CN111662413B - 一种am型聚苯乙烯微球氧氟沙星印迹聚合物的制备方法及应用 - Google Patents

一种am型聚苯乙烯微球氧氟沙星印迹聚合物的制备方法及应用 Download PDF

Info

Publication number
CN111662413B
CN111662413B CN202010584769.8A CN202010584769A CN111662413B CN 111662413 B CN111662413 B CN 111662413B CN 202010584769 A CN202010584769 A CN 202010584769A CN 111662413 B CN111662413 B CN 111662413B
Authority
CN
China
Prior art keywords
psa
levofloxacin
pam
ofloxacin
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010584769.8A
Other languages
English (en)
Other versions
CN111662413A (zh
Inventor
李丽荣
李延斌
胡译之
何红芳
唐风娣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhaoqing Medical College
Original Assignee
Zhaoqing Medical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhaoqing Medical College filed Critical Zhaoqing Medical College
Priority to CN202010584769.8A priority Critical patent/CN111662413B/zh
Publication of CN111662413A publication Critical patent/CN111662413A/zh
Priority to US17/243,133 priority patent/US20210402371A1/en
Application granted granted Critical
Publication of CN111662413B publication Critical patent/CN111662413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/327Polymers obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3225Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating involving a post-treatment of the coated or impregnated product
    • B01J20/3227Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating involving a post-treatment of the coated or impregnated product by end-capping, i.e. with or after the introduction of functional or ligand groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3278Polymers being grafted on the carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0424Elimination of an organic solid phase containing halogen, nitrogen, sulphur or phosphorus atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Abstract

本发明公开了一种AM型聚苯乙烯微球氧氟沙星印迹聚合物的制备方法及应用。采用单体丙烯酰胺和引发剂过硫酸铵在改性聚苯乙烯原胺树脂表面进行接枝聚合,得到接枝颗粒;接着做接枝微粒PAM/PSA对左氧氟沙星溶液的吸附试验,然后以二甘油醚为交联剂制备了左氧氟沙星表面分子印迹材料MIP‑PAM/PSA。本发明可以有效地对混旋的氧氟沙星起到分离提纯的作用,在工业上可以为分离和富集s型氧氟沙星提供一种的新的方法和材料,由于S‑氧氟沙星对革兰阴性菌和阳性菌的抗菌功效是其对映体R‑氧氟沙星的8‑128倍,因此本技术可以较大程度的提高药物的药效。

Description

一种AM型聚苯乙烯微球氧氟沙星印迹聚合物的制备方法及 应用
技术领域
本发明涉及一种AM型聚苯乙烯微球氧氟沙星印迹聚合物的制备方法及应用,属于印迹材料制备技术领域。
背景技术
表面分子印迹技术将其识别位点建立在固相基质的外层以及表面,从而使结合位点容易获得,物质迁移速率加快,提高印迹材料的分离效率,可以降低非特异性吸附,减少“包埋”现象。药物分离是制药工业和临床药物分析关注的热点话题,利用表面印迹聚合物材料在这方面具有广阔的应用前景。
氧氟沙星,作为最受欢迎的第二代氟喹诺酮类广谱抗菌药物,目前被广泛用于治疗各种细菌感染。氧氟沙星的左旋对映体:S-氧氟沙星为黄色或灰黄色结晶性粉末,微溶于水,乙醇,极易溶于乙酸。S-氧氟沙星具有广谱抗菌作用,S-氧氟沙星对革兰阴性菌和阳性菌的抗菌功效是其对映体R-氧氟沙星的8-128倍。S-氧氟沙星是通过抑制细菌DNA旋转酶的活性阻止细菌DNA的合成和复制致使细菌快速死亡。
氧氟沙星拆分方法有高效液相色谱法、毛细管电泳法、共结晶法拆分法、在分子印迹方面有磁性分子印迹材料和无机-有机杂化分子印迹等方法进行印迹拆分,
发明内容
本发明旨在提供一种AM型聚苯乙烯微球氧氟沙星印迹聚合物的制备方法及应用。
通过分子设计,凭借功能单体丙烯酰胺(AM)与模板分子S-氧氟沙星之间的氢键的相互作用,在聚苯乙烯伯胺微球(PSA)表面制备S-氧氟沙星表面印迹材料,通过模板的空间空穴的特殊性实现氧氟沙星的手性拆分。
本发明提供了一种AM型聚苯乙烯微球氧氟沙星印迹聚合物的制备方法,采用单体丙烯酰胺(AM)和引发剂过硫酸铵在改性聚苯乙烯原胺树脂表面进行接枝聚合,得到接枝颗粒;接着做接枝微粒PAM/PSA对左氧氟沙星溶液的吸附试验,然后以二甘油醚(EGDE)为交联剂制备了MIP-PAM/PSA。
上述制备方法具体包括以下步骤:
(1)聚苯乙烯伯胺树脂微球的活化
将聚苯乙烯伯胺树脂微球用N,N-二甲基甲酰胺溶液(DMF)浸泡6-8h,微球用蒸馏水充分清洗,并在真空中干燥20-28小时至恒定重量,以获得活化的聚丙乙烯微球;
(2)AM在聚苯乙烯伯胺树脂微球上的接枝
活化聚丙烯伯胺树脂微球的0.3-0.5g添加到装有电动搅拌器和回流冷凝器的四颈烧瓶中,然后加入8-12ml丙烯酰胺单体(AM)和乙醇的溶剂,然后除去氮气,并加热;在达到25-35 ℃后,加过硫酸铵引发剂,该反应于25-35℃的温度条件下6-10h后结束;微球体反复用蒸馏水洗涤,真空至恒重。
制备PAM/PSA的反应原理如下:
PAM/PSA接枝度的测定
采用称重法测定功能接枝微粒PAM/PSA上表面大分子AM的接枝情况(mg/g)。
上式中m0(g)为未接枝PAM/PSA的质量,m(g)为接枝后PAM/PSA的质量,GD为接枝度(mg/g)。
(3)表面分子印迹材料的制备:
接枝微粒PAM/PSA对左氧氟沙星会产生强的吸附:3个小时可达吸附平衡;然后通过表面印迹技术,使用已经饱和吸附的AM接枝聚苯乙烯伯胺树脂微球,加入乙醇溶液及0.005g/L 左氧氟沙星溶液作为溶剂,二乙醇二缩水甘油醚(EGDE)为交联剂,成功地制得左氧氟沙星表面分子印迹材料MIP-PAM/PSA。
表面印迹材料MIP-PAM/PAS的制备的机理如下所示:
上述制备方法中,首先,用DMF(N-N’二甲基酰胺)用来浸泡PSA树脂,使得高分子表面的基团活化,在有机乙醇溶剂中,以过硫酸铵为引发剂,通过自由基聚合反应,将功能单体丙烯酰胺(AM)接枝到聚苯乙烯伯胺树脂微球,使用红外光谱法(FTIR)接枝微粒被检测的特点。制备PAM/PSA的最佳制备条件是:温度为30℃;溶剂为乙醇;单体AM用量采用11.01%(溶液的质量分数);引发剂占单体的质量分数为8.80%,然后接枝聚合,反应8h,接枝度为47.69g/100g。
上述接枝微粒PAM/PSA对左氧氟沙星的吸附过程中,在非水介质中,可以生成在接枝聚合物PAM和左氧氟沙星的大分子链的羟基基团间产生氢键作用。在这种相互作用下,接枝微粒PAM/PSA对氧氟沙星会产生强的吸附:3个小时可达吸附平衡,最佳吸附温度为35℃;吸附pH=3时,最大吸附量为113mg/g。将制备的分子印迹聚合物通过红外光谱(FTIR)进行表征。
本发明还提供了作为模板分子的左氧氟沙星印迹聚合物MIP-PAM/PSA的识别性能。
左氧氟沙星表面印迹材料具有良好的识别选择性。另外,对影响印迹材料选择性的主要因素进行了测试:交联剂EGDE用量为0.3ml,当温度为30℃时,最佳吸附量:118mg/g,且有良好识别选择性。
本发明的有益效果:
本发明可以有效地对混旋的氧氟沙星起到分离提纯的作用,在工业上可以为分离和富集 s型氧氟沙星提供一种的新的方法和材料,由于S-氧氟沙星对革兰阴性菌和阳性菌的抗菌功效是其对映体R-氧氟沙星的8-128倍,因此本技术可以较大程度的提高药物的药效。
附图说明
图1为不同溶剂下制得接枝微粒PAM/PSA的接枝度。
图2为不同单体用量下制得接枝微粒PAM/PSA的接枝度。
图3不同引发剂用量下制得接枝微粒PAM/PSA的接枝度。
图4为左氧氟沙星乙醇溶液的标准曲线。
图5为功能接枝微粒PAM/PSA吸附左氧氟沙星的吸附动力学曲线。
图6为PSA、PAM/PSA、MIP-PAM/PSA的红外光谱图。
图7为印迹聚合物MIP-PAM/PSA的吸附量Qe随交联剂用量的变化图。
图8为印迹聚合物MIP-PAM/PSA的吸附量Qe随温度的变化图。
图9为印迹材料MIP-PAM/PSA对左氧氟沙星和氧氟沙星的吸附图。
图10为非印迹材料NMIP-PAM/PSA对氧氟沙星和它的单一对映体的吸附图。
图11为印迹聚合物MIP-PAM/PSA对左氧氟沙星吸附的重复使用效果。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
实施例1:接枝微粒PAM/PSA的制备过程:
包括以下步骤:
(1)聚苯乙烯微球的活化
将聚苯乙烯伯胺树脂微球用N,N-二甲基甲酰胺溶液(DMF)浸泡6-8h,用蒸馏水对微球进行充分洗涤并抽滤,真空干燥20-28h至恒重,即可制得表面有较多活化氨基的聚丙乙烯伯胺树脂微球。
(2)在聚苯乙烯伯胺树脂微球上接枝丙烯酰胺
将0.3-0.5g活化后的聚丙乙烯伯胺树脂微球加入到装有电动搅拌器,回流冷凝管的四口瓶中,再加入8-12ml占溶液的质量分数10-12%的丙烯酰胺单体(AM)和40-60ml乙醇溶剂,通 26-32min氮气来排除反应体系中的空气,升温加热,达到30℃后加入0.3-0.5g的过硫酸铵引发剂,恒温条件下反应6-10h后结束反应,用蒸馏水反复洗涤微球并抽滤,真空干燥22-26h 至恒重,即制得功能接枝微粒PAM/PSA。
(3)接枝微粒PAM/PSA的表征
采用KBr压片法测定其红外吸收光谱如图6所示。
通过以下公式计算PAM/PSA的接枝度。
上式中m0(g)为未接枝PAM/PSA的质量,m(g)为接枝后PAM/PSA的质量,GD为接枝度(mg/g)。
本实施例研究了溶剂、温度(℃)、丙烯酰胺(AM)用量和引发剂过硫酸铵用量的影响。用控制变量法进行实验,以探究确定最合适的反应条件。研究接枝PAM/PSA反应的机理。
1以溶剂为变量
不同溶剂对接枝度的影响
称取0.4g活性聚丙乙烯伯胺树脂微球至几个100ml的四颈瓶中,加入占溶液的质量分数11.01 %单体丙烯酰胺(AM)10mL,分别加入溶剂水、乙醇:水=1:1、乙醇、二甲基亚砜、1, 2-二氯乙烷50mL。设置反应温度40℃,反应体系中的空气用氮气吹扫30min,再加引发剂过硫酸铵0.4g,8个小时,终止反应,洗涤抽滤,在真空干燥箱中真空干燥24小时。
测定不同溶剂下制得接枝微粒PAM/PSA的接枝度,并进行比较,确定最佳溶剂为乙醇。如图1所示。由图1实验数据可知:当其他条件都相同时,用乙醇做溶剂时接枝度最高,其原因可能是在乙醇中羧基和接枝微粒的氢键作用以及静电作用,而在其他溶剂中例如“水”、“二甲基亚砜”“1,2-二氯乙烷”其氢键作用较小,所以确定乙醇为最佳溶剂。
2单体用量对接枝度的影响
分别称取0.4g活化后的聚丙乙烯伯胺树脂微球置于若干100ml的四口瓶中,分别加入单体丙烯酰胺(AM)4.10%、6.47%、8.77%、11.01%、13.19%(占溶液的质量分数)10mL和乙醇溶剂50ml,设置反应温度为30℃,通氮气30min排出反应体系中的空气,再加引发剂过硫酸铵 0.4g,8h后结束反应,洗涤抽滤,在真空干燥箱中真空干燥24h。
测定不同单体用量下制得接枝微粒PAM/PSA的接枝度并比较以获得单体的最佳用量。由图2 得出,在其它条件一定的情况下,接枝度随溶液中单体的质量分数的增加先缓慢增加,反应到一定程度达到最大后又减小,当AM的质量分数为11.01%(溶液质量的百分数)时接枝度最大:476.89mg/g.其原因是体系中的氨基数是一定的,而随着单体质量的增大(底物浓度变大),接枝速率加快,但当AM质量分数增大至11.01%时,因接枝聚合反应太快导致(1)伯胺树脂上的氨基越来越少。(2)产生的聚合物在伯胺树脂表面形成致密的阻隔层,使反应速率变慢,接枝度变小。
3引发剂用量对接枝度的影响
分别称取0.4g活化后的聚丙乙烯伯胺树脂微球置于若干100ml的四口瓶中,加入占溶液的质量分数11.01%单体丙烯酰胺(AM)10mL和50ml乙醇溶剂,设置反应温度为30℃,通氮气30min排出反应体系中的空气,再分别加入引发剂过硫酸铵0.1g(单体质量的2.04%)、0.2g (单体质量的4.09%)、0.3g(单体质量的6.14%)、0.4g(单体质量的8.18%),0.5g(单体质量的10.23%)开始反应,8h后结束反应,洗涤抽滤,在真空干燥箱中真空干燥24h。
测定不同量引发剂下制得接枝微粒PAM/PSA的接枝度,并进行比较,得出引发剂最佳用量。如图3显示,接枝聚合随引发剂过硫酸铵质量的增大而先增大后减小,当过硫酸铵为0.43g (单体质量的8.80%)时最大接枝度为310.79mg/g。原因可能是:(1)前期接枝到伯胺微球上的PAM大分子链相互交织,使其在伯胺微球表面形成致密的聚合物阻隔层,使聚合速率变慢.当过硫酸盐的质量分数超过8.80%时,聚合速率过快,短时间内就会在伯胺球表面形成致密的阻隔层而导致AM的接枝聚合受阻,使接枝速率变慢,接枝度变小。(2)引发剂的量过大会加速单体AM间的均聚反应和减慢单体AM与伯胺微球的接枝聚合速率。
实施例2:
接枝微粒PAM/PSA对左氧氟沙星溶液的吸附实验
1、左氧氟沙星标准曲线的测定
准确配制0.1g/L的左氧氟沙星溶液于100ml容量瓶中,分别吸取0.1g/L的左氧氟沙星溶液 0.25、0.50、0.75、1.00、1.25、1.50、1.75mL,置于100mL容量瓶中,用乙醇溶剂进行定容,即把左氧氟沙星溶液稀释成浓度梯度为0.001、0.002、0.003、0.004、0.005、0.006,0.007g/L 的溶液。用乙醇做参比液,将各溶液的吸光度在299.0纳米的波长进行测定。然后作吸光度A 和C(C为左氧氟沙星浓度)的关系曲线图,获得左氧氟沙星溶液的标准曲线。如图4所示。
图4为左氧氟沙星乙醇溶液的标准曲线:进行线性拟合后,相关度R2=0.9998,线性方程为A=104.41C+0.137。由此公式结合吸附量计算公式则可以计算出印迹材料MIP-PAM/PSA 对左氧氟沙星分子的吸附量。
2 PAM/PSA吸附动力学曲线的测定
分别称取0.05g的接枝微粒PAM/PSA于2个50ml的锥形瓶中,分别准确移取25ml已配制好的0.004g/L的溶液于加了接枝微粒的锥形瓶中,另外分别移取25ml的0.004g/L溶液倒入 2个空的锥形瓶中。将4个锥形瓶封口,置于恒温振荡箱中,30℃恒温振荡。0.5h后取出锥形瓶,静置离心,取上清液,分别测其紫外吸收强度,记为吸附A与对照A,根据标准曲线方程分别计算其浓度,按下式计算吸附量。
式中,Qe(mg/g)是吸附材料接枝微粒PAM/PSA对左氧氟沙星的平衡吸附量;V(mL)是左氧氟沙星溶液的选定体积。C0(g/L)是左氧氟沙星溶液的初始浓度。Ce(g/L)是在吸附平衡后,左氧氟沙星在上清液中的浓度。m(g)是所选择的接枝颗粒PAM/PSA的质量。
同上,在1h、1.5h、2h、2.5h、3h、3.5h、4h后分别取出锥形瓶,静置取上清液,测紫外吸收强度,计算相应的的浓度与吸附量,绘制吸附动力学曲线,得出最佳吸附时间。
从图5中可以看到,功能接枝微粒PAM/PSA吸附左氧氟沙星的量随着时间的增加而递增,当反应时间达到3h后,吸附量基本平衡,存在小范围的波动,表明已达到吸附平衡。吸附饱和时间为3h,饱和吸附量约为110mg/g。
3 PAM/PSA吸附等温曲线的测定
准确吸取已配制好的0.1g/L左氧氟沙星溶液0.5、0.75、1、1.25、1.5、1.75、2、2.25mL,分别置于100mL容量瓶中,用乙醇溶剂进行定容,把左氧氟沙星溶液稀释成浓度梯度为0.002、 0.003、0.004、0.005、0.006、0.007、0.008g/L的溶液,分别准确移取25ml于已称取好0.05g 的接枝微粒PAM/PSA的7个50ml的锥形瓶中,剩余溶液分别全部倒入7个空的锥形瓶中贴好相应的标签,封口,30℃下恒温振荡,进行吸附反应。3h后全部取出,静置离心,取上清液,测其紫外吸收强度,根据公式计算相应的的浓度与吸附量,绘制等温吸附曲线,得出最佳吸附浓度。
结果表明:接枝微粒PAM/PSA对左氧氟沙星的吸附随着左氧氟沙星浓度的增加而增加,这种吸附作用主要来源于接枝微粒与左氧氟沙星之间的氢键作用与静电作用。当浓度达到 0.005g/L时达到吸附平衡,吸附量为113mg/g。PAM/PSA活化后的氨基电负性大可与羟基的氢原子进行氢键作用;与此同时,接枝化合物中的氮电负性比氧小,显正电荷,而部分羧基电离后带负电荷,两者进行静电相互作用。
4吸附时温度对吸附左氧氟沙星的影响
分别称取0.05g PAM/PSA接枝微粒,置于2个50ml锥形瓶中。准确吸取已配制好的0.1g/L 左氧氟沙星溶液1.25mL,分别置于25mL容量瓶中,用乙醇溶剂进行定容,将其稀释成浓度梯度为0.005g/L的溶液,分别准确移取25ml于已称取好0.05g的接枝微粒PAM/PSA的50ml 的锥形瓶中,在移取25ml溶液倒入空的锥形瓶中贴好相应的标签,封口,分别于20、30、 40、50、60℃下恒温振荡,进行吸附反应。3h后全部取出,静置离心,取上清液,测其紫外吸收强度,根据吸附量公式计算相应的的浓度与吸附量,绘制不同温度下的吸附曲线,得出最佳吸附温度。
结果表明:功能接枝微粒PAM/PSA吸附左氧氟沙星的量随着温度的增加,先升高后降低。正如我们前面讨论过的,影响接枝微粒PAM/PSA对左氧氟沙星吸附的作用力,主要时来源于接枝微粒与左氧氟沙星之间的的氢键作用和静电作用。但是不管是静电作用还是氢键作用都是化学吸附,这种吸附一般为放热过程,在35℃前由于体系的温度较低吸附量呈递增趋势,35℃后由于反应温度和反应本身的放热作用导致吸附量减低。所以我们不难看出在35℃时PPAM/PSA微粒与左氧氟沙星分子之间的作用力最强,吸附量最大为102.5mg/g。
5 PH对接枝微球PAM/PSA吸附左氧氟沙星的影响
分别称取0.05g的接枝微粒PAM/PSA于6个50ml的锥形瓶中,贴好标签记为1号、2号、 3号、4号、5号、6号,再取6个锥形瓶标原1、原2、原3、原4、原5、原6,然后在6个 25mL容量瓶中各加入已经配好的0.005g/L的左氧氟沙星溶液3mL,分别用pH为2.2、3、4、 5、6的磷酸氢二钠-柠檬酸缓冲液定容至刻度,在对应的锥形瓶中分别加入25mL,封口,30℃下恒温振荡,进行吸附反应。3h后全部取出,静置取上清液,测紫外吸收强度,根据吸附量公式计算相应的的浓度与吸附量,考察PH对接枝微球PAM/PSA吸附左氧氟沙星的影响。
结果表明,功能接枝微粒PAM/PSA吸附左氧氟沙星的量随着pH的的增加先增加后减少。吸附量在pH为3的时候达到了最大为100mg/g。首先我们知道,随着PH的增加,左氧氟沙星的羧基电离度增加,所以接枝微粒和左氧氟沙星间的作用力也在增加。但是两者间也有氢键作用,在当PH<3时,左氧氟星的羧基电离度很小,这时主要考虑两者间的作用力是氢键作用。当PH>3时,氢键作用变小,两者间吸附作用变小,平衡吸附量就变小。
实施例3:左氧氟沙星表面印迹材料MIP-PAM/PSA的制备由前面探究的结果可知接枝微粒PAM/PSA对左氧氟沙星的最佳吸附条件,从而制得饱和吸附的接枝微粒PAM/PSA。在此基础上制备印迹聚合物材料MIP-PAM/PSA。具体包括以下步骤:
(1)左氧氟沙星表面印迹材料MIP-PAM/PSA的制备取泡过的已经活化的聚丙乙烯伯胺树脂微球PSA0.4g,50ml0.005g/L左氧氟沙星乙醇溶液,10ml 11.01%丙烯酰胺单体(溶液质量分数),0.4g引发剂过硫酸铵,置于四颈烧瓶中,加入0.3ml交联剂EGDE,通氮气30min排去体系中的空气,在温度为30℃的条件下搅拌6小时。反应完成后,加入10毫升乙酸和40毫升甲醇,恒温搅拌3小时,洗去左氧氟沙星模板。在真空干燥箱中干燥8小时后,得到左氧氟沙星表面分子印迹材料MIP-PAM/PSA。
(2)左氧氟沙星表面印迹材料MIP-PAM/PSA的表征
红外吸收图谱,采用KBr压片法测定,通过观察材料所含的各个官能团,确定是否交联成功。图6为PSA、PAM/PSA、MIP-PAM/PSA的红外光谱图,从图中可以看出1560-1650cm-1为-NH2基团的吸收峰。1700cm-1是AM的羰基特征峰。由此可见AM接枝到了伯胺树脂微球上。而 2850-2930cm-1为亚甲基的特征峰。1470cm-1碳氢面内弯曲,1600-1700cm-1为酰胺键,1400cm-1为碳氮伸展酰胺特征峰,是印迹材料的主要基团。由此表明成功制出了印迹材料MIP-PAM/PSA。
以下对印迹材料的制备中的各种因素的影响进行了研究。
1、交联剂用量对印迹材料合成的影响
分别称取0.3-0.5g活化后的聚丙乙烯伯胺树脂微球置于若干100ml的四口瓶中,加入8-12ml 单体、45-55ml乙醇作溶剂的0.004-0.006g/L左氧氟沙星溶液,分别称取0.05-0.4ml交联剂 EGDE,设置反应温度为25-35℃,通氮气25-35min排出反应体系中的空气,后加入0.3-0.5g 过硫酸铵反应搅拌4-8小时。反应结束后加入8-12ml乙酸和35-45ml甲醇,恒温搅拌2-4h以洗去左氧氟沙星模板,抽滤干燥。
分别称取0.04-0.06g的印迹材料MIP-PAM/PSA于5个50ml的锥形瓶中,贴好标签记为1号、 2号、3号、4号、5号,再取5个锥形瓶作空白对照,然后在10个锥形瓶中各加入已经配好的0.004-0.006g/L的左氧氟沙星溶液,封口,30-40℃下恒温振荡,进行吸附反应。4-6h后全部取出,静置取上清液,测紫外UV吸收强度,根据式2.2计算相应的的浓度与吸附量,考察交联剂用量对印迹材料吸附左氧氟沙星的影响。
如图7显示,印迹聚合物MIP-PAM/PSA的吸附量Qe随交联剂用量的增加先增加后减少,交联剂用量为0.3mL时,具有最大的吸附量,为105mg/g.当交联剂用量小于0.3ml,由于印迹聚合物的空穴不能稳定地保持,降低了其的识别能力。交联剂用量超过0.3ml又破坏了印迹效果,使印迹聚合物的特异性识别点减少。所以当交联剂用量到达0.3mL后吸附量随交联剂用量升高反而降低.由实验得出印迹合成的最佳交联剂用量为0.3mL。
2温度对印迹合成的影响
分别称取0.3-0.5g活化后的聚丙乙烯伯胺树脂微球置于若干100ml的四口瓶中,加入8-12ml 单体、45-55ml乙醇作溶剂的0.004-0.006g/L左氧氟沙星溶液、0.3ml交联剂EGDE,设置反应温度为20、30、40、50、60℃,通氮气20-40min排出反应体系中的空气,后加入0.3-0.5g 过硫酸铵。分别反应搅拌4-8小时。反应结束后加入8-12ml乙酸和35-45ml甲醇,恒温搅拌 2-4h以洗去左氧氟沙星模板。抽滤干燥8-10h。
分别称取0.03-0.06g的印迹材料于5个50ml的锥形瓶中,贴好标签记为1号、2号、3号、4 号、5号,再取5个锥形瓶作空白对照,然后在10个锥形瓶中各加入已经配好的0.005g/L的左氧氟沙星溶液,封口,30-40℃下恒温振荡,进行吸附反应。2-4h后全部取出,静置取上清液,测紫外UV吸收强度,根据吸附量公式计算相应的的浓度与吸附量,考察温度对印迹材料吸附左氧氟沙星的影响。
如图8显示,印迹聚合物MIP-PAM/PSA的吸附量Qe随温度的增加先增加后减少温度为 30摄氏度时,具有最大的吸附量,为118mg/g。当温度较低时,引发步骤较慢,聚苯乙烯伯胺微球表面的自由基数量较少;温度升高,引发会变快,但是由于静电作用和氢键作用大多为放热反应,随着反应温度的升高,不利于反应进行。所以当温度超过30℃后接枝球的接枝度随温度升高反而降低。
实施例4:
印迹材料MIP-PAM/PSA对左氧氟沙星识别性能的研究
1吸附等温线的测定
准确吸取已配制好的0.05-0.15g/L左氧氟沙星溶液0.50、0.75、1.00、1.25、1.50、1.75、2.00mL,分别置于25mL容量瓶中,用乙醇溶剂进行定容,即把左氧氟沙星溶液稀释成浓度梯度为 0.002、0.003、0.004、0.005、0.006、0.007g/L的溶液,分别准确移取25ml于已称取好0.05-0.15g 的印迹材料MIP-PAM/PSA的6个50ml的锥形瓶中,取20-30ml溶液分别全部倒入6个空的锥形瓶中贴好相应的标签,封口,30-40℃下恒温振荡,进行吸附反应。2-4h后全部取出,静置取上清液,测其紫外吸收强度,根据吸附量公式计算相应的的浓度与吸附量,在其他条件不改变的前提下使用氧氟沙星进行上述实验,绘制两者的等温结合线。
图9中显示出印迹材料MIP-PAM/PSA对左氧氟沙星和氧氟沙星的吸附,表明了印迹材料 MIP-PAM/PSA对模板分子有良好的结合能力与识别选择。这是由于只有印迹分子与左氧氟沙星形成的许多三维印迹空穴在空间结构和作用位点方面相契合。
图10中显示:非印迹材料NMIP-PAM/PSA吸附左氧氟沙星和氧氟沙星的量差不多,说明非印迹材料NMIP-PAM/PSA对氧氟沙星和他的单一对映体没有识别选择性。
2印迹聚合物MIP-PAM/PSA的重复使用性能的研究
将印迹聚合物MIP-PAM/PSA用乙醇洗脱若干次后,再对其吸附量进行测定,测定PAM/PSA对左氧氟沙星吸附的重复使用性。
从图11可以看出,PAM/PSA在经过多次洗脱后,其吸附量为70mg/g,具有良好的可重复使用性,重复使用率达到93%。

Claims (2)

1.一种AM型聚苯乙烯微球氧氟沙星印迹聚合物的制备方法,其特征在于:取泡过的已经活化的聚丙乙烯伯胺树脂微球PSA0.4g,50ml0.005g/L左氧氟沙星乙醇溶液,10ml11.01%丙烯酰胺单体,0.4g引发剂过硫酸铵,置于四颈烧瓶中,加入0.3ml交联剂EGDE,通氮气30min排去体系中的空气,在温度为30℃的条件下搅拌6小时,反应完成后,加入10毫升乙酸和40毫升甲醇,恒温搅拌3小时,洗去左氧氟沙星模板,在真空干燥箱中干燥8小时后,得到左氧氟沙星表面分子印迹材料MIP-PAM/PSA;
所述活化的具体操作为:将聚苯乙烯伯胺树脂微球用N,N-二甲基甲酰胺溶液浸泡6-8h,微球用蒸馏水充分清洗,并在真空中干燥20-28小时至恒定重量,以获得活化的聚丙乙烯微球。
2.一种权利要求1所述的制备方法制得的AM型聚苯乙烯微球氧氟沙星印迹聚合物在左氧氟沙星识别选择中的应用。
CN202010584769.8A 2020-06-24 2020-06-24 一种am型聚苯乙烯微球氧氟沙星印迹聚合物的制备方法及应用 Active CN111662413B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010584769.8A CN111662413B (zh) 2020-06-24 2020-06-24 一种am型聚苯乙烯微球氧氟沙星印迹聚合物的制备方法及应用
US17/243,133 US20210402371A1 (en) 2020-06-24 2021-04-28 Preparation method of am-type polystyrene microsphere ofloxacin imprinted polymer and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010584769.8A CN111662413B (zh) 2020-06-24 2020-06-24 一种am型聚苯乙烯微球氧氟沙星印迹聚合物的制备方法及应用

Publications (2)

Publication Number Publication Date
CN111662413A CN111662413A (zh) 2020-09-15
CN111662413B true CN111662413B (zh) 2023-09-05

Family

ID=72389795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010584769.8A Active CN111662413B (zh) 2020-06-24 2020-06-24 一种am型聚苯乙烯微球氧氟沙星印迹聚合物的制备方法及应用

Country Status (2)

Country Link
US (1) US20210402371A1 (zh)
CN (1) CN111662413B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113797899B (zh) * 2021-09-06 2023-04-11 肇庆医学高等专科学校 一种P(Allyl-β-CD)/PSA微球的制备方法及其在吸附辛可宁中的应用
CN114789046B (zh) * 2022-05-23 2024-04-02 燕山大学 一种重金属捕集剂及其应用
CN115010865B (zh) * 2022-06-10 2023-05-12 肇庆医学高等专科学校 一种分子印迹材料的制备及其在辛可宁手性识别与拆分中的应用
CN115926046B (zh) * 2023-01-31 2024-02-09 吉林大学 一种梓醇磁性表面分子印迹聚合物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102212160A (zh) * 2011-05-12 2011-10-12 天津医科大学 波聚合制备左旋氧氟沙星分子印迹聚合物的方法
CN104341552A (zh) * 2013-08-02 2015-02-11 中国科学院大连化学物理研究所 一种氟喹诺酮类替代模板分子印迹聚合物及其应用
WO2018009148A1 (en) * 2016-07-05 2018-01-11 National University Of Singapore A molecularly imprinted polymer sensor
CN108905997A (zh) * 2018-07-20 2018-11-30 中北大学 一种甜菊糖吸附材料的制备方法及应用
CN109880148A (zh) * 2019-01-22 2019-06-14 中北大学 一种表面印迹材料的制备及其在谷氨酸对映体拆分中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376618B1 (en) * 1999-09-07 2002-04-23 Basf Aktiengesellschaft Surface-treated superabsorbent polymer particles
US6531523B1 (en) * 2000-10-10 2003-03-11 Renal Tech International, Llc Method of making biocompatible polymeric adsorbing material for purification of physiological fluids of organism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102212160A (zh) * 2011-05-12 2011-10-12 天津医科大学 波聚合制备左旋氧氟沙星分子印迹聚合物的方法
CN104341552A (zh) * 2013-08-02 2015-02-11 中国科学院大连化学物理研究所 一种氟喹诺酮类替代模板分子印迹聚合物及其应用
WO2018009148A1 (en) * 2016-07-05 2018-01-11 National University Of Singapore A molecularly imprinted polymer sensor
CN108905997A (zh) * 2018-07-20 2018-11-30 中北大学 一种甜菊糖吸附材料的制备方法及应用
CN109880148A (zh) * 2019-01-22 2019-06-14 中北大学 一种表面印迹材料的制备及其在谷氨酸对映体拆分中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
热聚合制备左旋氧氟沙星分子印迹聚合物的条件;邴乃慈等;《南京工业大学学报(自然科学版)》;20060131(第01期);41-45页 *

Also Published As

Publication number Publication date
CN111662413A (zh) 2020-09-15
US20210402371A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
CN111662413B (zh) 一种am型聚苯乙烯微球氧氟沙星印迹聚合物的制备方法及应用
Hwang et al. Chromatographic characteristics of cholesterol-imprinted polymers prepared by covalent and non-covalent imprinting methods
Xu et al. Molecularly imprinted core-shell nanoparticles for determination of trace atrazine by reversible addition–fragmentation chain transfer surface imprinting
Qu et al. Chemical modification of silica-gel with hydroxyl-or amino-terminated polyamine for adsorption of Au (III)
Wang et al. The preparation of high-capacity boronate affinity adsorbents by surface initiated reversible addition fragmentation chain transfer polymerization for the enrichment of ribonucleosides in serum
CN101747473A (zh) 表面功能化的分子印迹聚合物微球及其制备方法
CN109970912B (zh) 黄酮类磁性分子印迹聚合物的制备方法
CN110115992B (zh) 一种用于霉菌毒素特异识别的核酸适配体功能化聚合柱及其制备方法
CN108003287B (zh) 一种基于丙烯酰胺族金属螯合单体的蛋白亲和印迹水凝胶聚合物的制备方法
CN112823875B (zh) 一种苯硼酸固相萃取柱填料及其制备方法
Han et al. An ionic liquid–molecularly imprinted composite based on graphene oxide for the specific recognition and extraction of cancer antigen 153
CN106700088B (zh) 一种Pd离子印迹硅胶吸附剂的制备方法及其应用
CN103289030A (zh) Gma在硅胶表面高效接枝的新方法
GB2589278A (en) Benzeneboronic Acid Solid-phase Extraction Column Packing and Preparation Method Thereof
CN108079982B (zh) 一种改性硅胶填料、制备方法和用途
CN103408697A (zh) 一种表面引发制备温敏型分子印迹聚合物的方法
CN115926046B (zh) 一种梓醇磁性表面分子印迹聚合物及其制备方法和应用
Bunia et al. Chemical transformations of different acrylic crosslinked polymers with primary amines and some applications of the synthesized compounds
CN110885394B (zh) 一种三嗪基团修饰的大孔树脂及其制备方法
CN114058066B (zh) 一种表面印迹材料及其制备方法和在苦参碱分离纯化中的应用
CN113797899A (zh) 一种P(Allyl-β-CD)/PSA微球的制备方法及其在吸附辛可宁中的应用
CN108144594A (zh) 两性离子聚合物固定相及其制备和应用
Akperov et al. Uranyl ion adsorption using novel cross-linked maleic anhydride–allyl propionate–styrene terpolymer
CN107936176B (zh) 白藜芦醇分子印迹聚合物的制备方法及应用
CN112409537B (zh) 一种特异性识别西地那非的分子印迹聚合物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Li Lirong

Inventor after: Li Yanbin

Inventor after: Hu Yizhi

Inventor after: He Hongfang

Inventor after: Tang Fengdi

Inventor before: Li Yanbin

Inventor before: Hu Yizhi

Inventor before: He Hongfang

Inventor before: Tang Fengdi

Inventor before: Li Lirong

CB03 Change of inventor or designer information
TA01 Transfer of patent application right

Effective date of registration: 20230803

Address after: No. 12 Fengle Road, Fulangxin Village, Lianhua Town, Dinghu District, Zhaoqing City, Guangdong Province, 526020

Applicant after: ZHAOQING MEDICAL College

Address before: 030051, Xueyuan Road, Shanxi Province, Taiyuan Province, No. 3

Applicant before: NORTH University OF CHINA

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant