属氧化物催化剂的制备方法
CN109603707A (zh) * 2018-12-26 2019-04-12 大连海事大学 一种ch4/co2低温直接合成c1-c4醇的装置及其合成方法
CN110586111A (zh) * 2019-09-17 2019-12-20 大连海事大学 一种用于甲烷水蒸气重整制氢的复合催化剂的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1103330C (zh) * 2000-09-30 2003-03-19 太原理工大学 一种非均相催化体系中合成乙酸的方法
US20100133171A1 (en) * 2009-03-27 2010-06-03 Chunqing Liu Polybenzoxazole Polymer-Based Mixed Matrix Membranes
CN103143385A (zh) * 2013-02-07 2013-06-12 大连理工大学 一种改性分子筛催化剂用于丙烷催化裂解的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2486192A1 (en) * 2003-10-29 2005-04-29 Nippon Shokubai Co., Ltd. Modifying catalyst for partial oxidation and method for modification
CN101143335A (zh) * 2007-10-11 2008-03-19 福州大学 等离子体反应器催化剂及其制备方法和用途
JP2010285339A (ja) * 2009-05-11 2010-12-24 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 木酢液の低温改質方法
CN107442106A (zh) * 2017-07-25 2017-12-08 南通斐腾新材料科技有限公司 VOCs催化分解用复合金属氧化物催化剂的制备方法
CN109603707A (zh) * 2018-12-26 2019-04-12 大连海事大学 一种ch4/co2低温直接合成c1-c4醇的装置及其合成方法
CN110586111A (zh) * 2019-09-17 2019-12-20 大连海事大学 一种用于甲烷水蒸气重整制氢的复合催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
微浓度过氧化氢的快速分光光度法检测;任东;陈芳;杨艳;罗敏;;现代化工(第12期);11-16 *

Also Published As

Publication number Publication date
CN111672543A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
Yuliati et al. Photocatalytic conversion of methane
CN111672543B (zh) 一种低温等离子体和改性分子筛催化剂协同一步转化ch4和co2制乙酸的方法
CN108160104A (zh) 一种用于二氧化碳一步加氢制备芳烃的催化剂及其制备方法和应用
CN110538669B (zh) 一种用于合成气制含氧化学品铜–钴金属碳化物催化剂及其制备方法
Zhang et al. Hydrogenative cyclization of levulinic acid into γ-valerolactone by photocatalytic intermolecular hydrogen transfer
CN111675609B (zh) 一种低温等离子体和负载型铜基催化剂协同一步转化ch4和co2制乙酸的方法
CN111302885B (zh) 生物乙醇一锅法高效合成乙烯和1,3-丁二烯的方法
CN111233604B (zh) 一种光催化脂肪酸脱羧制备烷烃的方法
Jin et al. The role of modified manganese perovskite oxide for selective oxidative dehydrogenation of ethane: Not only selective H2 combustion but also ethane activation
CN111359644B (zh) 用于二甲醚水蒸气重整制氢的非贵金属基碳化钼催化剂及其制备方法和应用
CN113354533A (zh) 一种利用木质纤维素生物质制取对苯二甲酸的方法
CN115636726B (zh) 一种常温下可见光催化烃类化合物与水原子经济反应产氢和含氧有机物方法
CN113713799A (zh) 一种金属负载型催化剂及其制备方法与应用
WO2016083313A1 (en) Process for deoxygenation of alcohols by co with formation of alkanes and/or long chain alcohols
CN115611696A (zh) 一种低温、低功率的低碳醇类化合物的微波处理工艺
CN113083296B (zh) 一种与非热等离子体协同的用于二氧化碳加氢还原的催化剂及其制备方法和应用
You et al. Synthesis of dimethyl ether from methane mediated by HBr
CN102649731B (zh) 由co气相偶联生产草酸酯的方法
CN114471744B (zh) 一种铁基催化剂的预处理方法及其应用
CN117696056B (zh) 一种多元掺杂铜铁基催化剂、其制备方法及应用
CN104692994A (zh) 通过微通道反应器合成乙叉降冰片烯的方法
CN102219681B (zh) Co气相偶联制草酸酯的方法
CN118162194B (zh) 一种催化二氧化碳加氢制备二甲醚的催化剂及其制备方法与应用
CN113509938B (zh) 一种用于制备一氧化碳的催化剂及采用其制备一氧化碳的方法
CN114605215B (zh) 甲烷氧化偶联制乙烯的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant