CN111655866A - 便携式分子诊断装置和检测靶病毒的方法 - Google Patents

便携式分子诊断装置和检测靶病毒的方法 Download PDF

Info

Publication number
CN111655866A
CN111655866A CN201880072796.8A CN201880072796A CN111655866A CN 111655866 A CN111655866 A CN 111655866A CN 201880072796 A CN201880072796 A CN 201880072796A CN 111655866 A CN111655866 A CN 111655866A
Authority
CN
China
Prior art keywords
reagent
module
sample
solution
molecular diagnostic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880072796.8A
Other languages
English (en)
Inventor
D·斯文森
B·安德雷叶夫
V·布里昂内斯
R·T·塞纳
A·德拉泽达
C·凯利
G·龙内
G·斯库尼克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Visby Medical Inc
Original Assignee
Visby Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Visby Medical Inc filed Critical Visby Medical Inc
Publication of CN111655866A publication Critical patent/CN111655866A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/028Modular arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/04Exchange or ejection of cartridges, containers or reservoirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种方法,包括将分子诊断测试装置耦合到电源。将生物样品传送到样品制备模块中。然后仅通过单一动作使所述装置致动从而使所述装置执行下列功能无需使用者进一步动作。首先,所述装置通过所述样品制备模块的加热器加热所述样品以裂解一部分样品。其次,所述装置将所裂解的样品传送到扩增模块并加热在所述扩增模块的反应容积内的样品以扩增核酸,由此产生含有靶扩增子的输出溶液。然后所述装置在检测模块内使(i)所述输出溶液和(ii)被配制成产生指示所述输出溶液内所述靶扩增子的存在的信号的试剂中的每一个反应。然后读出与信号相关的结果。

Description

便携式分子诊断装置和检测靶病毒的方法
相关申请的交叉引用
本申请要求于2017年11月9日提交的题目为“具有逆转录模块的便携式分子诊断测试装置”的美国临时申请系列号62/583,789和于2017年12月5日提交的题目为“便携式分子诊断测试装置和检测靶病毒的方法”的美国临时申请系列号62/594,905的优先权权益,每一件申请的全部内容都通过引用并入本文。
背景技术
本文所述的实施方案涉及用于分子诊断测试的装置和方法。更具体地,本文所述的实施方案涉及用于分子诊断测试的包括逆转录性能的一次性独立式装置和方法。
每年在美国有超过十亿例感染,其中许多由于不准确的或延迟的诊断结果而导致不正确地治疗。许多已知的床旁(POC)测试的灵敏度很差(30-70%),而灵敏度更高的测试,诸如涉及特异性检测核酸的那些或与致病靶标相关的分子测试仅在实验室中可获得。因此,分子诊断测试经常在中心实验室中实施。然而,用于进行基于实验室的分子诊断测试的已知装置和方法需要训练有素的人员、规范的基础设施以及昂贵的高通量仪器。已知的高通量实验室装备通常一次处理许多(96-384以及更多)样品,因此中心实验室测试经常成批地完成。用于处理测试样品的已知方法典型地包括处理在一次大规模试验的时段(例如,一天)内采集的所有样品,导致在样品采集后几小时至几天的周转时间。此外,此类已知的仪器和方法被设计成在专业技术人员的指导下执行某些操作,这些专业技术人员添加试剂、监控处理以及逐步地移动样品。因此,尽管已知的实验室检测和方法非常准确,但它们经常耗费大量时间,并且非常昂贵。
尽管一些已知的基于实验室的分子诊断测试方法和装备提供了灵活性(例如,测试多种不同的指标的能力),但此类方法和装备不容易适用于由未受训练的使用者进行的床旁(“POC”)应用或居家用途。具体地,此类已知的装置和方法使用复杂并且包括昂贵的和精密的组件。因此,在分散的场所中使用此类已知的基于实验室的方法和装置(例如,POC或居家应用)可能导致不当使用增加,引起不准确的结果或安全性问题。例如,许多已知的基于实验室的系统包括精密的光纤和激光光源,它们对于未受训练的使用者来说是安全隐患。一些已知的系统还会要求使用者处置或暴露于试剂,所述试剂对于未受训练的使用者来说有安全风险。例如,一些已知系统使用相对大量的试剂和/或需要补充试剂(例如,在仪器内)。除了不适合分散使用以外,这些已知系统还不适合于长期保存和运输。长期保存可以期望地用于例如,允许测定的储备以用于军事应用,作为CDC国家战略储备计划的一部分,或其他应急准备项目。
此外,由于许多已知的基于实验室的系统所提供的灵活性,此类系统不包括防止未经训练的使用者完成正确顺序以外的某些动作的禁令或机制。例如,许多已知的系统和方法包括几个不同的样品制备操作,诸如过滤、洗涤、裂解和添加样品制备试剂以保存靶核酸。如果此类操作不以预定的顺序和/或在预定的时限内执行,测试的准确度会打折扣。一些已知系统试图通过将分析限为仅“清洁”样品来限制与样品制备相关的复杂性。结果,此类系统不能成为真正的端到端的分子诊断方法,因为细致的样品制备仍然必须由上游过程来进行。
尽管最近的技术进步使得能够开发“芯片实验室”装置,但此类装置经常未为床旁测试或居家应用进行优化。例如,一些已知装置和方法需要昂贵或复杂的仪器与测试药筒接口,由此增加了使用不当的可能性。另外,许多已知的“芯片实验室”装置扩增非常小体积的样品(例如,小于1微升),并且因此不适合用于分析多个不同的指标(例如,3-重或4-重测试)。而且,产生这样小的样品体积的装置经常包括使用光电池的光学检测、电荷耦合器件(CCD照相机)或类似物,因为样品体积太小不能产生可以被肉眼或不太精密(以及廉价)的检测器读取的输出。
一些已知的分子诊断系统和方法通过进行逆转录聚合酶链式反应(RT-PCR)来促进对病毒病原体的检测。尽管此类方法可有用的用来分离和检测病毒,但它们可以很复杂,因此使得许多已知的系统和方法不适合用于分散的和/或床旁的用途。例如,一些已知的RT-PCR方法包括附加的步骤以分离和保护靶RNA不被核糖核酸酶(RNase)快速降解。由于RNA降解的变化使得当执行此类方法时的不一致可以导致不准确的结果。因此,已知的RT-PCR装置和方法不适合于未经训练的使用者使用。
一些已知的检测病毒(诸如HIV)的方法,包括检测机体响应于感染所产生的抗体。此类基于抗体的测试在鉴定患有急性和早期HIV感染的人时可以是无效的,因为此类测试在初始感染后在血清阴性窗期间几周内都是阴性的。此外,尽管许多已知的诊断测试执行一次来确定初步诊断,但一些治疗方案包括反复测试以评估所述治疗方案的反应。例如,许多被诊断患有HIV的人接受抗逆转录病毒(ARV)疗法。尽管在许多情况下,ARV治疗方案将血液中的HIV病毒载量减少至检测不到的水平,但一些患者将经历由于粘附、发生耐药性和毒性的问题而引起的病毒载量水平的反弹。因此,ARV治疗方案还包括反复的病毒载量测试。
因此,存在着对用于分子诊断测试的改良的装置和方法的需求。具体地,存在着对适合于长期保存的改良的装置和方法的需求。还存在着对容易使用并且可以利用最少的用户输入进行的改良的装置和方法的需求。还存在着对可以接纳大范围样品(例如,原始样品,诸如尿、唾液和血液)的改良的装置和方法的需求。还存在着对包括逆转录模块或另外地允许检测靶RNA的改良的装置和方法的需求。
发明内容
本文描述了一种用于扩增样品内的核酸并产生样品中靶分子(例如,DNA或RNA)的指标的分子诊断测试装置。在一些实施方案中,检测靶分子的方法包括装置的“一步”或“单按钮”致动。例如,在一些实施方案中,方法包括将分子诊断测试装置耦合到电源。将生物样品通过输入开口传送到所述分子诊断测试装置内的样品制备模块中。然后所述分子诊断测试装置通过仅单一动作致动以使所述分子诊断测试装置执行下列的功能无需使用者进一步的动作。首先,所述装置通过所述样品制备模块的加热器加热所述生物样品以裂解一部分所述生物样品从而产生输入样品。其次,所述装置将所述输入样品传送到所述分子诊断测试装置内的扩增模块。然后所述装置加热所述扩增模块的反应容积内的所述输入样品以扩增所述输入样品内的核酸分子,由此产生含有靶扩增子的输出溶液。然后所述装置在所述分子诊断测试装置的检测模块内,使(i)所述输出溶液和(ii)被配制成产生指示所述输出溶液内所述靶扩增子的存在的信号的试剂中的每一个反应。所述检测模块包括被配置成俘获所述靶扩增子以产生所述信号的检测表面。然后读出与所述信号相关的结果。
在一些实施方案中,分子诊断测试装置和相关的方法涉及使用多用途试剂(也称作缓冲液)来执行表面封闭和洗涤功能。以此方式,可以提高试剂的量和装置的简易性,由此有助于床旁用途,装置的一次使用性,和/或依照CLIA豁免(waived)的方法的装置操作。具体地,在一些实施方案中,多用途试剂可以包括封闭剂以减少与检测事件期间附着不合乎需要的颗粒相关的背景信号。通过提高信号质量,此类装置和方法可以适用于利用有限的样品制备来使用。另外,多用途试剂可以包括洗涤剂,所述洗涤剂将未结合的成分从检测模块移除。此类方法可以包括根据多用途试剂的期望功能在不同的时间递送一定量的所述试剂。
例如,在一些实施方案中,使用分子诊断测试装置检测核酸的方法包括在第一时间将第一体积的第一试剂溶液从所述分子诊断测试装置内的试剂模块传送到所述分子诊断测试装置内的检测模块中。所述检测模块包括被配置成俘获与所述核酸相关的靶扩增子的检测表面。所述第一试剂溶液包括封闭剂和洗涤缓冲液。所述第一体积的所述第一试剂溶液包含足以吸附到所述检测模块内的表面的量的所述封闭溶液。在第二时间将包含所述靶扩增子的样品溶液传送到所述检测模块中,使得所述靶扩增子被俘获在所述检测表面上。在所述第二时间后,将第二试剂溶液传送到所述检测模块中。所述第二试剂溶液被配制成导致产生指示所述样品溶液内存在所述靶扩增子的信号。所述方法进一步包括在所述第二时间后将第二体积的所述第一试剂溶液传送到所述检测模块中。所述第二体积的所述第一试剂溶液包含洗涤缓冲液,所述洗涤缓冲液的量足以将来自所述样品溶液或所述第二试剂溶液中的至少一个的未结合成分从所述检测模块移除。
在一些实施方案中,方法包括裂解原始样品并且在相同的环境中对裂解的样品进行逆转录聚合酶链式反应(PCR)。换种方式说,在一些实施方案中,装置包括单一裂解/RT-PCR模块,以有利于包括在单室内裂解原始样品并且执行快速RT-PCR的方法。此类方法可以以限制靶RNA在裂解后降解的方式执行,由此产生准确的结果。因此,此类方法适合于通过CLIA豁免的床旁装置执行。
例如,在一些实施方案中,检测核酸的方法包括在样品制备模块内混合逆转录酶与生物样品以形成逆转录溶液。在所述样品制备模块内将所述逆转录溶液加热至裂解温度范围内的第一温度以释放核糖核酸(RNA)分子。在同一样品制备模块内将所述逆转录溶液加热至逆转录温度范围内的第二温度以产生互补的脱氧核糖核酸(cDNA)分子。然后在同一样品制备模块内将所述逆转录溶液加热至高于失活温度的第三温度以导致所述逆转录酶失活。所述方法进一步包括将所述逆转录溶液传送到扩增模块,在其中cDNA可以被扩增用于后续检测。
在一些实施方案中,使用一次性分子诊断测试装置检测靶RNA分子的方法包括将输入样品传送到所述一次性分子诊断测试装置的外壳内的逆转录模块。在所述逆转录模块内加热所述输入样品以产生与所述靶RNA分子相关的靶cDNA分子。将所述输入样品从所述逆转录模块传送到所述外壳内的扩增模块。所述扩增模块限定反应容积并包括加热器。所述方法进一步包括通过所述加热器加热在所述反应容积的至少一部分内的所述输入样品以扩增所述输入样品内的所述靶cDNA分子,从而产生包含靶扩增子的输出溶液。所述方法进一步包括将下述中的每一个传送到检测模块中:A)所述输出溶液和B)被配制成产生指示所述输出溶液内所述靶扩增子的存在的信号的试剂,所述检测模块包括被配置成保留所述靶扩增子以产生所述信号的检测表面。当所述输入样品的病毒载量大于10个拷贝/毫升时,所述一次性分子诊断测试装置产生所述信号。
附图说明
图1-3是根据一个实施方案的分子诊断测试装置分别处于第一构型、第二构型和第三构型的示意性图示。
图4是根据一个实施方案的检测核酸的方法的流程图,所述方法包括单一致动操作。
图5和6是根据一个实施方案的分子诊断测试装置分别处于第一构型和第二构型的示意性图示。
图7是根据一个实施方案的检测核酸的方法的流程图。
图8-11是根据一个实施方案的使用多用途试剂的分子诊断测试装置分别处于第一构型、第二构型、第三构型和第四构型的示意性图示。
图12是根据一个实施方案的使用多用途试剂检测核酸的方法的流程图。
图13是根据一个实施方案的包括再利用试剂的检测核酸的方法的流程图。
图14是根据一个实施方案说明酶联反应导致信号产生的图。
图15是根据一个实施方案的分子诊断测试装置的示意性图示。
图16是根据一个实施方案的分子诊断测试装置的一部分的示意性图示,所述分子诊断测试装置包括单一裂解和RT-PCR模块。
图17A-17C是显示对于根据实施方案的各种裂解和RT-PCR的方法,温度相对于时间曲线的图。
图18是根据一个实施方案的检测核酸的方法的流程图,所述方法包括在单一环境中执行裂解和RT-PCR。
图19是根据一个实施方案的分子诊断测试装置的示意性图示。
图20和21分别是根据一个实施方案的分子诊断测试装置的立体图和俯视图。
图22和23是在图20和21中显示的分子诊断测试装置的分解图。
图24和25是图20和21中所示的分子诊断测试装置的正面透视图(图24)和后部透视图(图25),其中去除了外壳以显示其中的模块。
图26是图20和21中显示的分子诊断测试装置的外壳组装件的分解透视图。
图27是图20和21中显示的分子诊断测试装置的上部外壳的底部透视图。
图28-30是图20和21中显示的分子诊断测试装置的盖子的正面透视图(图28)、后部立体图(图29)和底部透视图(图30)。
图31和32是图20和21中显示的分子诊断测试装置的挠性板的上部透视图(图31)和底部透视图(图32)。
图33和34是沿图21中的线X-X所取的侧视剖视图,分别显示了处于第一(致动前)构型和第二(致动后)构型的分子诊断测试装置。
图35和36是图20和21中显示的分子诊断测试装置的可变形支撑构件的上部立体图(图35)和底部立体图(图36)。
图37和38是图20和21中显示的分子诊断测试装置的样品制备(或分级)模块的透视图(图37)和俯视图(图38)。
图39和40是图37和38中显示的样品制备模块的剖视图(图39)和分解图(图40)。
图41是沿图38中的线X-X所取的图37和38中显示的样品制备模块的混合组装件的剖视图。
图42是图20和21中显示的分子诊断测试装置的扩增模块的流动构件的俯视图。
图43是图20和21中显示的分子诊断测试装置的检测模块的分解图。
图44和45是图20和21中显示的分子诊断测试装置的试剂模块的上部透视图(图44)和底部透视图(图45)。
图46是图20和21中显示的分子诊断测试装置的旋转阀组装件的正面透视图。
图47-52是图46中显示的旋转阀组装件的主视图,其中通气口外壳是“透明的”以显示六种不同操作构型中每一个的阀瓣。
图53A-53C是根据一个实施方案,图20和21中显示的分子诊断装置处于不同的操作阶段的立体图。
具体实施方式
在一些实施方案中,设备被配置用于一次性、便携式、单次使用、廉价的分子诊断方式。所述设备可以包括一个或多个被配置成执行高质量分子诊断测试的模块,所述分子诊断测试包括,但不限于,样品制备、核酸扩增(例如,通过聚合酶链式反应、等温扩增等)和检测。在一些实施方案中,样品制备可以通过分离靶病原体/实体并去除不期望的扩增(例如,PCR)抑制剂来执行。靶实体可以后续被裂解以释放靶核酸用于扩增。靶实体中的靶核酸可以利用聚合酶经历温度循环或通过等温温育扩增以产生大量拷贝的靶核酸序列用于检测。
在一些实施方案中,本文所述的装置是独立式装置,其包括所有必要的物质、机构和部件以执行本文所述的任一种分子诊断测试。此类独立式装置不需要任何外部仪器来操作生物样品,仅需要连接到电源(例如,连接到A/C电源,耦合到电池等)来完成本文所述的方法。例如,本文所述的装置不需要任何外部仪器来加热样品、搅拌或混合样品,在流动构件内泵送(或移动)流体,等等。相反,本文所述的实施方案是整装的并且在加入生物样品并耦合到电源后,所述装置可以被致动以执行本文所述的分子诊断测试。在一些实施方案中,致动所述装置的方法可以使得所述装置是CLIA豁免的装置和/或可以根据CLIA豁免的方法操作。
在一些实施方案中,检测靶分子的方法包括装置的“一步”或“单按钮”致动。例如,在一些实施方案中,方法包括将所述分子诊断测试装置耦合到电源。将生物样品通过输入开口传送到所述分子诊断测试装置内的样品制备模块中。然后所述分子诊断测试装置通过仅单一动作致动,以使所述分子诊断测试装置执行下列的功能而无需使用者进一步的动作。首先,所述装置通过所述样品制备模块的加热器加热所述生物样品以裂解一部分所述生物样品从而产生输入样品。其次,所述装置将所述输入样品传送到所述分子诊断测试装置内的扩增模块。然后所述装置加热所述扩增模块的反应容积内的所述输入样品以扩增所述输入样品内的核酸分子,由此产生含有靶扩增子的输出溶液。然后所述装置在所述分子诊断测试装置的检测模块内,使下述中的每一个反应:(i)所述输出溶液和(ii)被配制成产生指示所述输出溶液内所述靶扩增子的存在的信号的试剂。所述检测模块包括被配置成俘获所述靶扩增子以产生所述信号的检测表面。然后读出与所述信号相关的结果。
在一些实施方案中,设备可以包括盖子(也称作遮盖物(cover)),当所述盖子闭合时其功能是遮盖输入样品端口以及致动所述装置的一个或多个机构两者。以此方式,闭合盖子的单一动作也致动所述装置的所有方面,由此简化了装置致动和方法。具体地,在一些实施方案中,检测核酸的方法包括将分子诊断测试装置耦合到电源,并将生物样品通过输入开口传送到所述分子诊断测试装置内的样品制备模块中。这些操作的次序无关紧要。为了致动所述装置,用与所述分子诊断测试装置连接的盖子遮盖所述输入开口。响应于仅仅遮盖动作,然后所述装置执行下列的功能,无需使用者进一步动作。首先,所述装置通过所述样品制备模块的加热器加热所述生物样品以裂解一部分所述生物样品从而产生输入样品。其次,所述装置将所述输入样品传送到所述分子诊断测试装置内的扩增模块。然后所述装置加热所述扩增模块的反应容积内的所述输入样品以扩增所述输入样品内的核酸,由此产生含有靶扩增子的输出溶液。然后所述装置在所述分子诊断测试装置的检测模块内,使下述中的每一个反应:(i)所述输出溶液和(ii)被配制成产生指示所述输出溶液内所述靶扩增子的存在的信号的试剂。所述检测模块包括被配置成俘获所述靶扩增子以产生所述信号的检测表面。然后读出与所述信号相关的结果。
在一些实施方案中,设备包括外壳、在所述外壳内的样品制备模块、在所述外壳内的试剂模块、检测模块和可移动地连接到所述外壳的盖子。所述样品制备模块限定接纳生物样品的样品输入容积和输入开口,通过所述输入开口能够进入所述样品输入容积。所述样品制备模块包括加热器,所述加热器被配置成加热所述生物样品以产生输入溶液。所述试剂模块包括试剂容器,所述试剂容器包含被配制成促进从所述输入溶液产生指示靶扩增子存在的信号的检测试剂。所述检测试剂被密封在所述试剂容器内。所述密封可以是,例如,保持试剂的保存期限和防止试剂泄露的箔密封。所述检测模块包括被配置成从所述输入溶液俘获所述靶扩增子的检测表面。所述检测模块与所述试剂模块流体连通,使得响应于被传送到所述检测模块中的所述试剂而产生所述信号。所述盖子包括密封部、开关部和试剂致动器。所述盖子在第一盖子位置和第二盖子位置之间相对于所述外壳移动。当所述盖子处于所述第一盖子位置时,所述输入开口暴露,当所述盖子处于所述第二盖子位置时,所述盖子的所述密封部遮盖所述输入开口。当所述盖子从所述第一盖子位置移动到所述第二盖子位置时:A)所述开关部致动开关以向所述加热器提供电力,和B)所述试剂致动器使得所述试剂从所述密封的试剂容器中释放。
在一些实施方案中,所述设备进一步包括在外壳内的扩增模块,所述扩增模块被配置成接纳来自所述样品制备模块的所述输入溶液。所述扩增模块被配置成加热所述输入溶液以扩增所述输入溶液内的核酸,从而产生包含所述靶扩增子的检测溶液。
在一些实施方案中,所述盖子包括锁止部,所述锁止部不可逆地接合所述外壳、所述样品制备模块或所述试剂模块中的至少一个,从而将所述盖子保持在所述第二盖子位置处。以这种方式,所述分子诊断装置被配置成不可逆地使用。也就是说,此配置方式防止了所述装置的再使用或防止在所述装置已经被致动后补充生物样品的后续尝试。
在一些实施方案中,所述试剂模块包括试剂外壳和刺孔器。所述试剂外壳限定试剂储库,当所述刺孔器刺破所述试剂容器的一部分时,所述试剂从所述密封的试剂容器释放到所述试剂储库中。所述试剂致动器包括突起,当所述盖子从所述第一盖子位置移动至所述第二盖子位置时,所述突起施加力以使所述刺孔器刺破所述试剂容器的所述部分。在一些实施方案中,所述设备包括可变形支撑构件,所述可变形支撑构件被配置成保持所述刺孔器和/或所述试剂容器处于两者相隔开的位置。所述可变形支撑构件被配置成响应于当所述盖子移动到所述第二位置时所施加的力而变形,以移动所述刺孔器和/或所述试剂容器彼此接触。
在一些实施方案中,设备包括分子诊断装置的外壳和在所述外壳内的试剂模块。所述试剂模块包括试剂外壳、包含密封在其中的试剂的试剂容器、刺孔器和可变形支撑构件。所述试剂外壳限定试剂储库,当所述刺孔器刺破所述试剂容器的一部分时,所述试剂从所述试剂容器释放到所述试剂储库中。所述可变形支撑构件包括密封部和连接部。所述密封部连接到所述试剂外壳以流体隔离所述试剂储库。所述连接部连接到所述刺孔器或所述试剂容器中的至少一个。所述可变形支撑构件被配置成响应于对所述可变形支撑构件施加的致动力而从第一构型变形至第二构型。当所述可变形支撑构件处于所述第一构型时,所述可变形支撑构件保持所述刺孔器与所述试剂容器的所述部分相隔开。当所述可变形支撑构件处于所述第二构型时,所述刺孔器刺破所述试剂容器的所述部分。
在一些实施方案中,所述试剂是第一试剂或第二试剂之一。所述第一试剂被配制成响应于所述第一试剂被传送到所述检测模块中而与所述靶分子结合,所述第二试剂被配制成当被所述第一试剂催化时产生所述信号。所述第二试剂可以是,例如,被配制成当所述第二试剂与所述第一试剂接触时产生不溶性有色颗粒的沉淀底物。
在一些实施方案中,所述试剂是第一试剂,并且是催化试剂或沉淀试剂之一,所述催化试剂被配制成响应于所述第一试剂被传送到所述检测模块中而与所述靶分子结合,所述沉淀试剂被配制成当被所述催化试剂催化时产生所述信号。所述试剂模块包括第二试剂容器,所述第二试剂容器包含溶液,所述溶液包括洗涤缓冲液和封闭缓冲液,所述封闭缓冲液被配制成减少所述检测模块内所述靶扩增子或其他分子的附着。所述可变形支撑构件的连接部连接到第二刺孔器或所述第二试剂容器中的至少一个。当所述可变形支撑构件处于所述第一构型时,所述可变形支撑构件保持所述第二刺孔器远离所述第二试剂容器。当所述可变形支撑构件处于所述第二构型时,所述第二刺孔器刺破所述第二试剂容器。
在一些实施方案中,分子诊断测试装置和相关方法涉及使用多用途试剂(也称作缓冲液)来执行表面封闭和洗涤功能两者。以此方式,可以提高试剂的量和装置的简易性,由此有助于床旁用途、装置的一次使用性和/或依照CLIA豁免的方法的装置操作。具体地,在一些实施方案中,多用途试剂可以包括封闭剂以减少检测事件期间与附着不合乎需要的颗粒相关的背景信号。通过提高信号质量,此类装置和方法可以适用于利用有限的样品制备来使用。另外,多用途试剂可以包括洗涤剂,所述洗涤剂将未结合的成分从检测模块移除。此类方法可以包括根据多用途试剂的期望功能在不同的时间递送一定量的所述试剂。
例如,在一些实施方案中,使用分子诊断测试装置检测核酸的方法包括在第一时间将第一体积的第一试剂溶液从所述分子诊断测试装置内的试剂模块传送到所述分子诊断测试装置内的检测模块中。所述检测模块包括被配置成俘获与所述核酸相关的靶扩增子的检测表面。所述第一试剂溶液包括封闭剂和洗涤缓冲液。所述第一体积的所述第一试剂溶液包含足以吸附到所述检测模块内的表面的量的所述封闭溶液。在第二时间将包含所述靶扩增子的样品溶液传送到所述检测模块中,使得所述靶扩增子被俘获在所述检测表面上。在所述第二时间后,将第二试剂溶液传送到所述检测模块中。所述第二试剂溶液被配制成导致产生指示所述样品溶液内存在所述靶扩增子的信号。所述方法进一步包括在所述第二时间后将第二体积的所述第一试剂溶液传送到所述检测模块中。所述第二体积的所述第一试剂溶液包含所述洗涤缓冲液,所述洗涤缓冲液的量足以将来自所述样品溶液或所述第二试剂溶液中的至少一个的未结合成分从所述检测模块移除。在一些实施方案中,所述第一试剂溶液包括0.02%-5%的牛血清白蛋白和0.05%-10%的所述洗涤剂。
在一些实施方案中,使用分子诊断测试装置检测核酸的方法包括再利用多用途试剂。具体地,所述试剂可以在第一时间被使用以执行封闭功能,然后可以在第二时间被传送通过检测模块以执行洗涤功能。此配置方式和方法能够实现在分子诊断测试装置内容纳较少试剂,由此有助于更有效的、成本更低的单次使用、独立式装置。具体地,在一些实施方案中,使用分子诊断测试装置检测核酸的方法包括将生物样品通过输入开口传送到所述分子诊断测试装置内的样品制备模块中。然后所述装置被致动以使所述装置执行下列的功能。首先,所述装置将第一体积的试剂溶液从所述分子诊断测试装置内的试剂模块传送到检测模块,所述检测模块包括被配置成俘获与所述核酸相关的靶扩增子的检测表面。所述试剂溶液包括封闭剂和洗涤缓冲液,所述封闭剂被配制成吸附到所述检测模块内的表面。然后所述装置将所述第一体积的所述试剂溶液从所述检测模块传送回所述试剂模块。然后从所述生物样品产生包含与所述核酸相关的所述靶扩增子的输出溶液。这可以通过本文所述的样品制备模块或扩增模块中的任一个执行。然后将所述输出溶液传送到所述检测模块中,使得所述靶扩增子被俘获在所述检测表面上。所述装置然后将第二体积的所述试剂溶液从所述试剂模块传送到所述检测模块中,从而将来自所述输出溶液的未结合成分从所述检测模块移除。然后读出与在所述检测表面上俘获的所述靶扩增子相关的结果。
在一些实施方案中,方法包括裂解原始样品并且在相同的环境中对裂解的样品进行逆转录聚合酶链式反应(PCR)。换种方式说,在一些实施方案中,装置包括单一裂解/RT-PCR模块,以有利于包括在单室内裂解原始样品并且执行快速RT-PCR的方法。此类方法可以以限制靶RNA在裂解后降解的方式执行,由此产生准确的结果。因此,此类方法适合于由CLIA豁免的床旁装置执行。
例如,在一些实施方案中,检测核酸的方法包括在样品制备模块内混合逆转录酶与生物样品以形成逆转录溶液。在所述样品制备模块内,将所述逆转录溶液加热至裂解温度范围内的第一温度以释放核糖核酸(RNA)分子。在同一样品制备模块内,将所述逆转录溶液加热至逆转录温度范围内的第二温度以产生互补的脱氧核糖核酸(cDNA)分子。然后在同一样品制备模块内,将所述逆转录溶液加热至高于失活温度的第三温度以导致所述逆转录酶失活。所述方法进一步包括将所述逆转录溶液传送到扩增模块,在其中cDNA可以被扩增用于后续检测。
在一些实施方案中,检测核酸的方法包括在样品制备模块内混合逆转录酶与生物样品以形成逆转录溶液。在所述样品制备模块内,将所述逆转录溶液加热至裂解温度范围内的第一温度以释放核糖核酸(RNA)分子。在同一样品制备模块内,将所述逆转录溶液加热至逆转录温度范围内的第二温度以产生互补的脱氧核糖核酸(cDNA)分子。所述加热至所述第一温度和所述加热至所述第二温度连续地进行,使得在释放所述RNA分子的少于1分钟内产生所述cDNA。
在一些实施方案中,使用一次性分子诊断测试装置检测靶RNA分子的方法包括将输入样品传送到所述一次性分子诊断测试装置的外壳内的逆转录模块。在所述逆转录模块内加热所述输入样品以产生与所述靶RNA分子相关的靶cDNA分子。将所述输入样品从所述逆转录模块传送到所述外壳内的扩增模块。所述扩增模块限定反应容积并包括加热器。所述方法进一步包括通过所述加热器加热在所述反应容积的至少一部分内的所述输入样品以扩增所述输入样品内的所述靶cDNA分子,从而产生包含靶扩增子的输出溶液。所述方法进一步包括将下述中的每一个传送到检测模块中:A)所述输出溶液和B)被配制成产生指示所述输出溶液内所述靶扩增子的存在的信号的试剂,所述检测模块包括被配置成保留所述靶扩增子以产生所述信号的检测表面。当所述输入样品的病毒载量大于1000个拷贝/毫升时,所述一次性分子诊断测试装置产生所述信号。在其他实施方案中,当所述输入样品的病毒载量大于100个拷贝/毫升时,所述一次性分子诊断测试装置可以产生所述信号。还在其他实施方案中,当所述输入样品的病毒载量大于10个拷贝/毫升时,所述一次性分子诊断测试装置可以产生所述信号。
在一些实施方案中,设备包括外壳、样品制备模块、逆转录模块和扩增模块,每个模块都在外壳内。所述样品制备模块限定被配置成接纳血液样品的输入储库。所述样品制备模块被配置成从所述血液样品分离血浆样品,所述血浆样品包含靶RNA分子。所述逆转录模块被配置成加热所述血浆样品以产生与所述靶RNA分子相关的靶cDNA分子,从而产生扩增溶液。所述扩增模块包括流动构件和加热器。所述流动构件限定被配置成接纳所述扩增溶液的反应容积。所述加热器被配置成将热能传送到所述反应容积中以扩增所述扩增溶液内的所述靶cDNA分子,从而产生包含靶扩增子的输出溶液。
在一些实施方案中,使用分子诊断测试装置检测靶RNA分子的方法包括首先将生物样品传送到一次性分子诊断测试装置内的样品制备模块中。然后使所述装置致动从而使所述装置执行下列功能。所述装置在所述样品制备模块的逆转录部分内加热所述生物样品以产生与所述靶RNA分子相关的靶DNA分子,从而产生扩增样品。将所述靶cDNA和与所述靶cDNA分子的多个靶序列相关的引物组合物混合。然后将所述扩增样品传送到所述装置内的扩增模块,然后加热所述扩增样品以扩增所述扩增样品内所述靶cDNA分子的多个靶序列中的每一个,从而产生包含多个靶扩增子的输出溶液。然后所述装置将下述中的每一个传送到检测模块中:A)所述输出溶液和B)被配制成产生指示所述输出溶液内所述靶扩增子的存在的信号的试剂。所述检测模块包括被配置成将所述多个靶扩增子保留在单一区域内以产生所述信号的检测表面。所述方法进一步包括读出来自所述检测表面的所述信号。
如本说明书和附带的权利要求书中所用,术语“试剂”包括与本文所述的任一反应结合使用的任何物质。例如,试剂可以包括洗脱缓冲液、PCR试剂、酶、底物、洗涤溶液、封闭溶液等。试剂可以包括一种或多种成分的混合物。试剂可以包括此类成分,无论其为何种物质状态(例如,固体、液体或气体)。此外,试剂可以包括多种成分,所述多种成分可以以混合状态、非混合状态和/或部分混合状态包含在一种物质中。试剂可以包括活性成分和惰性成分两者。因此,如本文所用,试剂可以包括非活性和/或惰性成分,诸如,水、着色剂等。
术语“核酸分子”、“核酸”或“多核苷酸”可以在本文中可交换地使用,并且可以是指脱氧核糖核酸(DNA)或核糖核酸(RNA),包括已知的类似物或其组合,除非另外指明。要在本文中评述的核酸分子可以获自任何来源的核酸。所述核酸分子可以是单链的或双链的。在一些情况下,所述核酸分子是DNA。所述DNA可以是线粒体DNA、互补DNA(cDNA)或基因组DNA。在一些情况下,所述核酸分子是基因组DNA(gDNA)。所述DNA可以是质粒DNA、粘粒DNA、细菌人工染色体(BAC)或酵母人工染色体(YAC)。所述DNA可以来自一个或多个染色体。例如,如果所述DNA来自人,则所述DNA可以来自1号、2号、3号、4号、5号、6号、7号、8号、9号、10号、11号、12号、13号、14号、15号、16号、17号、18号、19号、20号、21号、22号染色体、X染色体或Y染色体中的一个或多个。在一些情况下,所述核酸分子是RNA,包括,但不限于,mRNA、tRNA、snRNA、rRNA、逆转录病毒、小的非编码RNA、微小RNA、多体RNA(polysomal RNA)、前-mRNA、内含子RNA、病毒RNA、细胞游离RNA及其片段。非编码RNA或ncRNA可以包括snoRNA、微小RNA、siRNA、piRNA和长nc RNA。在本文所述的装置、方法和组合物中使用的核酸的来源可以是包含所述核酸的样品。
除非另外指明,术语设备、诊断设备、诊断系统、诊断测试、诊断测试系统、测试装置及其变体可以互换使用。
本文所述的方法可以在任意合适的分子诊断装置上执行,诸如本文中或题目为“用于分子诊断测试的装置和方法”的国际专利公开号WO2016/109691、题目为“用于扩增模块的印制电路板加热器”的国际专利公开号WO2017/185067、题目为“用于使用流动池检测分子的装置和方法”的国际专利公开号WO2018/005710和题目为“用于核酸提取的装置和方法”的国际专利公开号WO2018/005870(上述每一件专利的全部内容通过引用并入本文)中所示和所描述的任一种诊断装置。
图1-3是根据一个实施方案的分子诊断测试装置1000(也称作“测试装置”或“装置”)的示意性图示。根据本文所述的任一种方法,测试装置1000被配置成操作生物样品以产生与靶细胞相关的一个或多个输出信号。在一些实施方案中,测试装置1000可以是集成装置,所述集成装置适合用于在床旁设施(例如,医生办公室、药房等)、分散式测试设施内或在使用者的家中使用。类似地,在一些实施方案中,下面所述的装置的模块容纳在单个外壳内,使得所述测试装置可以全部地运转,无需任何附加的仪器、扩展坞(dockingstation)等。此外,在一些实施方案中,装置1000可以具有一定的尺寸、形状和/或重量,使得装置1000可以在使用者的手中携带、握持、使用和/或操作(即,其可以是“手持式”装置)。在一些实施方案中,测试装置1000可以是整装的单次使用装置。
为了有利于使用简便,除了输入生物样品和将所述装置连接至电源,装置1000被配置成通过单一步骤或动作致动。“单按钮”致动减少了操作步骤的复杂性,由此使得所述装置和方法适合被未经训练的使用者使用。如下所述,所述装置不需要操作多个不同的致动器(或按钮)以进行样品制备,不需要振动或外部搅拌,不需要复杂的“信号读取”步骤。
在一些实施方案中,装置1000(以及本文显示和描述的任一种装置)可以是CLIA-豁免的装置和/或可以根据CLIA豁免的方法来操作。类似地,在一些实施方案中,装置1000(以及本文显示和描述的任一种其他装置)被配置成以足够简单的方式操作并且可以产生足够准确的结果,从而形成有限的不当使用可能性和/或在不正确使用时形成有限的危害风险。在一些实施方案中,依照需要使用者很少判断和/或其中某些操作步骤很容易控制和/或自动控制的方法,装置1000(以及本文显示和描述的任一种其他装置)可以由经过很少(或没有经过)科学训练的使用者操作。在一些实施方案中,所述分子诊断测试装置1000可以被配置用于以形成有限的不当使用(试剂损坏、试剂到期、试剂泄露等)可能性的方式长期保存。在一些实施方案中,所述分子诊断测试装置1000被配置成储存长达约36个月,长达约32个月,长达约26个月,长达约24个月,长达约20个月,长达约18个月,长达12个月,长达6个月,或长达其间的任意值时间。
所述测试装置1000包括外壳1001、致动器1050、样品制备模块1200(也称作样品分级模块)、扩增模块1600和检测模块1800。在一些实施方案中,所述测试装置1000可以包括本文所述的任意其他组件或模块,诸如,例如,包含板载试剂的试剂模块(例如,试剂模块6700),旋转阀(例如,用于控制试剂和/或样品的流动,诸如阀6300),或流体传输模块(例如,流体传输模块6400)。外壳1001可以是任意结构,在所述外壳中容纳(或部分容纳)样品制备模块1200或其他组件以形成用于样品制备和/或分子测试的集成装置。外壳1001可以是整体构造的外壳或可以包括多个独立构造的构件,所述构件后续连接在一起形成外壳1001。如图2中所示,外壳限定输入开口1021,生物样品S1可以通过输入开口1021被传送到样品制备模块1200中。
样品制备模块1200包括加热器1230并且被配置成操作生物样品S1用于进一步的诊断测试。例如,在一些实施方案中,样品制备模块1200可以从生物样品S1提取核酸分子并且可以产生被输送到扩增模块1600中的输出溶液S2(参见图3)。样品制备模块1200可以包括本文所述的任意其他组件,诸如,例如,用于裂解的加热器,其内可以执行RT-PCR的室,和/或失活室(参见,例如,裂解外壳6201)。
扩增模块1600限定内部容积(例如,反应室或反应容积)并且包括加热器1630。反应容积可以是单一容积或一系列容积,输入溶液S2(即,包含从生物样品S1提取的核酸的溶液)可以在其内部流动和/或被保持以扩增其中的靶核酸分子,从而产生包含待检测的靶扩增子的输出检测溶液S3。在一些实施方案中,反应容积包括蜿蜒的流路使得所述流路在多个位置与加热器1630相交。以此方式,扩增模块1600可以执行“流通”扩增反应,其中输入溶液S2流过多个不同温度区域。
加热器1630可以是任意合适的加热器或一组加热器,其可以加热输入溶液S2以执行如本文所述的任一扩增操作。在一些实施方案中,加热器1630可以建立多个温度带,制备的溶液可以流动通过所述温度带,和/或加热器1630可以限定期望数目的扩增循环以确保期望的测试灵敏度(例如,至少30个循环,至少34个循环,至少36个循环,至少38个循环或至少40个循环)。加热器1630(以及本文所述的任一加热器)可以具有任意合适的设计。例如,在一些实施方案中,加热器1630可以是电阻加热器、热电装置(例如,Peltier装置),或类似装置。
在一些实施方案中,扩增模块1600(或本文所述的任一扩增模块)可以类似于题目为“用于扩增模块的印制电路板加热器”的美国专利公开号2017/0304829(该申请的全部内容通过引用并入本文)中所示和描述的扩增模块。在其他实施方案中,扩增模块1600(或本文所述的任一扩增模块)可以类似于题目为“用于分子诊断测试的装置和方法”的国际专利公开号WO2016/109691(该申请的全部内容通过引用并入本文)中所示和描述的扩增模块。尽管扩增模块1600通常被描述为对输入溶液S2执行热循环操作,但在其他实施方案中,扩增模块1600(以及本文所述的任一扩增模块)可以执行任意合适的热反应以扩增所述溶液内的核酸。在一些实施方案中,扩增模块1600(以及本文所述的任一扩增模块)可以执行任意合适类型的等温扩增过程,包括,例如,环介导等温扩增(LAMP),可用于检测靶RNA分子的基于核酸序列的扩增(NASBA),链置换扩增(SDA),多重置换扩增(MDA),网状分枝扩增法(RAM),或任意其他类型的等温过程。
检测模块1800被配置成使来自扩增模块1600的输出溶液S3与一种或多种试剂反应以产生信号(或输出)OP1,从而指示生物样品S1中靶生物体的存在与否。具体地,检测模块1800限定检测通道并且包括检测通道内的检测表面1821。检测通道与(或被放置成与)扩增模块1600流体连通。以此方式,包含靶扩增子的输出溶液S3可以被传送到检测通道中并经过检测表面1821。另外,如图3中所示,被配制成产生、催化或有助于产生指示靶扩增子存在的信号的试剂R可以被传送到检测通道中并经过检测表面1821。检测表面1821包括一系列俘获探针,当输出溶液S3流经检测表面1821时,靶扩增子可以与俘获探针结合。俘获探针可以是任意合适的本文所述类型的被配制成俘获或结合靶扩增子的探针。
分子诊断测试装置1000(以及本文所述的任一分子诊断测试装置)可以执行本文所述的任一种“单触式”致动法。例如,图4是根据一个实施方案的检测核酸的方法10的流程图。尽管方法10描述为在装置1000上执行,但在其他实施方案中,方法10可以在任意合适的装置上执行,诸如下面描述的装置6000。方法10包括在12将分子诊断测试装置耦合到电源。参见图1和2,电源1905可以耦合到所述装置的端子1940,如箭头AA所示。电源1905可以是任意合适的电源,诸如交流电(A/C)电源,直流电(D/C)电源(例如,电池),燃料电池等。在一些实施方案中,电源1905可以是A/C电源,并且连接可以包括使用电源线将所述装置插到电源插座中。在其他实施方案中,电源1905可以是D/C电源,并且连接可以包括将电池耦合到所述装置的端子1940。还在其他实施方案中,电源1905可以是置于所述装置的外壳内的D/C电源,并且所述耦合可以包括将电绝缘元件从电源和装置的电子控制器(图1-3中未显示)的其余部分之间移除。
在13通过输入开口将生物样品传送到分子诊断测试装置内的样品制备模块。参见图2,在一些实施方案中,可以通过样品转移装置1110将生物样品S1传送到装置中。样品转移装置1110可以是任意合适的装置,诸如移液器或被配置成可以用来从样品杯、容器或类似物中吸取或抽取样品S1然后将期望量的样品通过开口1021传送的其他机构。生物样品S1可以是任意合适的样品,诸如,例如,血液、尿、男性尿道标本、阴道标本、宫颈拭子标本、鼻拭子标本、咽拭子标本、直肠拭子标本或本文所述的任意其他生物样品。因此,在一些实施方案中,生物样品S1可以是“原始”(或未加工的)样品。
然后在14,分子诊断测试装置通过仅单一动作被致动,使分子诊断测试装置执行一系列操作,无需任何进一步的使用者输入。换句话说,所述分子诊断测试装置通过仅“单按钮”致动,如图2中的箭头BB和致动器1050所示。尽管致动器1050显示为按钮式致动器,在操作14中的“单一动作”可以通过任何合适的机构执行。例如,在一些实施方案中,所述装置可以包括滑动致动器,当所述致动器相对于装置外壳滑动时,其致动所述装置。在其他实施方案中,所述装置可以包括旋转式致动器或从所述装置被移除(例如,撕掉)而启动装置操作的致动器。例如,在一些实施方案中,致动器可以是遮盖窗口的剥离条,通过所述窗口读取信号。还在其他实施方案中,致动器可以是盖子,类似于盖子2050或6050,当被闭合时,所述盖子也致动所述装置的多个方面。
被“单按钮”致动后,分子诊断测试装置可以执行本文所述的任一个方法。具体来说,在14A,所述装置可以通过样品制备模块的加热器加热生物样品以裂解一部分生物样品,从而产生输入样品。参见图3,生物样品S1可以被加热器1230加热,得到的裂解的样品(即,输入样品S2)可以朝向扩增模块1600传送。尽管装置1000没有显示任何额外的样品制备,但在其他实施方案中,生物样品可以被过滤、分离、洗脱、经受酶失活加热操作或类似操作以产生合适的输入样品S2。然而,在其他实施方案中,所述方法不需要包括任何过滤或其他分离技术。
然后在14B,输入样品被传送到分子诊断测试装置内的扩增模块。参见图3,扩增模块限定反应容积,如上所述。因此,在14C,输入样品在所述反应容积内被加热以扩增输入样品内的核酸,从而产包含靶扩增子的输出溶液。输入溶液可以通过使用任何合适的技术(例如,PCR、等温扩增等)扩增,如本文所述。
在扩增后,在14D,所述装置然后在所述分子诊断测试装置的检测模块内,使下述中的每一个反应:(i)所述输出溶液和(ii)被配制成产生指示所述输出溶液内所述靶扩增子的存在的信号的试剂。如图3中所示,检测模块1800包括被配置成俘获靶扩增子以产生输出信号OP1的检测表面1821。输出信号OP1可以是任何合适的信号。在一些实施方案中,输出信号OP1可以是指示结合的扩增子存在的比色信号:如果存在靶病原体、靶扩增子和/或靶生物体,则形成有色产物,如果不存在靶病原体、靶扩增子和/或靶生物体,则不形成有色产物。
试剂R可以是本文所述的任何合适的试剂类型并且可以通过任何合适的机构被引入至检测模块1800中。例如,在一些实施方案中,所述试剂可以是被配制成响应于被传送到检测模块1800中时与靶分子结合的催化剂。在其他实施方案中,所述试剂可以被配制成当被已经存在于检测模块1600中的另一试剂催化时产生信号。在一些实施方案中,所述试剂可以是被配制成当所述试剂与催化剂接触时产生不溶性有色颗粒的沉淀底物。所述试剂R可以在所述装置被致动前存在于检测模块中,或备选地,所述试剂R可以作为装置致动的结果被传送到检测模块中。例如,在一些实施方案中,所述装置可以包括板载试剂模块(例如,试剂模块6700),并且当所述装置被致动时,所述装置可以在操作期间将试剂释放到分流管(manifold)或“贮罐”中用于后续使用。在一些实施方案中,所述装置可以包括流体转移装置或泵,类似于本文所述的流体转移装置6400。
所述方法进一步包括在15读出与所述信号相关的结果。在一些实施方案中,所述读出可以包括肉眼检查所述装置和检测表面1821的比色信号。在其他实施方案中,由检测表面1821产生的信号OP1不一定是肉眼可见的。例如,在一些实施方案中,所述读出可以包括使用辅助装置,诸如移动计算装置来扫描或以另外的方式接收信号OP1。还在其他的实施方案中,所述读出结果可以包括间接地读出二级信号,所述二级信号传递与来自检测表面1821的初级输出相关(或描述初级输出)的结果。
在一些实施方案中,方法10任选地包括在所述读出后丢弃所述分子测试装置。在一些实施方案中,样品和试剂的量可以是使得所述装置可以通过标准的、不受制约的废物处理程序被处置的量。在其他实施方案中,所述丢弃包括通过标准的医用废物处理程序来处置使用过的装置。
在一些实施方案中,方法10任选地包括在使用前将包括密封在其中的任意试剂的分子诊断测试装置保存至少6个月。
尽管方法10显示将所述装置耦合到电源的操作为在生物样品被传送到所述装置之前发生,但在其他实施方案中,方法10(或本文所述的任一方法)的任一步骤可以以任意的次序执行或可以同时执行。例如,在一些实施方案中,生物样品S1可以首先被传送到所述装置中,所述装置可以被致动(通过致动器1050),然后在致动后,所述装置可以被插入到插座中,以向所述装置提供A/C电力。
在一些实施方案中,设备可以包括盖子(也称作遮盖物),其作用是当盖子被闭合时遮盖输入开口和致动所述装置的一个或多个机构两者。以此方式,闭合盖子的单一动作也致动所述装置的所有方面,由此简化了装置致动和方法。
例如,图5和6是根据一个实施方案的分子诊断测试装置2000(也称作“测试装置”或“装置”)的示意性图示。根据本文所述的任一方法,测试装置2000被配置成操作生物样品以产生与靶细胞相关的一个或多个输出信号。在一些实施方案中,所述测试装置2000可以是集成装置,所述集成装置适合用于在床旁设施(例如,医生办公室、药房等)、分散式测试设施内或在使用者的家中使用。类似地,在一些实施方案中,下面所述的装置的模块容纳在单个外壳内,使得所述测试装置可以全部地运转,无需任何附加的仪器、扩展坞等。此外,在一些实施方案中,装置2000可以具有一定的尺寸、形状和/或重量,使得装置2000可以在使用者的手中携带、握持、使用和/或操作(即,其可以是“手持式”装置)。在一些实施方案中,测试装置2000可以是整装的单次使用装置。
在一些实施方案中,装置2000(以及本文显示和描述的任一种装置)可以是CLIA-豁免的装置和/或可以根据CLIA豁免的方法来操作。类似地,在一些实施方案中,装置2000(以及本文显示和描述的任一种其他装置)被配置成以足够简单的方式操作并且可以产生足够准确的结果,从而形成有限的不当使用可能性和/或在不正确使用时形成有限的危害风险。在一些实施方案中,依照需要使用者很少判断和/或其中某些操作步骤很容易控制和/或自动控制的方法,装置2000(以及本文显示和描述的任一种其他装置)可以由经过很少(或没有经过)科学训练的使用者操作。在一些实施方案中,所述分子诊断测试装置2000可以被配置用于以形成有限的不当使用(试剂损坏、试剂到期、试剂泄露等)可能性的方式长期保存。在一些实施方案中,所述分子诊断测试装置2000被配置成储存长达约36个月,长达约32个月,长达约26个月,长达约24个月,长达约20个月,长达约18个月,长达12个月,长达6个月,或长达其间的任意值时间。
测试装置2000包括外壳2001、盖子2050、样品制备模块2200(也称作样品分级模块)、试剂模块2700、检测模块2800和电子控制模块2950。在一些实施方案中,测试装置2000可以包括本文所述的任意其他组件或模块,诸如,例如,扩增模块(例如,扩增模块1600或6600)、旋转阀(例如,控制试剂和/或样品的流动,诸如阀6300),或流体传输模块(例如,流体传输模块6400)。外壳2001可以是任意结构,在所述外壳中容纳(或部分容纳)样品制备模块2200或其他组件以形成用于样品制备和/或分子测试的集成装置。
样品制备模块2200限定接纳生物样品S1的样品输入容积2211和输入开口2212,通过输入开口2212生物样品S1可以被传送到样品制备模块2200中。样品制备模块2200包括加热器2230并且被配置成操作生物样品S1用于进一步诊断测试。例如,在一些实施方案中,样品制备模块2200可以从生物样品S1提取核酸分子并且可以产生输入溶液S2(参见图6),所述输入溶液S2任选地被传送到扩增模块(未显示)中,或传送到检测模块2800中。样品制备模块2200可以包括本文所述的任意其他组件,诸如,例如,用于裂解的加热器,其内可以执行RT-PCR的室,和/或失活室(参见,例如,裂解外壳6201)。
试剂模块2700布置在外壳2001内并且包括试剂容器2701、柱塞2755和试剂储库2730。试剂模块2700提供对与本文所述的分子诊断测试结合使用的试剂R的板载保存。试剂R可以是本文显示和描述的任意试剂类型。例如,在一些实施方案中,试剂R可以是被配制成有助于产生指示来自输入溶液S2的靶扩增子的存在的信号的检测试剂。因此,试剂R可以被配制成包括结合部分和任意合适的酶(诸如辣根过氧化物酶(HRP)或碱性磷酸酶)。在一些实施方案中,HRP酶已经缀合于链霉抗生物素蛋白分子。在一些实施方案中,试剂R可以是当被催化时产生有色分子的底物。在其他实施方案中,试剂R可以是洗涤缓冲液或封闭剂,它们中每一个都可以有助于产生所述信号(例如,通过减少伪输出),如本文所述。
在致动前,试剂R被密封在试剂容器2701内。在一些实施方案中,试剂R可以通过试剂容器2701的脆弱部2713密封。在其他实施方案中,试剂容器2701可以包括任何合适的密封机构。通过将试剂R密封在试剂容器2701内,装置2000可以适合于长期保存,并且试剂R可以被保护免于降解,等等。试剂柱塞2755包括刺孔器2754。如图5中所示,在致动前,刺孔器与脆弱部2713隔开,由此保持容器的密封布置方式。如图6中所示,在装置被致动后,刺孔器刺破脆弱部2713,由此允许试剂R流入到试剂储库2730中用于在本文所述的分子诊断方法期间的后续使用。具体地,如所示的那样,试剂柱塞2755和刺孔器2754共同地在试剂容器2701内移动,以刺破脆弱部2713并将试剂R推向试剂储库2730。尽管试剂模块2700显示为包括不移动的试剂容器2701和移动的刺孔器2754,但在其他实施方案中,刺孔器可以是不移动的,试剂容器可以移动(参见例如,试剂模块6700)。
检测模块2800被配置成使来自样品制备模块2200(或任选地扩增模块)的输入溶液S2与一种或多种试剂反应以产生信号(或输出)OP1从而指示生物样品S1中靶生物体的存在与否。具体地,检测模块2800限定检测通道并且包括检测通道内的检测表面2821。检测通道与(或可以被置于与)样品制备模块2200和试剂模块2700中的每一个流体连通。以此方式,包含靶扩增子的输入溶液S2可以被传送到检测通道中并经过检测表面2821。另外地,如图6中所示,试剂R还可以被传送到检测通道中并且经过检测表面2821。检测表面2821包括一系列俘获探针,当输入溶液S2流经检测表面2821时,靶扩增子可以与所述俘获探针结合。俘获探针可以是本文所述类型的被配制成俘获或结合靶扩增子的任意合适的探针。当试剂R与俘获的输入溶液S2反应时,从检测表面2821产生信号OP1。
电子控制模块2950在外壳2001内并且可以自动地控制加热器(例如,加热器223)、阀、泵、电力供给和/或诊断装置2000的任何其他组件以有利于如本文所述的分子测试。电子控制模块2950可以包括存储器、处理器、输入/输出模块(或接口)以及任何其他合适的模块或软件来执行本文所述的功能。如图5和6中所示,电子控制模块2950包括开关2906,当被致动时,所述开关2906启动分子诊断测试。电子控制模块2950可以由本文所述的任何合适的电源供电,包括上述的电源1905。
盖子2050可移动地连接至外壳2001并且执行多种功能,由此有助于通过单一动作致动装置2000。如所示的那样,盖子2050包括密封部2053、开关部2060和试剂致动器2064。如箭头CC所示,盖子2050被配置成相对于外壳2001从第一(或打开的)位置(图5)移动到第二(或闭合的)位置(图6)。如图5中所示,当盖子2050处于打开的位置时,密封部2053(也称作遮盖部)与输入开口2212隔开。类似地,当盖子2050处于打开的位置时,输入开口2212暴露,由此允许生物样品S1被传送到样品制备模块2200中。在加载生物样品S1后,使用者可以闭合盖子2050(即,可以将盖子移动到其第二位置)。如图6中所示,当盖子2050处于闭合的位置时,密封部2053遮盖输入开口2212。在一些实施方案中,密封部2053包括密封件、垫圈或其他材料,从而当盖子2050处于第二盖子位置时流体隔离样品输入容积2211。
除了遮盖输入开口2212以外,闭合盖子2050还致动装置2000内的其他机构。具体地,如图6中所示,当盖子2050从打开的位置移动到闭合的位置时,开关部2060致动开关2906以向电子控制模块2950和/或加热器2230提供电力。另外地,当盖子2050从打开的位置移动到闭合的位置时,试剂致动器2064使试剂R从密封的试剂容器2701释放。具体地,如图6中所示,试剂致动器2064向试剂柱塞2755施加力,由此移动试剂柱塞2755和刺孔器2754。如图6中所示,刺孔器刺破脆弱部2713,由此允许试剂R流入试剂储库2730中。
分子诊断测试装置2000(以及本文所述的任一分子诊断测试装置)可以执行本文所述的任一个“单触式”致动方法。例如,图7是根据一个实施方案的检测核酸的方法20的流程图。尽管方法20被描述为在装置2000上执行,但在其他实施方案中,方法20可以在任何合适的装置上执行,诸如下文所述的装置6000。方法20包括在22,将分子诊断测试装置耦合到电源。电源(图5和6中未显示)可以是任何合适的电源,诸如交流电(A/C)电源、直流电(D/C)电源(例如,电池)、燃料电池等。
在23,生物样品通过输入开口被传送到分子诊断测试装置内的样品制备模块中。生物样品S1可以通过任何合适的机构被传送到所述装置中,所述机构诸如上述的样品转移装置1110。生物样品S1可以是任何合适的样品,诸如,例如,血液、尿、男性尿道标本、阴道标本、宫颈拭子标本、鼻拭子标本、咽拭子标本、直肠拭子标本或本文所述的任意其他生物样品。因此,在一些实施方案中,生物样品S1可以是“原始”(或未加工的)样品。
然后在24,分子诊断测试装置通过闭合盖子以遮盖输入开口的单一动作被致动。此闭合装置的单一动作使分子诊断测试装置执行一系列操作,无需任何进一步的使用者输入。参见图6,盖子2050可以通过相对于外壳2001旋转盖子而闭合。在其他实施方案中,盖子2050可以通过滑动动作(参见,例如,装置6000)、压下盖子的一部分或任何其他合适的闭合机构而闭合。在通过遮盖开口被致动后,分子诊断测试装置可以执行本文所述的任一方法。具体地,闭合盖子的动作还可以致动电子控制模块(例如,电子控制模块2950),释放一种或多种试剂用于在测试中使用(例如,将试剂R释放到试剂储库2730中)和/或致动所述装置内的任何其他机构以有助于本文所述的分子诊断方法。具体地,在24A,所述装置可以通过样品制备模块的加热器加热生物样品以裂解一部分生物样品,从而产生输入样品。参见图6,生物样品S1可以通过加热器2230加热,并且所得到的裂解样品(即,输入样品S2)可以向检测模块2800或扩增模块(图6中未显示)传送。在一些实施方案中,方法20任选地包括在24B,将输入样品传送到分子诊断测试装置内的扩增模块。然后在操作24C,输入样品可以在反应容积内被加热以扩增输入样品内的核酸,从而产生包含靶扩增子的输出溶液。输入溶液可以通过使用如本文所述的任何合适的技术(例如,PCR、等温扩增等)来扩增。
在扩增后,在24D,然后所述装置在分子诊断测试装置内的检测模块内,使下述中的每一个反应:(i)输出溶液和(ii)被配制成产生指示输出溶液内靶扩增子的存在的信号的试剂。如图6中所示,检测模块2800包括被配置成俘获靶扩增子以产生输出信号OP1的检测表面2821。输出信号OP1可以是任何合适的信号。在一些实施方案中,输出信号OP1可以是指示结合的扩增子存在的比色信号:如果存在靶病原体、靶扩增子和/或靶生物体,则形成有色产物,如果不存在靶病原体、靶扩增子和/或靶生物体,则不形成有色产物。
所述方法进一步包括在25,读出与所述信号相关的结果。在一些实施方案中,所述读出可以包括肉眼检查所述装置和检测表面2821的比色信号。在其他实施方案中,由检测表面2821产生的信号OP1不一定是肉眼可见的。例如,在一些实施方案中,所述读出可以包括使用辅助装置,诸如移动计算装置来扫描或以另外的方式接收信号OP1。还在其他的实施方案中,所述读出结果可以包括间接地读出二级信号,所述二级信号传递与来自检测表面2821的初级输出相关(或描述初级输出)的结果。
在一些实施方案中,方法20任选地包括在所述读出后丢弃所述分子测试装置。在一些实施方案中,样品和试剂的量可以是使得所述装置可以通过标准的、不受制约的废物处理程序被处置。在其他实施方案中,所述丢弃包括通过标准的医用废物处理程序来处置使用过的装置。在一些实施方案中,方法20任选地包括在使用前将包括密封在其中的任意试剂的分子诊断测试装置保存至少6个月。
在一些实施方案中,分子诊断测试装置和相关的方法涉及使用多用途试剂来执行表面封闭和洗涤功能两者。以此方式,可以提高试剂的量和装置的简易性,由此有助于床旁用途、装置的一次使用性和/或依照CLIA豁免的方法对装置的操作。具体地,在一些实施方案中,多用途试剂可以包括封闭剂以减少检测事件期间与附着不合乎需要的颗粒相关的背景信号。通过提高信号质量,此类装置和方法可以适用于利用有限的样品制备来使用。另外,多用途试剂可以包括洗涤剂,所述洗涤剂将未结合的成分从检测模块内移除。此类方法可以包括根据多用途试剂的期望功能在不同的时间递送一定量的所述试剂。
图8-11是根据一个实施方案的包括多用途试剂的分子诊断测试装置3000(也称作“测试装置”或“装置”)的示意性图示。根据本文所述的任一方法,测试装置3000被配置成操作生物样品以产生与靶细胞相关的一个或多个输出信号。在一些实施方案中,测试装置3000可以是集成装置,所述集成装置适合用于在床旁设施(例如,医生办公室、药房等)、分散式测试设施内或在使用者的家中使用。类似地,在一些实施方案中,下面所述的装置的模块容纳在单个外壳内使得所述测试装置可以全部地运转,无需任何附加的仪器、扩展坞等。此外,在一些实施方案中,装置3000可以具有一定的尺寸、形状和/或重量,使得装置3000可以在使用者的手中携带、握持、使用和/或操作(即,其可以是“手持式”装置)。在一些实施方案中,测试装置3000可以是整装的单次使用装置。
在一些实施方案中,装置3000(以及本文显示和描述的任一种装置)可以是CLIA-豁免的装置和/或可以根据CLIA豁免的方法来操作。类似地,在一些实施方案中,装置3000(以及本文显示和描述的任一种其他装置)被配置成以足够简单的方式操作并且可以产生足够准确的结果,从而形成有限的不当使用可能性和/或在不正确使用时形成有限的危害风险。在一些实施方案中,依照需要使用者很少判断和/或其中某些操作步骤很容易控制和/或自动控制的方法,装置3000(以及本文显示和描述的任一种其他装置)可以由经过很少(或没有经过)科学训练的使用者操作。在一些实施方案中,所述分子诊断测试装置3000可以被配置用于以形成有限的不当使用(试剂损坏、试剂到期、试剂泄露等)可能性的方式长期保存。在一些实施方案中,所述分子诊断测试装置3000被配置成储存长达约36个月,长达约32个月,长达约28个月,长达约24个月,长达约20个月,长达约18个月,长达12个月,长达6个月,或长达其间的任意值时间。
测试装置3000包括外壳3001、样品制备模块3200(也称作样品分级模块)、试剂模块3700和检测模块3800。在一些实施方案中,测试装置3000可以包括本文所述的任意其他组件或模块,诸如,例如,扩增模块(例如,扩增模块1600或6600)、旋转阀(例如,控制试剂和/或样品的流动,诸如阀6300)或流体传输模块(例如,流体传输模块6400)。外壳3001可以是任意结构,在所述外壳中容纳(或部分容纳)样品制备模块3200或其他组件以形成用于样品制备和/或分子测试的集成装置。
样品制备模块3200限定接纳生物样品S1的样品输入容积3211。样品制备模块3200可以包括如本文所述的任何组件以操作生物样品S1用于进一步诊断测试和/或以产生检测核酸的溶液。例如,在一些实施方案中,样品制备模块3200可以包括一个或多个加热器、一个或多个室(在所述室内可以操作生物样品S1)、一个或多个混合室和/或某些板载试剂(例如,裂解缓冲液,RT酶,对照生物体等)。在一些实施方案中,样品制备模块3200被配置成从生物样品S1提取核酸分子并且可以产生输入溶液S2(参见图10),所述输入溶液S2任选地被传送到扩增模块(未显示)中,或被传送到检测模块3800中。
试剂模块3700被布置在外壳3001内并且包括第一试剂容器3701、第一试剂致动器3755、第二试剂容器3702和第二试剂致动器3765。试剂模块3700提供对与本文所述的分子诊断测试结合使用的第一试剂R1(在第一试剂容器3701内)和第二试剂R2(在第二试剂容器3702内)的板载保存。在一些实施方案中,第一试剂R1密封在第一试剂容器3701内,第二试剂R2密封在第二试剂容器3702内。在一些实施方案中,试剂模块3700可以包括一个或多个刺孔器(参见,例如,试剂模块2700的刺孔器或试剂模块6700的刺孔器),所述刺孔器在装置致动时可以释放试剂用于使用。
第一试剂R1是多用途试剂并且包括封闭剂和洗涤缓冲液。在一些实施方案中,封闭剂包括牛血清白蛋白,洗涤缓冲液包括洗涤剂。此外,在一些实施方案中,第一试剂R1包括0.02%-5%的牛血清白蛋白和0.05%-10%的洗涤剂。包括封闭剂可以有助于在类似本文所述的那些采用有限的样品制备(即,有限的过滤、分离等)的方法中实现可重复的和准确的结果。具体地,当生物样品S1接受有限的样品制备时,对于产生与靶核酸相关的输出信号不合乎需要的分子(即,“不期望的分子”)可以附着于检测模块3800中的表面。不期望的分子的附着,尤其是在非检测表面上,会导致产生不合乎需要的背景信号。通过包括封闭剂,第一试剂R1可以用来将封闭剂传送到检测模块3800中以限制所述不期望的分子的附着。类似地,如本文所述,第一试剂R1可以用来在检测模块内施加涂层以限制不期望的背景信号。在其他实施方案中,第一试剂R1内的封闭剂可以是酪蛋白、脱脂乳固体、明胶等。又在其他实施方案中,第一试剂R1内的封闭剂可以是非生物封闭剂。此外,通过在第一试剂R1中还包括洗涤剂,第一试剂R1还可以用来(例如,在不同的时间)在检测事件期间从检测模块3800移除未结合的成分。
在一些实施方案中,第一试剂R1还可以包括湿润剂以提高第一试剂R1充分地包被检测模块3800内的表面的可能性。在一些实施方案中,第一试剂R1还可以包括抗微生物成分以提高装置3000的保存期。
第二试剂R2可以是被配制成有利于产生指示来自输入溶液S2的靶扩增子的存在的信号的检测试剂。在一些实施方案中,第二试剂R2可以被配制成包括结合部分和任意合适的酶(诸如辣根过氧化物酶(HRP)或碱性磷酸酶)。在一些实施方案中,HRP酶已经缀合于链霉抗生物素蛋白分子。在一些实施方案中,第二试剂R2可以是在被催化时产生有色分子的底物。
检测模块3800被配置成使来自样品制备模块3200(或任选地扩增模块)的输入溶液S2与第二试剂R2反应以产生一个或多个信号(或输出)OP1、OP2,从而指示生物样品S1中靶生物体的存在与否。具体地,检测模块3800限定检测通道并且包括检测通道内的第一检测表面3821和第二检测表面3822。检测模块3800还包括非检测表面3826,所述非检测表面3826邻接、包绕或接触第一检测表面3821和第二检测表面3822中的任一个或两者。如上所述,通过限制由非检测表面3826产生的任何背景信号,可以提高装置3000和相关的分子诊断方法的总体准确度。
检测通道处于与(或可以被置于与)样品制备模块3200和试剂模块3700中的每一个流体连通。以此方式,包含靶扩增子的输入溶液S2可以被传送到检测通道中并经过检测表面3821。另外,如图11中所示,第二试剂R2也可以被传送到检测通道中并经过检测表面3821,3822。检测表面3821,3822包括一系列俘获探针,当输入溶液S2流经检测表面3821,3822时,靶扩增子可以与所述俘获探针结合。俘获探针可以是本文所述类型的被配制成俘获或结合靶扩增子的任意合适的探针。当第二试剂R2与俘获的输入溶液S2反应时,从第一检测表面3821产生第一信号OP1,从第二检测表面3822产生第二信号OP2。
分子诊断测试装置3000(以及本文所述的任一分子诊断测试装置)可以执行本文所述的任一方法。例如,图12是根据一个实施方案的检测核酸的方法30的流程图。尽管方法30被描述为在装置3000上执行,但在其他实施方案中,方法30可以在任何合适的装置上执行,诸如下文所述的装置6000。方法30任选地包括在32,在使用前将包括密封在其中的任意试剂的分子诊断测试装置保存至少6个月。例如,包括第一试剂R1和第二试剂R2的装置3000可以作为储备计划的一部分保存至少6个月。
为了启动分子诊断测试,方法30任选地包括将生物样品传送到分子诊断测试装置内的样品制备模块中。参见图8,生物样品S1可以通过任何合适的机构被传送到所述装置中,所述机构诸如样品转移装置3110。生物样品S1可以是任何合适的样品,诸如,例如,血液、尿、男性尿道标本、阴道标本、宫颈拭子标本、鼻拭子标本、咽拭子标本、直肠拭子标本或本文所述的任意其他生物样品。因此,在一些实施方案中,生物样品S1可以是“原始”(或未加工的)样品。
在33,第一体积的第一试剂R1在第一时间从分子诊断测试装置内的试剂模块传送到分子诊断测试装置内的检测模块。检测模块可以类似于检测模块3800并且包括被配置成俘获与所述核酸相关的靶扩增子的检测表面3821和一个或多个非检测表面3826。如上所述,第一体积的第一试剂R1包含足以吸附到所述检测模块3800内的表面(包括检测表面3821和非检测表面3826)的量的所述封闭溶液。参见图9,第一体积可以如箭头DD所示通过移动第一试剂致动器3755来传送。第一体积的第一试剂R1的流动通过箭头EE显示。在一些实施方案中,在所述方法的剩余操作允许封闭剂在检测模块3800内充分地包被和吸附之前,第一时间(即,第一部分传送到检测模块中的时间)要充分。例如,在一些实施方案中,在涉及使溶液流入检测模块的后续步骤之前,第一时间持续至少3分钟。在一些实施方案中,例如,在生物样品S1在样品输入模块3200中被加热和/或加工的同时,第一体积的第一试剂R1可以传送到检测模块3800中。以此方式,“封闭操作”不用加入到总测试持续时间中。
生物样品S1可以在样品制备模块3200内加热,得到的裂解的样品(即,输入样品S2)可以朝向扩增模块3800或扩增模块(图8-11中未显示)传送。在一些实施方案中,方法30任选地包括在34,将输入样品传送到分子诊断测试装置内的扩增模块。在35,然后输入样品可以在反应容积内加热以扩增输入样品内的核酸,从而产生包含靶扩增子的输出溶液。输入溶液可以通过使用任何合适的技术(例如,PCR,等温扩增等)扩增,如本文所述。
在任选的扩增后,所述方法包括在36,在第二时间将包含靶扩增子的样品溶液传送到检测模块中使得所述靶扩增子被俘获在检测表面上。参见图10,样品(或输入)溶液由箭头S2表示。如上所述,第一检测表面3821和第二检测表面3822各自包括一系列俘获探针,当输入溶液S2流经检测表面3821,3822时,靶扩增子可以与所述俘获探针结合。此外,通过将封闭剂应用于检测模块内的表面,减小了非特异性蛋白吸附的可能性。在一些实施方案中,所述方法可以任选地包括将一定量的第一试剂R1传送到检测模块中,从而将未结合成分从所述检测模块洗掉。具体地,第一试剂溶液包含洗涤缓冲液,所述洗涤缓冲液的量足以从检测模块移除来自样品溶液或第二试剂溶液中的至少一个的未结合成分。如图10中所示,第一试剂R1可以通过进一步致动第一试剂致动器3755而被传送到检测模块中。
参见图12,在37,在第二时间后,第二试剂被传送到检测模块中。如图11中所示,第二试剂R2可以如箭头FF所示通过移动第二试剂致动器3765而被传送。如所示的那样,第二试剂R2可以流过检测表面。第二试剂可以是上述的试剂R2,并且被配制成导致产生指示样品溶液内靶扩增子的存在的信号。所述方法进一步包括在38,在第二时间后,将第二体积的第一试剂传送到检测模块中。第二体积的第一试剂溶液包含洗涤缓冲液,所述洗涤缓冲液的量足以从检测模块移除来自样品溶液或第二试剂溶液中的至少一个的未结合成分。
在一些实施方案中,所述方法任选地包括在39,将第三试剂传送到检测模块中。所述第三试剂可以是,例如,被配制成当被第二试剂R2催化时产生信号的底物或其他物质。以此方式,所述装置可以使(i)所述输出溶液和(ii)被配制成产生指示所述输出溶液内所述靶扩增子的存在的信号的试剂中的每一个反应。在一些实施方案中,所述方法包括提供第三试剂通过检测模块的连续流动。具体地,在一些实施方案中,第三试剂包括沉淀底物,所述沉淀底物被配制成当被在检测表面上俘获的第二试剂R2催化时产生有色分子。因为第三试剂是沉淀底物,产生的有色分子将沉降在检测表面上。此外,通过连续补充第三试剂(即,沉淀底物),产生有色分子的反应将不受第三试剂的浓度(或量)限制。类似地,通过使第三试剂连续地流过检测表面(和俘获的第二试剂R2),产生有色分子的反应将没有扩散限制。而是,所述反应将是受动力学(或速率)限制的,因此会比在检测模块内保持设定量的第三试剂更快。
在一些实施方案中,所述方法任选地包括读出与所述信号相关的结果,如本文所述的那样。
尽管图9和10示出了通过在相同的方向上移动第一试剂致动器3755而传送第一体积的第一试剂R1和第二体积的第一试剂R1,但在其他实施方案中,可以应用任何合适的机构用于传送期望量的第一试剂R1。例如,在一些实施方案中,第一试剂可以在装置3000(或任何其他装置)内再循环(或再利用)。具体地,第一体积的第一试剂可以被应用用于封闭目的,然后可以返回至试剂模块以后续再利用用于洗涤目的。通过使第一试剂再循环用于多种目的,减少了所需的试剂量,这样允许更小的包装、更低的成本,等等。
例如,图13是根据一个实施方案的检测核酸的方法40的流程图。尽管方法40被描述为在装置3000上执行,但在其他实施方案中,方法40可以在任何合适的装置上执行,诸如下文所述的装置6000。为了启动分子诊断测试,方法40包括在42,将生物样品传送到分子诊断测试装置内的样品制备模块中。生物样品S1可以是任何合适的样品,诸如,例如,血液、尿、男性尿道标本、阴道标本、宫颈拭子标本、鼻拭子标本或本文所述的任意其他生物样品。因此,在一些实施方案中,生物样品S1可以是“原始”(或未加工的)样品。
在43,然后致动分子诊断测试装置(例如,在一些实施方案中,通过单一动作致动),使所述分子诊断测试装置执行一系列操作。作为致动的结果,在43A,在第一时间将第一体积的第一试剂R1从分子诊断测试装置内的试剂模块传送到分子诊断测试装置内的检测模块。检测模块可以类似于检测模块3800并且包括被配置成俘获与所述核酸相关的靶扩增子的检测表面3821和一个或多个非检测表面3826。如上所述,第一体积的第一试剂R1包含足以吸附到检测模块3800内的表面(包括检测表面3821和非检测表面3826)的量的封闭溶液。在43B,然后所述装置将第一体积的第一试剂R1传送回试剂模块。这可以例如,通过在与图9中箭头DD所示相反的方向上移动第一试剂致动器3755以将第一试剂R1吸回到试剂模块3700中来实现。在一些实施方案中,所述方法可以包括允许第一体积的第一试剂在检测模块中保持一定的停留时间以允许发生封闭功能(即,吸附)。所述停留时间可以是,例如,至少1分钟、2分钟、至少3分钟或至少4分钟。在一些实施方案中,所述方法可以包括加热检测模块(例如,加热至至少30C、40C或50C的温度)以促进吸附。
在操作43C,所述装置可以通过加热器加热生物样品以产生包含靶扩增子的输出样品。换句话说,输入样品可以在反应容积内加热以扩增输入样品内的核酸,从而产生包含靶扩增子的输出溶液。输入溶液可以通过使用任何合适的技术(例如,PCR,等温扩增等)扩增,如本文所述。
在扩增后,所述方法包括在43D,在第二时间将包含靶扩增子的样品溶液传送到检测模块中使得所述靶扩增子被俘获在检测表面上。在43E,所述装置然后将第二体积的第一试剂传送到检测模块中。第二体积的第一试剂溶液包含洗涤缓冲液,所述洗涤缓冲液的量足以将来自样品溶液或第二试剂溶液中的至少一个的未结合成分从检测模块移除。
所述方法进一步包括在44,读出与所述信号相关的结果。在一些实施方案中,所述读出可以包括肉眼检查所述装置和检测表面3821,3822的比色信号。在其他实施方案中,由检测表面产生的信号OP1不一定是肉眼可见的。例如,在一些实施方案中,所述读出可以包括使用辅助装置,诸如移动计算装置来扫描或以另外的方式接收信号OP1,OP2。还在其他的实施方案中,所述读出结果可以包括间接地读出二级信号,所述二级信号传递与来自检测表面的初级输出相关(或描述初级输出)的结果。
图14图示了根据一个实施方案的与酶反应相关的操作和/或特征的一部分,其可以由检测模块3800、检测模块4800或本文所述的任何其他检测模块(例如,检测模块6800)进行,或在检测模块3800、检测模块4800或本文所述的任何其他检测模块(例如,检测模块6800)内进行。在一些实施方案中,可以进行所述酶反应从而有助于使用装置3000、装置4000、装置5000、装置6000或本文所述的任何其他装置或系统视觉检测分子诊断测试结果。在其他实施方案中,不一定进行所述酶反应来产生视觉检测。例如,如本文所述,在一些实施方案中,采用图示的酶反应的方法可以采用替代方法来读出与所产生的信号相关的结果。
在一些实施方案中,反应、检测模块4800和/或装置4000(或装置6000)内的其余组件可以共同地配置使得所述装置成为可以在床旁设施和/或在使用者的家里使用的单次使用装置。类似地,在一些实施方案中,装置4000(以及本文显示和描述的任一种其他装置)可以被配置用于分散式测试设施中。此外,在一些实施方案中,图14中所示的反应可以有助于装置4000(以及本文显示和描述的任一种其他装置)以足够的简易性和准确性运行从而成为CLIA-豁免的装置。类似地,在一些实施方案中,图14中所示的反应可以以形成有限的不当使用可能性和/或在不正确使用时形成有限的危害风险的方式提供输出信号OP1。在一些实施方案中,依照需要使用者很少判断和/或其中某些操作步骤很容易控制和/或自动控制的方法,所述反应可以在装置4000(或本文所述的任何其他装置)内在致动后由经过很少(或没有)科学训练的使用者成功地完成。
如所示的那样,检测模块4800包括读长泳道(read lane)或流动通道内的检测表面4821。检测表面4821为斑点状和/或与特异性杂交探针4870诸如寡核苷酸共价键合。杂交探针4870(也称作俘获探针)可以类似于本文所述的任一种俘获探针,包括结合检测表面3821描述的那些。在一些实施方案中,杂交探针4870对靶生物体、核酸和/或扩增子特异。杂交探针4870与检测表面4821的键合可以使用任何合适的程序或机制来进行。例如,在一些实施方案中,杂交探针4870可以与检测表面4821共价键合。
附图标记S3图示了生物素化扩增子,所述生物素化扩增子从扩增步骤产生,诸如,例如,由图15的扩增模块4600(或本文所述的任何其他扩增模块)产生。生物素可以在扩增操作内和/或在扩增模块4600内以任何合适的方式掺入。如箭头XX所示,来自扩增模块的输出,包括生物素化扩增子S3,在读长泳道内传送并经过检测表面4821。杂交探针4870被配制成与存在于流动通道内和/或靠近检测表面4821的靶扩增子S3杂交。加热检测模块4800和/或检测表面4821以在杂交探针4870的存在下在读长泳道中温育生物素化扩增子S3几分钟,从而允许发生结合。以此方式,靶扩增子S3被俘获和/或固定于检测表面4821,如所示的那样。尽管公开为用生物素标记,但在其他实施方案中,靶分子可以以任何合适的方式标记,所述方式将允许包含样品分子结合部分的复合物和能够促进比色反应的酶的结合。例如,在一些实施方案中,靶分子可以用下列中的一种或多种标记:链霉抗生物素蛋白、荧光素、德克萨斯红、地高辛或岩藻糖。
在一些实施方案中,第一洗涤溶液(图14中未显示)可以被传送经过检测表面4821和/或在流动通道内传送以移除未结合的PCR产物和/或任何残留的溶液。此类洗涤溶液可以是,例如,多用途试剂,如上面参照装置3000以及方法30和方法40的第一试剂R1所述。然而,在其他实施方案中,不进行洗涤操作。
如箭头YY所示,检测试剂R5在读长泳道内传送并经过检测表面4821。检测试剂R5可以是本文所述的任一种检测试剂。在一些实施方案中,检测试剂R5可以是具有链霉抗生物素蛋白接头的辣根过氧化物酶(HRP)酶(“酶”)。在一些实施方案中,链霉抗生物素蛋白和HRP交联以提供双功能性。如所示的那样,检测试剂与俘获的扩增子S3结合。加热检测模块4800和/或检测表面4821以在生物素化扩增子S3的存在下在读长泳道中温育检测试剂R5几分钟以促进结合。
在一些实施方案中,第二洗涤溶液(图14中未显示)可以被传送经过检测表面4821和/或在流动通道内传送以移除未结合的检测试剂R5。此类洗涤溶液可以是,例如,多用途试剂,如上面参照装置3000以及方法30和方法40的第一试剂R1所述。然而,在其他实施方案中,不进行第二洗涤操作。
如箭头ZZ所示,检测试剂R6在读长泳道内传送并经过检测表面4821。检测试剂R6可以是本文所述的任一种检测试剂。在一些实施方案中,检测试剂R6可以是,例如,被配制成当与检测试剂R5反应时增强、催化和/或促进信号OP1产生的底物。具体地,所述底物被配制成使得在与检测试剂R5(HRP/链霉抗生物素蛋白)接触时产生有色分子。这样,在HRP附着于扩增子处形成比色输出信号OP1。输出信号OP1的颜色指示结合的扩增子的存在:如果存在靶病原体、靶扩增子和/或靶生物体,则形成有色产物,如果不存在靶病原体、靶扩增子和/或靶生物体,则不形成有色产物。
如上面关于方法30所述,在一些实施方案中,检测试剂R6可以连续地流过检测表面4821以确保产生有色分子的反应不受检测试剂的可获得性限制。此外,在一些实施方案中,检测试剂R6可以是沉淀底物。
在一些实施方案中,方法包括裂解原始样品并在所裂解的样品上进行逆转录聚合酶链式反应(PCR)以有利于对靶RNA的检测,例如用于检测靶病毒。为了有利于此类方法,在一些实施方案中,装置可以包括逆转录模块以有助于此类分离和检测病毒的方法。作为一个实例,图15是根据一个实施方案的包括逆转录模块4270的分子诊断测试装置4000(也称作“测试装置”或“装置”)的示意性图示。该示意性图示描述了测试装置4000的主要组件。
测试装置4000是集成装置(即,模块容纳在单个外壳内),其适合在在床旁设施(例如,医生办公室、药房等)、分散式测试设施内或在使用者的家中使用。在一些实施方案中,装置4000可以具有一定的尺寸、形状和/或重量,使得装置4000可以在使用者的手中携带、握持、使用和/或操作(即,其可以是“手持式”装置)。手持式装置可以具有小于15cmx15cmx15cm、或小于15cmx15cmx10cm、或小于12cmx12cmx6cm的尺寸。在其他实施方案中,测试装置4000可以是整装的单次使用装置。类似地,测试装置4000是独立式装置,其包括所有必需的物质、机构和部件以执行本文所述的任一种分子诊断测试。这样,装置4000不需要任何外部仪器来操作生物样品,并且仅需要连接到电源(例如,连接到A/C电源,耦合到电池等)以完成本文所述的方法。在一些实施方案中,测试装置4000可以配置有锁定或其他机构以防止再使用或尝试再使用所述装置。
此外,在一些实施方案中,装置4000可以是CLIA-豁免的装置和/或可以根据CLIA豁免的方法来操作。类似地,在一些实施方案中,装置4000(以及本文显示和描述的任一种其他装置)被配置成以足够简单的方式操作,并且可以产生足够准确的结果从而形成有限的不当使用可能性和/或在不正确使用时形成有限的危害风险。在一些实施方案中,依照需要使用者很少判断和/或其中某些操作步骤很容易控制和/或自动控制的方法,装置4000(以及本文显示和描述的任一种其他装置)可以由经过很少(或没有经过)科学训练的使用者操作。在一些实施方案中,所述分子诊断测试装置4000可以被配置用于以形成有限的不当使用(试剂损坏、试剂到期、试剂泄露等)可能性的方式长期保存。在一些实施方案中,所述分子诊断测试装置4000被配置成储存长达约36个月,长达约32个月,长达约26个月,长达约24个月,长达约20个月,长达约48个月,或长达其间的任意值时间。
测试装置4000被配置成操作生物样品S1以产生与靶细胞相关的一个或多个输出信号。具体地,装置4000包括致动器4050、样品制备(或分级)模块4200、流体驱动(或流体传输)模块4400、混合模块4250、扩增模块4600、检测模块4800、试剂模块4700、阀4300以及电源和控制模块(未显示)。测试装置和其中的某些组件可以类似于参照图19显示和描述的装置6000的许多组件。因此,致动器4050、流体驱动(或流体传输)模块4400、混合模块4250、扩增模块4600、检测模块4800、试剂模块4700和阀4300在此不详细描述。此外,包括逆转录模块的装置类似于题目为“用于核酸提取的装置和方法”的国际专利公开号WO2018/005870中显示和描述的逆转录装置,它们每一个的全部内容都通过引用并入本文。
装置4000与装置1000、装置2000、装置3000和装置6000的不同之处在于样品制备模块4200包括裂解室4201和逆转录模块4270。裂解室4201可以类似于题目为“使用流动池检测分子的装置和方法”的国际专利公开号WO2018/005710中显示和描述的裂解室,该专利的全部内容通过引用并入本文。具体地,裂解模块4300包括室体和加热器。在使用中,样品(经过滤的样品或原始生物样品S1)被传送到室体中并可以被加热到裂解温度范围内的第一温度以释放核糖核酸(RNA)分子。加热器可以将热能传送到裂解模块4300以在裂解模块4300的任何期望部分内产生裂解温度带并持续本文所述的任一时间周期。因此,裂解模块可以裂解生物样品内的细胞,也裂解可能驻留在细胞内的靶病毒以产生适合用于逆转录过程的RNA。
在完成裂解后,经裂解样品然后可以与逆转录酶混合以形成逆转录溶液。所述混合可以在所述装置的任何合适的部分中进行,诸如,例如,在裂解模块4201和逆转录模块4270之间的流路中进行。备选地,在一些实施方案中,经裂解样品与逆转录酶的混合可以在混合模块4250内进行。
逆转录模块4270被集成在所述装置中,并且包括流动构件和加热器。流动构件限定逆转录流路,包含所述RNA的经裂解样品可以通过所述逆转录流通传送。逆转录模块4270被配置成将逆转录溶液加热至逆转录温度范围内的第二温度以产生互补脱氧核糖核酸(cDNA)分子。在一些实施方案中,逆转录模块4270被配置成将逆转录溶液加热至高于失活温度的第三温度以导致逆转录酶失活。然后逆转录溶液可以被传送到混合模块4250并与PCR试剂混合。在混合后,所述溶液然后可以被传送到扩增模块4600并以本文所述的方式扩增。
尽管装置4000显示和描述为包括与逆转录模块4270分开的裂解模块4300,但在其他实施方案中,装置和分子诊断方法可以包括单个室或模块,在所述室和模块内,A)样品可以被裂解以产生RNA,B)所述RNA可以被加热以产生互补脱氧核糖核酸(cDNA),和C)所述溶液可以被进一步加热以灭活逆转录酶(即,RT酶)。类似地,在一些实施方案中,方法包括裂解原始样品并在同一环境中对经裂解的样品进行逆转录聚合酶链式反应(PCR)。换句话说,在一些实施方案中,装置包括单个裂解/RT-PCR模块从而有助于包括在单室中裂解原始样品并进行快速RT-PCR的方法。此类方法可以以限制靶RNA在裂解后降解的方式执行,由此产生准确的结果。因此,此类方法适合于通过CLIA豁免的床旁装置执行。
图16是分子诊断测试装置5000(也称作“测试装置”或“装置”)的一部分的示意性图示,分子诊断测试装置5000包括可以在单一环境(或模块)中执行裂解、RT-PCR、酶失活的样品制备(或分级)模块5200。测试装置5000可以具有与上述的装置4000相似的特征,并且是适合用于在床旁设施(例如,医生办公室、药房等)、分散式测试设施内或在使用者的家中使用的集成装置(即,模块容纳在单个外壳内)。样品制备模块5200包括输入(或容纳)储库5211和流动通道5214,在它们内部输入样品S1可以被加热以执行RT-PCR,以及其他方法。样品制备模块还包括逆转录酶R2,所述逆转录酶R2与生物样品S1混合。在完成RT-PCR过程后,所述溶液然后被传送到混合模块5250,在此所述溶液与适合用于执行期望的扩增(例如,PCR或其他扩增方法)的扩增试剂R3混合。所有或部分的装置5000可以包括在本文所述的任一种装置内。此外,装置5000可以用来执行本文所述的任一个RT-PCR方法。
图17A示出了温度作为时间的函数的图,图18是在手持式单次使用装置内的单个模块中执行裂解、逆转录和失活过程的方法50的流程图。尽管方法50结合图17A的温度性能图、装置5000和装置6000(下述)描述,但在其他实施方案中,RT-PCR方法50可以利用如本文所述的任何合适的装置执行。在52,方法50包括在样品制备模块内混合逆转录酶与生物样品以形成逆转录溶液。样品制备模块可以是单一环境或模块,如下面描述的样品制备模块6200。在一些实施方案中,逆转录酶可以是冻干的或固体形式的试剂R4,其俘获性地保持在样品制备模块的保留容积或混合容积(例如,保留容积6211)中。在一些实施方案中,生物样品可以是原始的和/或未过滤的样品。在一些实施方案中,逆转录溶液可以不含核糖核酸酶抑制剂。具体地,如本文所述,在一些实施方案中,方法50可以以下列的方式执行:使释放的RNA快速地经历逆转录,使得核糖核酸酶对RNA的降解被限制。
在53,然后逆转录溶液在样品制备模块内被加热至裂解温度范围内的第一温度以释放核糖核酸(RNA)分子。所述裂解温度范围可以是本文所述的任一范围。例如,在一些实施方案中,所述第一温度范围可以是约25C-约40C。在一些实施方案中,加热可以由分段或“多区”加热器(例如,加热器6230)执行,所述加热器将热能传送到样品制备模块的初始容积6211中。参见图17A,在一些实施方案中,加热至第一温度可以包括按升温速率(如图17A中的区域61所示)加热逆转录溶液。换句话说,在一些实施方案中,逆转录溶液可以按从初始温度向逆转录温度Trt的升温速率加热,并且不一定保持在恒定的裂解温度持续以设定的时段。以此方式,所述溶液可以通过裂解温度范围(例如,25C-35C),同时朝目标逆转录温度被加热。然而,在其他实施方案中,方法50可以包括将逆转录溶液保持在恒定的裂解温度持续设定的时段。
在54,然后逆转录溶液在样品制备模块内加热至逆转录温度范围内的第二温度以从释放的RNA产生互补脱氧核糖核酸(cDNA)分子。逆转录温度范围可以是本文所述的任一范围。例如,在一些实施方案中,第一温度范围可以为约40C-约60C。在一些实施方案中,加热可以由分段或“多区”加热器(例如,加热器6230)执行,所述加热器将热能传送到样品制备模块的初始容积6211中。在其他实施方案中,逆转录溶液可以通过蛇形流动通道(例如,通道6214)传送以促进加热器6230的加热。参见图17,在一些实施方案中,加热至第二温度可以包括加热逆转录溶液,然后将该溶液保持在基本上恒定的目标逆转录温度Trt持续t1至t2之间的时段,如图17中的区域62所示。然而,在其他实施方案中,逆转录溶液可以连续地被加热使得温度沿朝向失活温度Tinact的第二升温速率升高,并且不一定保持在恒定的逆转录温度持续设定的时段。
在一些实施方案中,所述溶液可以保持在第二温度(例如,Trt)持续合适的时段(例如,参见图17A,在第一时间(t1)和第二时间(t2)之间以完成逆转录反应。在一些实施方案中,所述时间可以是约30秒、至少1分钟、至少2分钟、至少3分钟、至少4分钟和至少5分钟。
所述方法进一步包括在55,在样品制备模块内将逆转录溶液加热至高于失活温度的第三温度以引起逆转录酶失活。失活温度范围可以是本文所述的任一范围。例如,在一些实施方案中,第一温度范围可以是大于约92C、93C、94C、95C、96C、97C、98C和约99C。在其他实施方案中,RT酶可以在低得多的温度被失活,且第一温度范围可以是大于约56C、58C、60C、62C、64C、68C、75C和约80C。在一些实施方案中,第三温度可以保持持续合适的时段(参见图17A,从时间t3至时间t4,提供了合适量的时间以使RT酶失活)。在一些实施方案中,加热可以由分段或“多区”加热器(例如,加热器6230)执行,所述加热器将热能传送到样品制备模块的初始容积6211中。在其他实施方案中,逆转录溶液可以通过蛇形流动通道(例如,通道6214)传送以促进加热器6230的加热。
在56,然后将逆转录溶液传送到扩增模块。可以根据本文所述的方法完成任何附加的核酸检测方法,诸如进一步扩增cDNA。
尽管图17A将裂解和RT-PCR显示为在不同的步骤中执行,但在一些实施方案中,方法可以包括以连续的方式执行这些操作。类似地,在一些实施方案中,方法可以包括在连续的基本上同时的操作中裂解细胞和/或病毒以释放RNA并从释放的RNA产生cDNA。以此方式,可以最小化释放RNA和产生cDNA的转录过程之间的时间,使得RNA被内源性核糖核酸酶的潜在降解受到限制。这进一步允许本文所述的任一方法在不使用核糖核酸酶抑制剂或其他RNA保护机制(例如,珠俘获、额外的过滤等)的情况下完成。已经有利地发现此方法有效地用于某些病毒,包括MS噬菌体和甲型流感病毒。在其他实施方案中,这种连续的裂解/RT-PCR方法可以在用于HIV和所有汉坦病毒(Hantavirus)种属的检测测定中进行。
图17B示出了根据一个实施方案的方法的温度/时间性能图。RT-PCR方法可以利用如本文所述的任何合适的装置执行,并且可以包括在样品制备模块内混合逆转录酶与生物样品以形成逆转录溶液。样品制备模块可以是单一环境或模块,如下文所述的样品制备模块6200。在一些实施方案中,逆转录酶可以是冻干的或固体形式的试剂R4,其俘获性地保持在样品制备模块的保留容积或混合容积(例如,保留容积6211)中。在一些实施方案中,生物样品可以是原始的和/或未过滤的样品。在一些实施方案中,逆转录溶液可以不含核糖核酸酶抑制剂。具体地,如本文所述,在一些实施方案中,所述方法可以以下列的方式执行:使释放的RNA快速地经历逆转录,使得核糖核酸酶对RNA的降解被限制。
然后逆转录溶液在样品制备模块的反应容积内被加热至裂解温度范围内的第一温度以释放核糖核酸(RNA)分子。所述裂解温度范围可以是本文所述的任一范围。例如,在一些实施方案中,所述第一温度范围可以是约25C-约40C。参见图17B,在一些实施方案中,加热至第一温度可以包括按升温速率加热逆转录溶液,如区域71所示。换句话说,在一些实施方案中,逆转录溶液可以按从初始温度向逆转录温度TRT的升温速率加热,并且不一定保持在恒定的裂解温度持续设定的时段。以此方式,所述溶液可以通过裂解温度范围(例如,25C-35C)和/或特定的裂解温度T裂解(TLYSIS),同时朝目标逆转录温度被加热。
然后逆转录溶液在所述反应容积内被加热至逆转录温度范围内的第二温度以从释放的RNA产生互补脱氧核糖核酸(cDNA)分子。逆转录温度范围可以是本文所述的任一范围。例如,在一些实施方案中,第一温度范围可以为约40C-约60C。在一些实施方案中,加热可以由分段或“多区”加热器(例如,加热器6230)执行,所述加热器将热能传送到样品制备模块的初始容积6211中。在其他实施方案中,逆转录溶液可以通过蛇形流动通道(例如,通道6214)传送以促进加热器6230的加热。参见图17B,在一些实施方案中,逆转录溶液可以连续地被加热使得温度沿朝向逆转录温度和/或通过逆转录温度的第二升温速率升高,如区域72所示,并且不一定保持在恒定的逆转录温度持续设定的时段。
在一些实施方案中,加热至第一温度和加热至第二温度连续执行,使得在释放RNA分子的少于1分钟内产生cDNA。在一些实施方案中,加热至第一温度和加热至第二温度连续执行,使得在释放RNA分子的少于30秒内产生cDNA。
在一些实施方案中,所述溶液然后可以传送到混合模块(例如,混合组装件6250),在混合模块中DNA聚合酶混合到所述溶液中。这由图17B中的区域73显示。在一些实施方案中,所述溶液然后可以被传送到扩增模块(例如,扩增模块6600),在扩增模块中所述溶液可以被进一步加热以A)活化DNA聚合酶和B)使RT酶失活。这由图17B中的区域74显示。所述溶液然后可以根据本文所述的方法经受热循环,如图17B中的区域75所示。
在一些实施方案中,加热到第一温度(用于裂解)和加热到第二温度(用于RT-PCR)可以以不同的升温速率执行,如图17C中所示。
图19是根据一个实施方案的分子诊断测试装置6000的示意性图示。该示意性图示描述了如图20-52中所示的测试装置6000的主要组件。测试装置6000是集成装置(即,模块容纳在单个外壳内),其适合在在床旁设施(例如,医生办公室、药房等)、分散式测试设施内或在使用者的家中使用。在一些实施方案中,装置6000可以具有一定的尺寸、形状和/或重量,使得装置6000可以在使用者的手中携带、握持、使用和/或操作(即,其可以是“手持式”装置)。手持式装置可以具有小于15cmx15cmx15cm、或小于15cmx15cmx10cm、或小于12cmx12cmx6cm的尺寸。在其他实施方案中,测试装置6000可以是整装的单次使用装置。类似地,测试装置6000是独立式装置,其包括所有必需的物质、机构和部件以执行本文所述的任一种分子诊断测试。因此,装置6000不需要任何外部仪器来操作生物样品,并且仅需要连接到电源(例如,连接到A/C电源,耦合到电池等)以完成本文所述的方法。在一些实施方案中,测试装置6000可以配置有锁定或其他机构以防止再使用或尝试再使用所述装置。
此外,在一些实施方案中,装置6000可以是CLIA-豁免的装置和/或可以根据CLIA豁免的方法来操作。类似地,在一些实施方案中,装置6000(以及本文显示和描述的任一种其他装置)被配置成以足够简单的方式操作,并且可以产生足够准确的结果,从而形成有限的不当使用可能性和/或在不正确使用时形成有限的危害风险。在一些实施方案中,依照需要使用者很少判断和/或其中某些操作步骤很容易控制和/或自动控制的方法,装置6000(以及本文显示和描述的任一种其他装置)可以由经过很少(或没有经过)科学训练的使用者操作。在一些实施方案中,所述分子诊断测试装置6000可以被配置用于以形成有限的不当使用(试剂损坏、试剂到期、试剂泄露等)可能性的方式长期保存。在一些实施方案中,所述分子诊断测试装置6000被配置成储存长达约36个月,长达约32个月,长达约26个月,长达约24个月,长达约18个月,长达约6个月,或长达其间的任意值时间。
测试装置6000被配置成操作生物样品S1以产生与靶细胞相关的一个或多个输出信号。具体地,装置6000包括样品制备模块6200、流体驱动(或流体传输)模块6400、扩增模块6600、检测模块6800、试剂模块6700、阀6300和控制模块(未显示)。所述测试装置和其中的某些组件可以类似于本文或题目为“用于分子诊断测试的装置和方法”的国际专利公开号WO2016/109691(该申请的全部内容通过引用并入本文)中所显示和描述的任一种分子测试装置。因此,在此不提供对某些模块(例如,流体驱动模块6400)的详细描述。下文提供对每个模块的描述。
图20-53C示出了分子诊断测试装置6000的各个视图。根据本文所述的任一方法,测试装置6000被配置成操作输入样品以产生与靶细胞相关的一个或多个输出信号。诊断测试装置6000包括外壳6001(包括上部6010和底部6030),本文所述的模块全部或部分地容纳在所述外壳6001内。换句话说,外壳6001(包括上部6010和/或底部6030)至少部分地围绕和/或包围所述模块。图22-25是显示位于外壳6001内的样品制备模块6200、流体驱动(或流体传输)模块6400、扩增模块6600、检测模块6800、试剂模块6700、流体传输阀6300和电子控制模块6900的各种视图。在对外壳组装体6001的描述后面是对每个模块和/或子系统的描述。
外壳组装体6001包括上部外壳6010、底部外壳6030和盖子6050(其作为遮盖物和致动器起作用)。如所示的那样,上部外壳6010限定检测开口(或窗口)6011和一系列状态指示灯开口6012。上部外壳6010还包括样品输入部6020和标签6013。状态指示灯开口6012与电子控制模块6950的一个或多个光输出装置(例如,LED)对齐。以此方式,由此状态指示灯产生的光输出通过状态指示灯开口6012是可见的。这样的光输出可以指示,例如,装置6000是否从电源接收到电力,是否发生错误(例如,与样品体积不足相关的错误等),以及测试是否已经成功完成。
检测开口(或窗口)与检测模块6800对齐。以此方式,由检测模块6800的每个检测表面产生的信号和/或在检测模块6800的每个检测表面上产生的信号通过检测开口6011是可见的。在一些实施方案中,上部外壳6010和/或标签6013是不透明的(或半透明的),由此“定框”或突出检测开口。在一些实施方案中,例如,上部外壳6010可以包括标志(例如,粗线、颜色等)从而突出检测开口6011。例如,在一些实施方案中,上部外壳6010可以包括标记6014,所述标记6014将检测开口标识为特定的疾病(例如,沙眼衣原体(Chlamydiatrachomatis,CT)、淋病奈瑟氏菌(Neisseria gonorrhea,NG)和阴道毛滴虫(Trichomonasvaginalis,TV))对照。在其他实施方案中,上部外壳6010不一定包括检测开口6011。例如,在这样的实施方案中,由检测模块6800产生的信号不是肉眼可见的,而是使用另一方法读出。例如,在一些实施方案中,所述读出可以包括使用辅助装置,诸如移动计算装置来扫描或以另外的方式接收信号OP1。还在其他实施方案中,所述读出结果可以包括间接地读出二级信号,所述二级信号传递与来自检测模块6800的初级输出相关(或描述初级输出)的结果。
参见图26和27,样品输入部6020包括一组导轨6023和锁槽6024,两者都在上部外壳6010的底部(或内部)表面。样品输入部6020还限定样品输入开口6021和致动器开口6022。样品输入开口6021与(样品制备模块6200的)输入开口6212对齐,并且提供开口,生物样品S1可以通过所述开口被传送至装置6000中。另外,样品输入部还允许盖子(或致动器)6050与上部外壳6010可移动地连接。具体地,如图20、33和34中所示,盖子6050与上部外壳6010连接使得致动器的柄部6070延伸穿过致动器开口6022。致动器开口6022是细长的从而允许盖子6050相对于上部外壳6010的滑动移动,如本文所述。另外,导轨6023连接到盖子6050的对应导槽6055(参见图28和29)以有助于盖子6050的滑动移动。如图33和34中所示,上部外壳6010的锁槽6024被配置成当盖子6050处于第二(或闭合)位置时接纳盖子6050的锁定突起6072(参见图28和29)以防止盖子的移动。以此方式,上部外壳6010包括锁定机构,所述锁定机构将盖子6050保持于其第二(或闭合)位置以防止诊断装置6000的再利用、额外样品传输到装置6000中或尝试多次致动盖子6050。
下部外壳6030包括底板6031并且限定容积,装置6000的模块和/或组件布置在所述容积内。如图26中所示,底板6031限定一系列流动通道6035,所述流动通道6035与装置内其他组件的流动通道对齐从而允许在各个模块和组件之间的流体传输,无需管道、夹钳等。具体地,如图45中所示,试剂模块6700的底部限定一系列流动通道6735,流动通道6735对应于底板6031中的流动通道6035,由此有助于流体在装置内的传输。如图26中所示,下部外壳6030限定开口6038,开口6038与电子控制模块6950的电力输入端对齐。在使用中,电源线的一端可以通过开口6038连接到电子控制模块6950(参见例如,图53C中电源线6905的连接)。
如图28-30中所示,盖子6050包括第一(或外)表面6051和第二(或内)表面6052。参见图33和34,盖子6050连接到外壳6001并且位于上部外壳6010和挠性板6080之间。如下所述,当盖子6050相对于外壳6001移动时,盖子6050和挠性板6080共同地致动试剂模块6700。如图30中所示,内表面6052限定一对导槽6055并且包括一对导轨6056。如上所述,导槽6055连接到外壳6001的对应导轨6023以有助于盖子6050的滑动移动。盖子6050的导轨6056被配置成与挠性板6080接合,由此有助于盖子6050的滑动移动(相对于挠性板6080)。如由图34中的箭头GG所示,盖子6050被配置成相对于外壳6001从第一(或打开)位置(图33)移动到第二(或闭合)位置(图34)。
类似于上述的盖子2050,当相对于外壳6001移动时,盖子6050被配置成执行多种功能,由此有助于通过单一动作致动装置6000。具体地,盖子6050包括密封部6053、开关部6060和三个试剂致动器6064。密封部6053(也称作遮盖部)包括遮盖表面6057并且限定输入开口6054。当盖子6050处于打开位置(参见例如,图20,21和53A)时,输入开口6054与上部外壳6010的样品输入开口6021和样品制备模块6200的输入开口6212中的每一个对齐,并且由此提供开口,通过所述开口生物样品S1可以被传送到装置6000中。遮盖表面6057是平坦表面,当所述盖子处于闭合位置时,其遮盖(或阻挡)上部外壳6010的样品输入开口6021和输入开口6212中的每一个(参见图53B和53C)。具体地,当盖子6050处于打开位置时,遮盖表面6057与输入开口6212和/或样品输入开口6021隔开,但当盖子6050处于闭合位置时,其遮盖输入开口6212和/或样品输入开口6021。在一些实施方案中,密封部6053和/或遮盖表面6057包括密封件、垫圈或其他材料,从而当盖子6050处于闭合位置时,流体隔离(样品制备模块6200的)样品输入容积6211。
除了遮盖输入开口6212以外,闭合盖子6050还致动装置6000内的其他机构。具体地,如图29和30中所示,开关部6060包括突起,所述突起当盖子6050从打开位置移动到闭合位置时致动开关6906。当开关被致动(即,从第一状态移动到第二状态)时,来自电源(例如,电源6905)的电力可以提供至电子控制模块6950和装置6000内需要电力用于运转的任何其他组件。例如,在一些实施方案中,将电力直接或通过电子控制模块6950提供至任一个加热器(例如,样品制备模块6200的加热器6230,扩增模块6600的加热器6630和检测模块6800的加热器6840)。例如,在盖子6050闭合后,这允许加热器6230开始预热用于裂解操作,并且装置6050耦合到电源6905,无需进一步的使用者动作。尽管开关6906显示为直接由开关部6060的突起致动的跷板开关,但在其他实施方案中,开关6906(和对应的开关部6060)可以是任何合适的执行本文所述的功能的开关。例如,在一些实施方案中,开关可以是电绝缘电源6905与电子控制模块6950的其余组件的绝缘元件。在这样的实施方案中,开关部6060可以连接至绝缘元件,并且可以移除绝缘元件(由此将电源6905电连接至电子控制模块6950)。在其他实施方案中,开关部6060是绝缘元件,并且在电子控制模块6950中不包括独立的开关。
参见图30和31,试剂致动器6064包括一系列斜面,当盖子6050从打开位置(图33)移动到闭合位置(图34)时,所述斜面对挠性板6080的相应一组可变形致动器6083施加致动力。以此方式,试剂致动器6064(以及挠性板6080的可变形致动器6083)使试剂从试剂模块6700内的密封的试剂容器释放,如下所详述的那样。
盖子6050的外表面6051包括柄部6070和锁定突起6072。柄部6070延伸穿过上部外壳6010的致动器开口6022并且提供可以由使用者操纵以将盖子6050从打开位置移动至闭合位置的结构。锁定突起6072具有倾斜的(或有角度的)突起,所述突起与上部外壳6010的内表面保持滑动接触(参见图27中所示的内表面)。因为锁定突起6072的斜面形成尖锐的角度,因此锁定突起可以在图34中箭头GG所示的方向上移动从而使盖子6050闭合。另外,锁定突起6072和上部外壳6010之间的持续接触通过对盖子闭合提供一些阻力(即,摩擦力)而防止盖子6050的非故意闭合。如图34中所示,当盖子6050处于闭合位置时,锁定突起6072接纳在上部外壳6010的锁槽6024内。与所述斜面相对的锁定突起6072的表面形成基本上90度角,由此当锁定突起6072在槽6024内时防止了盖子6050在反方向上的移动。以此方式,在被闭合后盖子6050被不可逆地锁定,从而防止装置6000的再使用和/或补充的样品流体的添加。
挠性板6080(在图31和32中显示)包括外表面6081和内表面6082。如上所述,盖子6050可移动地布置在上部外壳6010和挠性板6080之间。换句话说,盖子6050的外表面6051面对上部外壳6010的内表面,盖子6050的内表面6052面对挠性板6080的外表面6081。挠性板包括三个可变形致动器6083,每一个都与盖子6050的对应的试剂致动器6064和试剂容器6701、6702、6703之一对齐。因此,当盖子6050相对于外壳6001移动时,试剂致动器6064和可变形致动器6083致动试剂模块6700。特别地,如下面所详述的那样,试剂致动器6064和可变形致动器6083使试剂容器6701,6702,6703在试剂分流管6730内移动从而释放被密封在所述容器内的试剂。
挠性板6080限定通道6084用于围绕每个可变形致动器6083的至少三个侧面。因此,每个可变形致动器6083通过小的带状材料(或活动铰链)6085保持与挠性板6080连接。因此,当试剂致动器6064对可变形致动器6083的外表面6086施加内向力时,可变形致动器朝向试剂模块6700向内弯曲或变形,如图34中箭头HH所示。此动作使每个可变形致动器6083的内表面6087对试剂容器(以及可变形支撑构件6770)施加内向力,由此使试剂容器在试剂分流管6730内向下移动,如图34中箭头HH所示。
参见图33、34、44和45,试剂模块6700包括试剂分流管(或外壳)6730、三个试剂容器6701,6702,6703和可变形支撑构件6770(参见图35和36)。试剂模块6700提供在本文所述的方法期间对密封的试剂容器内的试剂长期保存、致动试剂容器从而使所述试剂从所述试剂容器释放试剂用于使用的机构。除了提供保存和致动功能以外,试剂模块6700还提供了流体互连以允许试剂和/或其他流体在装置6000内传送。具体地,如本文所述,试剂模块6700以允许选择性通气、流体连接和/或试剂和物质在装置6000内的传送的方式与流体传输阀6300流体连接。
试剂模块6700保存经包装的试剂,在本文中标识为试剂R4(双用途的封闭和洗涤溶液)、试剂R5(酶试剂)和试剂R6(底物),并允许容易的打开包装并在检测模块6800中使用这些试剂。如图19中示意性显示的那样,试剂模块6700包括第一试剂容器6701(包含试剂R4)、第二试剂容器6702(包含试剂R5)和第三试剂容器6703(包含试剂R6)。每个试剂容器包括在第一端部处的连接器和在相对的第二端部处的脆弱密封件。具体地,如图33和34中所示,第一试剂容器6701包括连接器6712和脆弱密封件6713。连接器6712将第一试剂容器6701连接到可变形支撑构件6770的配合连接部6775。脆弱密封件6713是任何合适的密封件,诸如,例如,热密封BOPP膜(或任何其他合适的热塑性膜)。此类膜具有优异的阻隔性能,防止试剂容器内的流体和外部湿气之间的相互作用,而且具有脆弱结构性能,允许在需要时膜容易被破坏。当试剂容器被推入刺孔器时,如下所述,脆弱密封件破坏,允许液体试剂在被流体传输阀6300通气时流入到适宜的试剂储库中。尽管在本文中仅显示和描述了第一试剂容器6701的细节,但第二试剂容器6702和第三试剂容器6703具有相似的结构和功能。
参见图44和45,试剂分流管6730包括上(或外)表面6731和底(或内)表面6732。试剂分流管6730包括从上表面6731延伸并且内部布置有试剂容器的三个试剂罐。具体地,试剂分流管包括其内布置有第一试剂容器6701的第一试剂罐6741、其内布置有第二试剂容器6702的第二试剂罐6742和其内布置有第三试剂容器6703的第三试剂罐6743。试剂外壳6730包括在每个试剂罐底部部分的一对刺孔器。刺孔器被配置成当试剂容器在试剂外壳6730内向下移动时刺破各个试剂容器的脆弱密封件。换句话说,试剂外壳6730包括一组刺孔器,当试剂模块6700被致动时所述刺孔器刺破相应的脆弱密封件以打开相应的试剂容器。参见图33和34,作为实例,试剂外壳6730包括在第一试剂罐6741内的一组刺孔器6754。试剂外壳6730包括在第二试剂罐6742和第三试剂罐6743内的相似的刺孔器。此外,刺孔器限定流路,在脆弱密封件被刺穿后,所述流路使试剂容器和/或试剂罐的内部容积与试剂模块6700的出口流体连通。
可变形支撑构件6770包括外表面6771和内表面6772。如上所述,外表面6771包括致动区,所述致动区与挠性板6080的可变形致动器6083之一对齐。内表面6772包括三个密封部6773和三个连接部6775。如图33和34中所示,每个密封部6773连接到试剂外壳6730以流体隔离相应试剂罐的内部容积(即,试剂储库)。连接部6775各自连接到对应试剂容器的一个连接器。作为实例,密封部6773中的一个连接到第一试剂罐6741的顶部以流体隔离(或密封)第一试剂罐6741的内部容积。另外,连接部6775中的一个连接到第一试剂容器6701的连接器6712。
可变形支撑构件6770被配置成响应于施加于其上的致动力(例如,由可变形致动器6083施加)从第一构型(图33)变形至第二构型(图34)。此外,可变形支撑构件6770偏置于第一(或未变形)构型。以此方式,当可变形支撑构件6770处于第一构型时,所述可变形支撑构件6770支撑每个试剂容器处于“保存状态”。换句话说,当可变形支撑构件处于第一构型时,可变形支撑构件6770保持刺孔器6754与试剂容器6701的脆弱密封件6713隔开。
当盖子6050移动时,由可变形致动器6083施加的向下力使可变形支撑构件6770转变成第二(或变形的)构型(图34)。换句话说,当向下力足以克服可变形支撑构件6770的相反的偏置力时,可变形支撑构件6770转变成第二构型,如图34中箭头HH所示。这使每个试剂容器在对应的试剂罐内向下移动,使刺孔器与每个试剂容器的脆弱密封件接触。换句话说,当可变形支撑构件6770处于第二构型时,刺孔器6754刺破试剂容器6701的脆弱密封件6713,由此使试剂R4从试剂容器6701内释放。尽管图34示出了当试剂模块6700致动时仅致动第一试剂容器6701,但第一试剂容器6701、第二试剂容器6702和第三试剂容器6703中的每一个以此方式致动。因此,除了遮盖样品输入开口和向电子控制模块6950提供电力以外,闭合盖子6050还致动所有试剂容器。
尽管显示为包括三个试剂容器,但在其他实施方案中,试剂模块6700(或本文所述的任一个试剂模块)可以具有任意合适数目的试剂容器。例如,在一些实施方案中,试剂模块可以包括仅一个试剂容器,类似本文所述的试剂模块2700。
参见图44,试剂分流管6730的外表面6731包括一组阀流体互连件6736、一组混合室流体互连件6737和一组检测模块流体互连件6738。这些流体互连件中的每一个与试剂罐和/或装置6000内的其他组件之一通过内表面6732中限定的流动通道6735相连。另外,外表面6731包括多个装配夹6790。因此,阀流体互连件6736(以及合适的通道6735)提供与流体传输阀6300的流体连接,流体传输阀6300与上表面6731通过夹6790之一连接。混合室流体互连件6737(以及合适的通道6735)提供与混合组装件6250的流体连接,混合组装件6250与上表面6731连接。检测模块流体互连件6738(以及合适的通道6735)提供与检测模块6800的流体连接。
图37-41示出了样品制备模块6200的多个视图。如本文所述,样品制备(或分级)模块6200可以执行下面的任一个或全部:A)接收生物样品S1,B)将生物样品与期望试剂(例如,阳性对照试剂R1和逆转录酶R2)混合,C)执行裂解操作以从生物样品S1释放靶RNA,D)执行逆转录反应以产生cDNA,和E)加热所得溶液以使逆转录酶失活。因此,在一些实施方案中,样品制备模块能够在单一环境或模块内执行有效的快速RT-PCR。通过消除对外部样品制备和笨重仪器的需求,装置6000适合用于在床旁设施(例如,医生办公室、药房等)或在使用者的家中使用并且可以接收任何合适的生物样品S1。生物样品S1(以及本文所述的任一种输入样品)可以是,例如,使用市售的样品采集试剂盒收集的血液、尿、男性尿道标本、阴道标本、宫颈拭子标本和/或鼻拭子标本。
样品制备模块6200包括上体部6201、底体部6202、加热器6230和混合组装件6250。上体部6201和底体部6202可以总称为样品制备外壳、流动构件或逆转录室。尽管流动构件显示为由连接在一起的两个物件(上体部6201和底体部6202)构造而成,但在其他实施方案中,流动构件可以是整体构造的。样品制备外壳(即,上体部6201和底体部6202)限定样品输入开口6212、第一(或保留)容积6211和蛇形流动通道6214。在一些实施方案中,上体部6201和/或底体部6202可以限定一个或多个通气口。当样品被传送进和/或传送出样品制备模块6200时,此类通气口可以允许空气流入或流出样品制备模块6200(包括第一容积6211和蛇形流动通道6214)。另外,上体部6201包括一组流体互连件6215,所述流体互连件6215允许样品制备模块6200与流体传输阀6300和装置6000内的其他部件流体连接。
样品输入开口6212是第一(或保留)容积6211可以进入的开口。如上所述,当盖子6050处于打开位置时,生物样品S1可以通过样品输入开口6212传送到保留容积6211中。第一(或保留)容积6211是在其内生物样品S1可以与试剂混合并且还被加热的容积。例如,在一些实施方案中,生物样品S1可以被收集在保留容积6211中,并且与对照生物体(标识为试剂R1)和逆转录酶(标识为试剂R2)中的任一个或两者混合。对照生物体和逆转录酶各自可以是冻干的或另外地为固体形式。此外,试剂R1和R2可以被固定在保留容积6211内以防止试剂R1和R2非故意地落到装置6000外,例如在保存、运输或使用期间。例如,在一些实施方案中,试剂可以被遮盖物、篮子或保留容积6211内的其他结构固定在保留容积6211内。
在一些实施方案中,试剂R1是阳性对照生物体,诸如费氏弧菌(Aliivibriofischeri)、微黄奈瑟菌(N.subflava)或任意其他合适的生物体。具体地,费氏弧菌是合适的,因为它是革兰氏阴性的,不致病的,生物安全等级为1级,对环境无害,并且极不可能在人体上发现。检测模块内的阳性对照表面包含用于对照生物体(例如,费氏弧菌)以及每个靶生物体两者的俘获探针。这种配置确保如果所述装置正确工作则阳性对照表面总是产生颜色。如果仅存在对照生物体,则PCR期间对于靶生物体之一非常强的阳性可能“清除掉”或“超过”对于对照生物体的扩增。在这种情况下,阳性对照样点将不产生颜色改变,这会使使用者迷惑。这种配置有助于具有很少(或没有)科学训练的使用者依照需要很少判断的方法操作所述检测方法和装置6000。
在一些实施方案中,试剂R2包含逆转录酶和有助于本文所述的RT-PCR法的其他成分。例如,在一些实施方案中,试剂R2包括需要为RT-PCR建立正确的缓冲环境的盐。试剂R2被配制成溶解在保留容积6211内的生物样品中。
生物样品可以在保留容积6311内加热以裂解生物样品S1内的细胞并进一步裂解(或释放)来自生物样品S1内包含的任何病毒的靶RNA。换句话说,生物样品S1可以被加热以破坏细胞并且还破坏细胞中的病毒以释放靶RNA用于检测。具体地,加热器6230连接到样品制备外壳和/或底体部6202,使得加热器6230的第一部分可以将热能传送到保留容积6211中。加热器6230的第一部分可以将生物样品S1保持在任何合适的温度并持续本文所述的任一时段。例如,在一些实施方案中,生物溶液可以被保持在裂解温度范围内的温度以释放核糖核酸(RNA)分子。裂解温度范围可以为,例如,约25C-约70C。在其他实施方案中,裂解温度范围可以为约25C-约50C。
参见图39,该图示出了样品制备外壳的俯视剖视图,第一容积6211与蛇形流动通道6214通过入口开口6213流体连通。以此方式,与RT酶混合的经裂解的生物样品(也称作逆转录溶液)可以从第一(或保留)容积6211通过蛇形流动通道6214流动。更具体地,当跨越入口开口6213和出口开口6215施加压力梯度(例如,通过流体驱动模块6400)时,逆转录溶液可以从保留容积6211(第一容积)通过蛇形流动通道6214流动。蛇形通道提供了高表面积体积比,因此允许快速RT-PCR以及在溶液中灭活所述裂解和/或RT酶。
在使用中,逆转录溶液当通过蛇形流动通道6214流动时可以被加热以执行RT-PCR并进一步使所述酶失活。具体地,加热器6230连接到样品制备外壳和/或底体部6202,使得加热器6230的第二部分可以将热能传送到蛇形流动通道6214中。加热器6230的第二部分可以将逆转录溶液保持在任何合适的温度并且持续本文所述的任一时段。例如,在一些实施方案中,逆转录溶液可以保持在逆转录温度范围内的温度以产生互补脱氧核糖核酸(cDNA)分子。通过快速地进展到逆转录,释放的RNA存在于逆转录溶液中的停留时间可以最小化。减小停留时间可以减小释放的RNA被核糖核酸酶(RNase)降解的可能性。通过在单一环境中执行裂解和RT-PCR限制这种潜在的降解可以减少由于RNA降解的变化所引起的不一致性。此外,由样品制备模块6200实现的快速和单一环境方法可以允许本文所述的RT-PCR法在不使用核糖核酸酶抑制剂的情况下和/或在未过滤的样品上完成。逆转录温度范围可以是,例如,约30C-约80C。在其他实施方案中,逆转录温度范围可以为约50C-约60C。
除了能够实现快速RT-PCR以外,样品制备模块6200还可以将逆转录溶液加热至足以使其中包含的一种或多种裂解或RT酶失活的温度。例如,加热元件可以将在通道6214内的逆转录溶液加热至约57℃、约58℃、约59℃、约60℃、约61℃、约62℃、约63℃、约64℃、约65℃、约66℃、约67℃、约68℃、约69℃、约70℃、约71℃、约72℃、约73℃、约74℃、约75℃、约76℃、约77℃、约78℃、约79℃、约80℃、约81℃、约82℃、约83℃、约84℃、约85℃、约86℃、约87℃、约88℃、约89℃、约90℃、约91℃、约92℃、约93℃、约94℃、约95℃、约96℃、约97℃、约98℃、约99℃、约100℃或大于100℃。通过将逆转录溶液加热至高温,所述酶可以被灭活。在一些实施方案中,所述样品可以被加热至约95C持续约4分钟。
如上所述,流动构件与加热元件6230接触,所述加热元件可以是,例如,印制电路板(PCB)加热器。加热元件6230包括连接器6231和多个分段部分,因此可以独立地产生热能进入保留容积6211和蛇形流动通道6214。在一些实施方案中,加热元件6230被设计成加热样品制备模块6200的蛇形部分6214而不加热保留容积6211,且反之亦然。
为了使可以在保留容积6211和蛇形通道6214的各个部分之间或甚至蛇形通道6214的不同部分之间非故意传输的热能最小化,在PCB6330中可以切割一个或多个槽6232以隔离加热器6230的各个部分。例如,在一些实施方案中,加热器6230可以包括一系列槽和/或开口,如题目为“用于扩增模块的印制电路板加热器”的美国专利公开号2017/0304829中所述,该申请的全部内容通过引用并入本文。此外,在一些实施方案中,加热器6230的加热元件位于内层上,这样顶部的覆铜(未显示)可以用作散热器以使沿蛇形路径的温度变化最小化。
逆转录溶液在流动通过失活过程后可以经出口6215流动通过流动控制阀6300并且进入到混合组装件6250的入口6217中。混合组装件6250将来自蛇形流动通道6214的输出与试剂(标识为R3)混合以进行成功的扩增反应。换句话说,混合模块6250被配置成以预定的输入体积重构试剂R3,同时确保整个体积中试剂R3的均匀局部浓度。在一些实施方案中,混合组装件6250被配置成为扩增模块6600产生和/或传送足够体积的液体以向检测模块6800提供足够体积的输出。
参见图40和41,混合组装件6250连接到上体部6201并且包括底部外壳6251、部外壳6260和振动电动机6265。底部外壳6251限定混合储库6255并且其中包含扩增试剂R3。底部外壳6251包括入口连接件6252和出口连接件6253,并且通过支撑构件6254连接到上体部6201。上部外壳6260包绕混合储库6255并且提供安装振动电动机6265的表面。入口连接件6252、出口连接件6253和支撑构件6254可以由任意合适的材料构造而成,并且可以具有任意合适的尺寸。例如,在一些实施方案中,入口连接件6252、出口连接件6253和支撑构件6254被构造成限制传输到样品制备模块6200的其余部分中的来自电动机6265的振动能的量。例如,在一些实施方案中,入口连接件6252、出口连接件6253和/或支撑构件6254可以由弹性或弹性体材料构造而成从而在将此能量传输到上体部6201的同时允许底部外壳6251和上部外壳6260的振动运动。
在混合组装件6250内混合后,已制备的样品然后被传送到扩增模块6600。流体(包括逆转录溶液、试剂等)的传输由流体驱动(或传输)模块6400引起。流体驱动(或传输)模块6400可以是泵或系列泵,所述泵被配置成产生压差和/或所述溶液在诊断测试装置6000内的流动。换句话说,流体传输模块6400被配置成生产流体压力、流体流动和/或以另外的方式将生物样品和试剂传送通过装置6000的各个模块。流体传输模块6400被配置成接触和/或接收其中的样品流。因此,在一些实施方案中,装置6000被专门地配置用于单次使用以消除污染流体传输模块6400的可能性和/或样品制备模块6200会被前一轮实验污染(由此负面地影响结果的准确度)的可能性。如所示的那样,流体传输模块6400可以是活塞泵,其通过一个夹子6790连接到试剂模块6700。流体驱动模块6400可以由电子控制模块6950驱动和/或控制。例如,在一些实施方案中,流体驱动模块6400可以包括DC电动机,其位置可以使用旋转编码器(未显示)控制。在其他实施方案中,电子控制模块6950的处理器6951可以包括用于实施和/或被配置成实施通过监测电动机的电流消耗来追踪电动机位置的闭环方法的代码,如题目为“用于分子诊断测试的装置和方法”的国际专利公开号WO2016/109691(该申请的全部内容通过引用并入本文)所述。
扩增模块6600包括流动构件6610、加热器6630和散热片6690。流动构件6610可以是任何合适的流动构件,其限定容积或一系列容积,已制备的溶液S3可以在所述容积内流动和/或保持以扩增溶液S3内的靶核酸分子。加热器6630可以是连接到流动构件6610的任何合适的加热器或一组加热器,其可以加热流动构件6610内的已制备的溶液以执行如本文所述的任一个扩增操作。例如,在一些实施方案中,扩增模块6600(或本文所述的任一扩增模块)可以类似于题目为“用于扩增模块的印制电路板加热器”的美国专利公开号2017/0304829(该申请的全部内容通过引用并入本文)中显示和描述的扩增模块。
在一些实施方案中,流动构件6610限定单一容积,在所述单一容积内保持并加热已制备的溶液,从而扩增所述已制备的溶液内的核酸分子。在其他实施方案中,流动构件6610可以限定“之字形”或蛇形流路,已制备的溶液通过所述流路流动。换句话说,流动构件6610限定弯曲的流路,使得所述流路与加热器6630在多个位置相交。以此方式,扩增模块6600可以执行“流通”扩增反应,其中已制备的溶液流动通过多个不同温度区域。
流动构件6610(以及本文所述的任一个流动构件)可以由任意合适的材料构造而成,并且可以具有任何合适的尺寸以促进对期望体积的样品的期望扩增性能。例如,在一些实施方案中,扩增模块6600(以及本文所述的任一个扩增模块)可以在小于15分钟的时间内执行6000次(6000X)或更多次扩增。例如,在一些实施方案中,流动构件6610(以及本文所述的任一个流动构件)由环烯烃共聚物或石墨系材料中的至少一种构造而成。此类材料有助于进入流路的期望热传输特性。此外,在一些实施方案中,流动构件6610(以及本文所述的任一个流动构件)可以具有小于约0.5mm的厚度。在一些实施方案中,流动构件6610(以及本文所述的任一个流动构件)可以具有约150微升或更大的体积,并且所述流动可以使得扩增至少10微升样品。在其他实施方案中,至少20微升样品通过本文所述的方法和装置扩增。在其他实施方案中,至少30微升样品通过本文所述的方法和装置扩增。还在其他实施方案中,至少50微升样品通过本文所述的方法和装置扩增。
加热器6630可以是任意合适的加热器或加热器的集合体,其可以执行本文所述的功能以扩增已制备的溶液。在一些实施方案中,加热器6630可以建立多个温度带,已制备的溶液流动通过所述多个温度带,和/或加热器6630可以限定期望数目的扩增循环以确保期望的检测灵敏度(例如,至少30个循环、至少34个循环、至少36个循环、至少38个循环或至少60个循环)。加热器6630(以及本文所述的任一个加热器)可以具有任意合适的设计。例如,在一些实施方案中,加热器6630可以是电阻加热器、热电装置(例如,Peltier装置)或类似装置。在一些实施方案中,加热器6630可以是一个或多个线性“片式加热器”,其被布置成使流路在多个不同点经过所述加热器。在其他实施方案中,加热器6630可以是一个或多个弯曲加热器,所述弯曲加热器具有对应于流动构件6610的几何形状从而在流路中产生多个不同的温度带。
尽管扩增模块6600一般被描述为对已制备的溶液执行热循环操作,但在其他实施方案中,扩增模块6600可以执行任意合适的热反应以扩增所述溶液内的核酸。在一些实施方案中,扩增模块6600(以及本文所述的任一个扩增模块)可以执行任意合适类型的等温扩增过程,包括,例如,环介导等温扩增(LAMP),可用于检测靶RNA分子的基于核酸序列的扩增(NASBA),链置换扩增(SDA),多重置换扩增(MDA),网状分枝扩增法(RAM),或任意其他类型的等温过程。
检测模块6800被配置成接收来自扩增模块6600的输出和来自试剂模块6700的试剂,以产生指示初始输入样品中靶生物体的存在与否的比色改变。检测模块6800还产生比色信号以指示测试的总体正确操作(阳性对照和阴性对照)。在一些实施方案中,由反应诱导的颜色改变容易读取并且是二元的,不需要解释阴影或色调。检测模块6800可以类似于题目为“用于分子诊断测试的装置和方法”的国际专利公开号WO2016/109691(该申请的全部内容通过引用并入本文)中所显示和描述的检测模块。
参见图64和65,检测模块包括盖子、检测外壳6810和加热器6840。加热器6840可以类似于本文所述的任一个电路板加热器以及题目为“用于分子诊断测试的装置和方法”的国际专利公开号WO2016/109691(该申请的全部内容通过引用并入本文)中显示和描述的电路板加热器。盖子和检测外壳6810形成用于检测的流动池。外壳6810限定检测室/通道6812,所述检测室/通道6812具有样品入口端口6814、第一试剂入口/出口端口6815、第二试剂入口/出口端口6816。样品入口端口6814与扩增模块6600的出口流体连接并接纳经扩增的样品。第一试剂端口6815和第二试剂端口通过流体互连件6738连接至试剂模块6700。因此,在使用中,洗涤/封闭试剂(例如,前面标识为R4)可以通过第一试剂端口6815或第二试剂端口6816被传送到检测通道6812中。类似地,检测酶(例如,前面标识为R5)和检测底物(例如,前面标识为R6)可以通过第一试剂端口6815或第二试剂端口6816被传送到检测通道6812中。另外,第一试剂端口6815或第二试剂端口6816还可以用来接收废液或过量的试剂或使废液或过量的试剂从第一试剂端口6815或第二试剂端口6816流出。
检测通道6812被表面6820围绕或限定,所述表面6820包括一个或多个检测表面6821,以及非检测表面6826。检测表面6821包括一系列俘获探针,当检测溶液流经检测表面6821时,靶扩增子可以与所述俘获探针结合。俘获探针可以是被配制成俘获或结合靶扩增子的任意合适的探针。具体地,在一些实施方案中,检测部6821包括5个检测表面。每个检测表面被化学修饰以含有期望的俘获探针配置。具体地,在一些实施方案中,第一检测表面可以包括对淋球菌(NG)特异的杂交探针。第二检测表面可以包括对沙眼衣原体(CT)特异的杂交探针。第三检测表面可以包括对阴道毛滴虫(TV)特异的杂交探针。第四检测表面可以包括用于阴性对照的非靶探针。第五检测表面可以包括用于阳性对照(费氏弧菌、微黄奈瑟菌等)的杂交探针。
非检测表面6826可以是围绕检测表面6821的那些表面。如上文关于检测模块3800所述,在一些实施方案中,整个表面6820(包括检测表面6821和非检测表面6826)可以用封闭溶液包被,这作为本文所述的方法的一部分。
流体传输阀6300显示在图19(示意图)和46中。图47-52示出了处于几种不同的操作配置的流体传输阀6300,流动(或通气)外壳6310以透明线显示,使得可以看到阀盘6320的位置。流体传输阀6300包括流动外壳6310、阀体(或盘)6320、主外壳6330和电动机6340。流动外壳6310限定阀套,阀盘6320旋转地布置在所述阀套内。流动外壳6310包括限定至少6个传输(或通气)流路的流动结构,显示在图47-52中。具体地,所述流路包括样品入口流路6312、样品出口流路6313、扩增流路6314、洗涤溶液(试剂R4)通气流路6315、检测酶(试剂R5)通气流路6316和检测底物(试剂R6)通气流路6317。流动外壳6310包括连接部,在此每个传输或通气流路可以通过本文所述的互连件连接到各个模块。上述的每个流动连接/通气端口向阀套开放。以此方式,当阀体6320围绕阀套的中心旋转(如箭头JJ所示)时,阀体6320的槽道6321可以将各个中央端口连接到其他端口,取决于它们的径向位置和角位置。多个半径的使用不仅允许一次单个端口,而且允许一次多个端口被流体连接,取决于构型。
阀组装件6300可以在各种不同的构型之间移动,取决于在阀套内阀体6320的角位置。图47-52示出了处于各种不同构型的组装件。图47示出了处于本位(或初始位置)的阀组装件6300,其中样品入口流路6312和样品出口流路6313,以及其他流体连接/通气端口关闭。图48示出了处于第一旋转位置的阀组装件6300,其中样品入口流路6312和样品出口流路6313开放。随着阀组装件6300处于第一位置,流体驱动模块6400的致动可以产生生物样品进入并通过蛇形通道6214然后流向混合组装件6250的流动。以此方式,装置6000可以执行如本文所述的RT-PCR法(例如,方法50,或任一种其他RT-PCR法)。此外,阀致动和向流体驱动模块6400(例如,泵)供应电力的时机可以由电子控制模块6950控制,从而将通过样品制备模块6200(包括蛇形通道6214)的流速维持在可以实现RT-PCR的期望性能的范围内。
在混合组装件6250内完成混合过程后,阀组装件6300可以进一步移动到第二位置(未显示)。当所述阀处于第二位置时,扩增流路6314开放(即,与流动槽道6321对齐),由此允许被传送至扩增模块6600中的混合溶液(即,RT-PCR后)的传输。阀致动和向流体驱动模块6400(例如,泵)供应电力的时机可以由电子控制模块6950控制,从而将通过样品扩增模块6600的流速维持在可以实现扩增的期望性能的范围内。此外,随着阀组装件6300处于第二位置,流体驱动模块6400的持续致动将使已扩增的溶液传送至检测模块6800并通过检测模块6800。
如本文所述,检测操作通过将一系列试剂在特定的时间传送至检测模块中来实现。尽管关闭盖子6050致动试剂模块6700从而使所述试剂从它们各自的密封容器中开放(或释放),但试剂仍然保持在试剂模块6700中直至检测模块6800中需要为止。当需要特定的试剂时,旋转阀6300向试剂模块6700开放适宜的通气流路(即,洗涤溶液通气流路6315,检测酶通气流路6316,和检测底物通气流路6317)。流体驱动模块6400的致动向试剂模块6700(通过检测模块6800)的出口端口施加真空,由此将来自试剂模块6700的所选择的试剂传送到检测模块6800中。图49示出了处于第三旋转位置的阀组装件6300,其中检测酶通气流路6316开放。随着阀组装件6300处于第三位置,流体驱动模块6400的致动可以产生检测酶(试剂R5)进入检测模块6800的流动。图50示出了处于第四旋转位置的阀组装件6300,其中洗涤溶液(试剂R4)通气流路6315开放。随着阀组装件6300处于第四位置,流体驱动模块6400的致动可以产生洗涤(或多用途洗涤/封闭)溶液(试剂R4)进入检测模块6800的流动。图51示出了处于第五旋转位置的阀组装件6300,其中检测底物(试剂R6)通气流路6317开放。随着阀组装件6300处于第四位置,流体驱动模块6400的致动可以产生底物(试剂R6)进入检测模块6800的流动。图52示出了处于最终位置的阀组装件6300,其中通气流路关闭。
如参照上述的设备3000、方法30、方法40所述,在一些实施方案中,装置6000可以包括多用途洗涤/封闭试剂(例如,试剂R4),并且可以在分开的时间将一部分多用途洗涤/封闭试剂传送至检测模块6800中。具体地,在一些实施方案中,根据本文所述的方法30或方法40,阀组装件6300可以首先置于第四位置(图50),一部分多用途洗涤/封闭试剂可以传送至检测模块6800中。另外,在预定的停留时间(例如,30秒)后,并且随着阀组装件6300仍然处于第四位置,流体驱动模块6400的运动可以反转以将多用途洗涤/封闭试剂抽吸回到试剂模块6700中。然后阀组装件6300可以移动到第一位置以开始对生物样品的处理。
装置6000可以用来执行本文所述的任一个方法。参见图53A-53C,为了使用所述装置,将生物样品S1首先放置于样品输入开口6021中(例如,使用样品转移移液器6110),如上所述。盖子6050然后移动到闭合位置,如图53B中箭头KK所示。如上所述,闭合盖子6050包围了样品输入容积6211,致动电子控制模块6950(和/或其中包括的处理器6951),并且还致动试剂模块6700,如上所述。装置6000然后通过电源线6905插入插座从而将装置6000耦合到电源。以此方式,除了将样品S1放置在其中并将所述装置插入插座以外,装置6000可以通过单一动作(即,关闭盖子)被致动。
检测针刺手指血中的HIV-1RNA的使用RT-PCR装置的方法和装置用于床旁测试
在一些实施方案中,装置6000或本文所述的任一个装置可以用来执行HIV-1RNA检测测定。该HIV-1RNA检测测定能够使非技术人员在家里或在欠发达国家设施中使用廉价的一次性无仪器的装置检测针刺手指自采集血样。此装置的使用具有转变急性或早期HIV感染的诊断和抗逆转录病毒治疗监测的潜力。在一些实施方案中,分子诊断测试装置包括扩增和检测平台使得能够在装置上从病毒RNA产生cDNA。在一些实施方案中,cDNA通过蛇形PCR模块扩增。
在一些实施方案中,分子诊断测试装置包括HIV-1RNA检测平台(也称作RT增强平台(RTEP))。一些版本的诊断测试装置由输入端口、失活室、混合室、两个止回阀、具有必要的试剂容器的PCR模块和检测模块、活塞泵和旋转阀组成。图15和19各自示出了RTEP版本的两个实例,其包括可以执行如本文所述的RT-PCR的样品制备模块。另外,样品制备模块整合了逆转录步骤从而允许对病毒RNA的处理。RT步骤与其余过程串联,因此可以对于不需要它的测试组可以通过固件控制来绕过它。通过裂解加热器板上的分开的独立加热电路来提供加热。
在使用中,将血浆(或血液)分配到裂解室中,启动注射泵以形成真空,所述真空使样品流动通过已加热的通道,在此发生病毒裂解,释放基因组RNA。通道中的温度控制在92C以确保病毒RNA的变性,并且将样品流体保持在此温度持续大约30秒。然后样品流体通过止回阀前进并进入到混合室中,所述混合室保留了几种冻干珠子(PCR主混合物试剂和RT酶),所述冻干珠子被样品流体水合化。通过小型振动电动机使所述室混合,然后将样品在55C温育以允许病毒RNA逆转录为cDNA,此时,注射泵将反转方向并向混合室加压以使室内容物移动通过处于95C的附加加热器,从而使RT酶失活并活化热稳定的热启动DNA聚合酶。然后该过程继续进行到PCR和检测模块,如本文或并入本文的任一专利申请或公布中所述。
在一些实施方案中,所述方法和装置可以包括多个引物组从而解决HIV-1基因组的显著变异性问题。例如,靶序列可以包括两个基因的高度保守区域,并且所述引物组可以均包括在内作为多重测定的一部分。另外,所述方法和装置可以包括用于MS2 RNA噬菌体的引物,MS2 RNA噬菌体充当裂解和扩增对照。因此,得到的多重测定将包含三个引物组,两组对应于HIV-1基因组的独立保守区,一个对应于MS2噬菌体基因组。如下文详述的那样,每组中的一条引物将用来引起逆转录步骤用于本文使用的一步RT-PCR测定。
在一些实施方案中,所述方法和装置可以包括用于两个HIV-1基因和MS2噬菌体阳性对照的正向引物和反向引物以及TaqMan探针(表1)。正向引物是5’生物素化的。还使用反向引物来引起一步RT-PCR的逆转录反应。具有所指示的序列的TaqMan探针在5’端具有FAM荧光团,在3’端具有BHQ2猝灭剂。
表1.用于一步多重RT-PCR测定的初始正向和反向引物以及TaqMan探针序列。
Figure BDA0002484958940000661
在一些实施方案中,经优化的多重PCR测定可以包括一步多重逆转录(RT)-PCR测定,该测定使用HIV-1和MS2噬菌体逆转录PCR引物来引起cDNA合成。所述方法和装置可以包括经验证的引物组和经优化的含有逆转录酶和热稳定性DNA聚合酶两者的主混合物(master mix)。以此方式,所述装置可以执行“超快速”一步多重RT-PCR测定以扩增对应于两个HIV-1基因和MS2阳性对照基因的装甲RNA(armored RNA)模板。在开始PCR前从RNA模板产生cDNA所需的时间是至关重要的,因为其必须不能延长总体的样品-反馈、周转时间超过测定的20分钟规范。三个病毒装甲RNA模板中的每一个都单独地在TE缓冲液中连续稀释,然后使用实验室仪器将每个稀释液进行单纯的一步RT-PCR,所述实验室仪器被编程以进行超快速RT步骤以产生cDNA,接着“快速”循环PCR扩增所述cDNA。
在一些实施方案中,多重RT-PCR测定的特征在于下面几方面:1)当对应于两个被测定的HIV-1基因和MS2噬菌体基因的扩增子序列的装甲RNA被稀释到汇集的EDTA血浆样品中时,所述测定检测并识别这些装甲RNA;和2)所述测定检测并识别在汇集的EDTA血浆样品中的对应于期望LoD的低浓度的每种HIV-1装甲RNA。为了确保期望的结果,在一些实施方案中,所述测定(或装置)可以包括单独的专有RT引物。在一些实施方案中,方法可以包括增加RT步骤的温度以减少RNA二级结构。
目前的装置和方法所要解决的一个潜在问题涉及血浆中存在PCR抑制剂,包括EDTA、亚铁血红素和IgG。部分地,样品制备模块和方法通过使用结合核酸的尼龙滤器避免了此问题;因为一旦被结合,核酸可以被基本上不含血浆成分的缓冲液洗涤,然后被洗脱在基本上不含血浆成分的缓冲液中。MS2噬菌体处理和扩增对照的使用提供了抑制剂存在的敏感量度。如果PCR抑制持续存在,热裂解步骤可能会延长和/或所述测定可以采用耐受粪便抑制剂的热稳定性DNA聚合酶的变体,诸如Omni Klentaq。如果EDTA螯合Mg降低了PCR效率,则可以增加Mg在PCR主混合物中的浓度。
在一些实施方案中,检测HIV的方法可以包括分离血浆。特别地,血浆是用于监测对接受ARV治疗的人的病毒学控制和用于检测急性/早期HIV感染中的HIV-1RNA的优选样品基质。要理解的是在遥远的场所其他样品类型(例如,干燥的血液斑点)是可接受的替代品,并且病毒也可以在其他体液中发现,包括阴道分泌物和精液。然而,在一些实施方案中,所述装置和方法可以包括采用任何期望的分离方法的任何合适的血浆分离模块。
在一些实施方案中,方法包括可以在家里或在遥远的发展中国家设施中执行的分步骤使用者引导过程。所述操作包括:(1)由使用者利用市售的刺血针获得针刺手指血;(2)将血液直接或使用包括在试剂盒中的市售的毛细管放置到血浆分离模块中;(3)由血浆分离模块从血液中自动分离血浆;(4)使用者使用包括在试剂盒中的移液管将血浆从血浆分离模块转移到HIV分子诊断装置(样品输入端口);(5)使用者通过按下任意数量的按钮来启动所述装置;和(6)使用者记录结果。在一些实施方案中,装置包括物理集成的血浆分离模块(即,在所述分子诊断装置内)。
血浆体积是针刺手指血输入体积和分离效率的函数。要理解的是针刺手指血体积估计值范围很大,但据报道至少一个市售刺血针(BD blue)获得平均400ul血液(ref)。针刺手指血可以使用市售的EDTA包被的毛细管采集,所述毛细管的内容物可以放置到血浆分离模块输入端口中。分离效率平均为~30%的针刺手指血体积。因此,假定Click HIV-1装置的预期LoD≤200个病毒拷贝/ml血浆和30%的血浆分离效率,则满足此LoD所需要的最小输入体积为150ul血液,这将获得45ul包含8个HIV-1病毒拷贝的血浆,血浆HIV-1浓度为200拷贝/ml。
在一些实施方案中,方法包括使用超级疏水血浆分离器(该分离器类似于由宾夕法尼亚州大学的Changchun Liu教授的小组开发的许可给Drummond Scientific的型号)分离血浆。显示此类机构在<10min内从200ul EDTA抗凝血中提取65ul不含血红蛋白的PCR-相容血浆。在一些实施方案中,分离器可以包括1.5X 1x 0.3英寸宽的一次性装置和倒置非对称聚砜膜(
Figure BDA0002484958940000681
Plasma Separation membrane,Pall),该一次性装置使用翻盖式外壳来容纳超疏水样品孔,针刺手指血放置在所述超疏水样品孔中。该组合允许样品中的红细胞(RBC)远离膜沉降,而非穿过它,由此防止膜阻塞并提供更有效的分离手段。然后在血浆排出端口收集血浆,在此血浆可以使用通过抽出紧密配合的移液管的柱塞所产生的简单的低压真空来移出。
在一些实施方案中,方法包括使用封装在保护盒内的螺旋式玻璃-纤维膜分离血浆,所述螺旋式玻璃-纤维膜允许以最少的溶血将血液的细胞成分与无细胞血浆侧流分离。此类分离装置可以包括HemaSpot-SE装置,该装置接受小量的针刺手指血样品。当将4-5滴针刺手指血(~150μL)施加在所述装置的中央时,产生~50μL血浆的产量,由此提供~33%的血浆分离效率,类似于由上述的超疏水膜所得到的效率。作为在此提出的协同的一部分,当前的装置将被修改以接受150-400ul的血液体积,并移除干燥剂。一旦将针刺手指血样品施加到输入端口,盒子关闭。在3分钟内,完成血浆分离,打开盒子,并将仍然湿润的旋流过滤器的不含血液、含有血浆的下面一半除下并转移到含有通用运输介质的有盖试管。将所述试管涡旋从而从所述膜洗脱病毒,然后将液体用移液管转移到HIV-1分子诊断测试装置的样品处理储库中。
在一些实施方案中,方法不需要血浆分离,而是选择性地仅扩增分子诊断测试装置中的ETDA抗凝血样品中的HIV-1RNA(而非前-病毒DNA)。
用来检测上呼吸道感染的使用RT-PCR装置的方法和装置
在一些实施方案中,本文所述的任一个装置可以用来执行单次使用(一次性)、在需求现场的诊断测试,用于从鼻拭子样品检测甲型流感(Flu A)、乙型流感(Flu B)和呼吸道合胞病毒(RSV)。这将有助于临床医生鉴别抗病毒药物作用更好的患者,由此减少了开出导致抗微生物药物耐药性的不必要的无效抗生素的药方
在一些实施方案中,所述测试装置(和方法)可以包括鼻拭子并且可以在本文所述的任一个装置上进行。
在一些实施方案中,所述方法和装置可以被优化以确保限制与下列(表2中列举的)病原体的交叉反应性。
表2.病原体的列表
Figure BDA0002484958940000691
Figure BDA0002484958940000701
另外,可以优化测定性能以避免在可能存在于感染的鼻分泌物(参见下面的列表)中并且可能干扰装置性能的无生命物质的存在下性能下降,所述无生命物质包括常见的局部鼻腔解充血剂(Afrin)、局部类固醇鼻腔喷雾剂(Flonase)和人全血和粘蛋白。在一些实施方案中,每个测定包括作为阳性对照的MS2噬菌体,其监测从样品处理步骤经由RT-PCR扩增到检测平台上的扩增子检测的测定性能。如果这些或其他物质抑制测定性能的任何方面,则所述阳性对照将登记为“未检测到”并且测定结果将是不确定的。
表3.病原体的列表
Figure BDA0002484958940000702
Figure BDA0002484958940000711
在一些实施方案中,本文所述的任一个系统可以被修改以执行肠道病原体诊断测定,该测定同时检测DNA细菌(即,空肠弯曲菌(C.jejuni)、肠道沙门氏菌(S.enterica)、志贺氏菌(Shigella)种属)和RNA病毒靶标(诺如病毒)。
尽管扩增模块在本文中通常被描述为对已制备的溶液执行热循环操作,但在其他实施方案中,扩增模块可以执行任意合适的热反应以扩增所述溶液内的核酸。在一些实施方案中,本文所述的任一扩增模块可以执行任意合适类型的等温扩增过程,包括,例如,环介导等温扩增(LAMP)、可用于检测靶RNA分子的基于核酸序列的扩增(NASBA)、链置换扩增(SDA)、多重置换扩增(MDA)、网状分枝扩增法(RAM)或任意其他类型的等温过程。
尽管上面已经描述了各种实施方案,但应当理解的是它们仅通过实例的方式给出,而非限制。在上述的方法和/或示意图指示了以特定次序发生的特定事件和/或流型的情况下,可以修改特定事件和/或流型的次序。尽管已经具体地显示和描述了实施方案,但要理解的是可以在形式和细节方面作出各种改变。
例如,本文显示和描述的样品输入模块、样品制备模块、扩增模块、加热器组装件和检测模块中的任一个可以用于任何合适的诊断装置中。此类装置可以包括,例如,可以在床旁设施和/或在使用者的家中使用的单次使用装置。换句话说,在一些实施方案中,所述装置(以及本文显示和描述的任一种其他装置)可以配置用于分散式测试设施中。此外,在一些实施方案中,本文显示和描述的样品输入模块、样品制备模块、扩增模块、加热器组装件和检测模块中的任一个可以包括在CLIA-豁免的装置内和/或可以有助于根据CLIA豁免的方法对装置的操作。换句话说,在一些实施方案中,本文显示和描述的样品输入模块、样品制备模块、扩增模块和检测模块可以以足够简单的方式有助于对装置的操作,所述方式可以产生足够准确的结果从而形成有限的不当使用可能性和/或在不正确使用时形成有限的危害风险。在一些实施方案中,本文显示和描述的样品输入模块、样品制备模块、扩增模块和检测模块可以用于题目为“用于分子诊断测试的装置和方法”的国际专利公开号WO2016/109691(该申请的全部内容通过引用并入本文)中显示和描述的任一个诊断装置中。
在一些实施方案中,本文所述的任一方法,诸如方法50和关于图17A-17C描述的方法,可以包括在表4中提供的下列的时间、温度和体积范围。
表4.样品范围
Figure BDA0002484958940000721
Figure BDA0002484958940000731
本文所述的装置和方法可以用来分析任何合适类型的生物样品,诸如组织样品(例如,血液样品)。在一些情况下,生物样品包括取自受试者的体液。在一些情况下,体液包括包含核酸的一个或多个细胞。在一些情况下,所述一个或多个细胞包括一个或多个微生物细胞,包括但不限于,细菌、古细菌、原生生物和真菌。在一些情况下,生物样品包括一个或多个病毒粒子。在一些情况下,生物样品包括一种或多种引起性传播疾病的微生物。样品可以包括来自受试者的样品,诸如全血;血液制品;红细胞;白细胞;白膜层;拭子;尿;痰;唾液;精液;淋巴液;内淋巴液;外淋巴液;胃液;胆汁;粘液;皮脂;汗液;泪液;阴道分泌物;呕吐物;粪便;母乳;耳垢;羊水;脑脊液;腹腔积液;胸腔积液;活检标本;囊肿液体;滑液;玻璃体液;房水;囊液;洗眼液;眼抽吸物;血浆;血清;肺灌洗液;肺抽吸物;动物组织,包括人组织,包括但不限于肝、脾、肾、肺、肠、脑、心、肌肉、胰腺,获自上述样品的细胞培养物以及裂解物、提取物或材料和级分或可能存在于样品上或样品中的任何细胞和微生物和病毒。样品可以包括原代培养物或细胞系的细胞。细胞系的实例包括,但不限于,293-T人肾细胞,A2870人卵巢细胞,A431人上皮细胞,B35大鼠神经母细胞瘤细胞,BHK-21仓鼠肾细胞,BR293人乳腺细胞,CHO中国仓鼠卵巢细胞,CORL23人肺细胞,HeLa细胞或Jurkat细胞。样品可以包括微生物的同源或混合群,包括病毒、细菌、原生生物、原核生物、囊泡藻、古细菌或真菌中的一种或多种。生物样品可以是尿标本、阴道拭子、宫颈拭子、肛门拭子或脸颊拭子。生物样品可以获自医院、实验室、临床或医学实验室。
然而,本文所述的装置和方法不限于对人样品执行分子诊断测试。在一些实施方案中,本文所述的任一个装置和方法可以利用兽医样品、食物样品和/或环境样品使用。环境来源的实例包括,但不限于,农田、湖泊、河流、水库、通风口、墙壁、屋顶、土壤样本、植物和游泳池。工业来源的实例包括,但不限于,洁净室、医院、食品加工区、食品生产区、食品、医学实验室、药房和药品配制中心。可以分离出多核苷酸的受试者的实例包括多细胞生物体,诸如鱼、两栖动物、爬行动物、鸟类和哺乳动物。哺乳动物的实例包括灵长动物(例如,猿、猴、大猩猩)、啮齿类动物(例如,小鼠、大鼠)、牛、猪、羊、马、狗、猫和兔。在一些实例中,哺乳动物是人。
在一些实施方案中,本文所述的任一个装置和方法可以包括样品缓冲液(例如,在样品制备模块、样品传输分流管或试剂模块内)和/或可以将样品缓冲液与生物样品混合,或可以使用样品缓冲液作为洗涤/封闭溶液,如本文所述。在一些情况下,样品缓冲液可以包括牛血清白蛋白和/或洗涤剂。在一些情况下,样品缓冲液包括约0.1%-5%牛血清白蛋白。在一些情况下,样品缓冲液包括约0.1%、0.2%、0.3%、0.4%、0.5%、1%、1.5%、2%、2.5%、3%、4%或5%牛血清白蛋白。在一些情况下,样品缓冲液包括约0.1%-20%洗涤剂。在一些情况下,样品缓冲液包括约1%、2%、3%、4%、5%、6%、7%、8%、9%或10%洗涤剂。在一些情况下,洗涤剂为Tween-20。对待使用的样品缓冲液的选择可以取决于预期的方法。例如,使用洗涤步骤时与不使用洗涤步骤时对样品缓冲液的选择可以是不同的。如果不使用洗涤步骤,则样品缓冲液可以是适合用于裂解和后续的PCR反应的缓冲液。
在一些实施方案中,样品缓冲液可以包括Tris HCL、Tween-80、BSA、Proclin和Antifoam SE-15。在一些实施方案中,样品缓冲液可以具有以下的组成:50mM Tris pH8.4、Tween-80,2%(w/v)、BSA,0.25%(w/v)、Proclin 300 0.03%(w/v)和Antifoam SE-15,0.002%(v/v),纯净水补足。Tris HCL是PCR的常用缓冲液。当在热循环期间它被加热时,pH可能下降,例如,当加热至约95℃时,在25℃的温度时pH为8.4的Tris缓冲液可以下降至约~7.4的pH。浓度范围可以为0.1mM-1M。pH范围可以是6-10。可以使用任何其他PCR相容性缓冲液,例如HEPES。Proclin 300是广谱抗微生物剂,其用作防腐剂以确保采集介质的长保存期限。其可以以0.01%(w/v)-0.1%(w/v)使用。许多其他的抗微生物剂在本领域中是已知的并且可以在样品缓冲液中使用。在一些实施方案中,试剂或洗涤缓冲液可以包括Antifoam SE-15以减少在制造和流体移动通过所述装置期间的泡沫形成。其可以以0.001%(v/v)-1%(v/v)使用。还可以使用任何其他消泡剂,例如,Antifoam 204、AntifoamA、Antifoam B、Antifoam C或Antifoam Y-30。
在一些实施方案中,所述的任一个扩增模块可以被配置成进行“快速”PCR(例如,在小于约10分钟内完成至少30循环),以及快速产生输出信号(例如,通过检测模块)。换句话说,本文所述的扩增模块可以被配置成处理多种体积,具有多种维度尺寸和/或由在小于约10分钟、小于约9分钟、小于约8分钟、小于约7分钟、小于约6分钟或如本文所述的其间的任何范围内有助于快速PCR或扩增的材料构造而成。
在一些实施方案中,本文所述的任一个检测模块可以包括具有任何合适的结构或组成的俘获探针。此类俘获探针可以是,例如,单链核酸、抗体或结合蛋白中的任一个。在一些实施方案中,俘获探针具有下列的通用结构(在此的DNA碱基序列仅是实例,将根据靶扩增子而变化):
5'端-/5AmMC6/TCTCGTAAAGGGCAGCCCGCAAG-3'端。
在其他实施方案中,俘获探针可以被修改为还含有间隔分子,依照此结构:
5'端-/5AmMC6//iSpl8/TCTCGTAAAGGGCAGCCCGCAAG-3'端其中/5AmMC6/是5'氨基修饰基团C6-Integrated DNA Technologies,/iSpl8/是Int间隔体18-Integrated DNATechnologies。在其他实施方案中,俘获探针可以被修饰以仅包括期望的DNA碱基,依照此结构:
5'端-TCTCGTAAAGGGCAGCCCGCAAG-3'端。
在其他实施方案中,俘获探针还包括额外的非靶标碱基,依照此结构:
5'端-GGGGGGG TCTCGTAAAGGGCAGCCCGCAAG-3'端。
在一些实施方案中,俘获探针可以被配制、设计或改造成具有相对高的解链温度(Tm)值(例如,约67℃)。在其他实施方案中,俘获探针可以具有下列范围的解链温度(Tm)值:35℃-85℃、60℃-85℃、60℃-75℃、65℃-70℃或66℃-68℃。具有高Tm值的俘获探针的一个优势在于在操作期间流动池可以被加热至宽的温度范围,而不会导致俘获探针释放靶扩增子。
在一些实施方案中,俘获探针针对来自淋病奈瑟氏菌(Neisseria gonorrhoeae)、沙眼衣原体、阴道毛滴虫、浅黄奈瑟氏菌(Neisseria subflava)的序列和阴性对照序列诸如来自萎缩芽孢杆菌(Bacillus atrophaeus)的序列或随机碱基进行设计。
本文所述的一些实施方案涉及具有非暂时性计算机可读介质的计算机存储产品(也可以称作非暂时性处理器-可读介质),所述非暂时性计算机可读介质上具有用于执行各种计算机实现的操作的指令或计算机代码。计算机可读介质(或处理器-可读介质)是非暂时性的,在某种意义上它不包括本身是暂时性传播的信号(例如,在传输介质诸如空间或线缆上携带信息的传播电磁波)。介质和计算机代码(也可以称作代码)可以是被设计和构造用于一个或多个特定用途的那些。非暂时性计算机可读介质的实例包括,但不限于,磁存储介质诸如硬盘、软盘和磁带;光存储介质诸如压缩盘/数字视频盘(CD/DVD)、压缩盘只读存储器(CD-ROM)和全息照相装置;磁光存储介质诸如光盘;载波信号处理模块;以及专用于存储和执行程序代码的硬件器件,诸如专用集成电路(ASIC)、可编程逻辑器件(PLD)、只读存储器(ROM)和随机存取存储器(RAM)器件。
计算机代码的实例包括,但不限于,微代码或微指令,机器指令,诸如由编译器生成的指令,用于生成web服务的代码,以及包含由计算机使用解释器执行的高级指令的文件。例如,实施方案可以使用命令式编程语言(例如,C语言、Fortran语言等),函数式编程语言(Haskell语言、Erlang语言等),逻辑编程语言(例如,Prolog语言),面向对象的编程语言(例如,Java语言、C++语言等)或其他合适的编程语言和/或开发工具来实施。计算机代码的其他实例包括,但不限于,控制信号、加密代码和压缩代码。
包括在控制模块内的处理器(以及本文所述的任一个处理器和/或控制器)可以是被配置成,例如,将数据写入控制器的存储器和从控制器的存储器读取数据,并执行存储器内存储的指令/方法的任意处理器。此外,处理器可以被配置成控制控制器内的其他模块(例如,温度反馈模块和流动模块)的操作。具体地,处理器可以接收包括温度数据、电流测量值等的信号并确定被供应至每个加热器组装件的功率和/电流的量,活塞脉冲的期望时间和顺序,等等。例如,在一些实施方案中,控制器可以是8-位PIC微控制器,其将控制输送到各个加热组装件和扩增模块4600内的组件的功率。此微控制器还可以包含用于和/或被配置成使对电源的瞬时功率要求最小化的代码。
在其他实施方案中,本文所述的任一个处理器可以是,例如,专用集成电路(ASIC)或ASIC的组合,其被设计成执行一个或多个专用功能。还在其他实施方案中,所述微处理器可以是模拟或数字电路,或多种电路的组合。
本文所述的任一个存储器件可以是任何合适的器件,诸如,例如,只读存储器(ROM)组件、随机存取存储器(RAM)组件、电子可编程只读存储器(EPROM)、可擦除电子可编程只读存储器(EEPROM)、寄存器、缓存存储器和/或闪存存储器。任一个模块(压力反馈模块和位置反馈模块)可以由处理器实现和/或存储在存储器内。
尽管各个实施方案已经被描述为具有特定的特征和/或组件组合,但其他的实施方案可能具有来自如上所述的任一个实施方案的任意特征和/或组件的组合。
本文所述的任一个装置和方法可以被用来检测与生物样品中的一种或多种细菌细胞相关的核酸的存在与否。在一些实施方案中,所述一种或多种细菌细胞是病原体。在一些实施方案中,所述一种或多种细菌细胞是感染性的。可以检测的细菌病原体的非限制性实例包括分枝杆菌属(Mycobacteria)(例如,结核分枝杆菌(M.tuberculosis)、牛分枝杆菌(M.bovis)、鸟分枝杆菌(M.avium)、麻风分枝杆菌(M.leprae)和非洲分枝杆菌(M.africanum))、立克次氏体、支原体、衣原体和军团菌属。细菌感染的一些实例包括,但不限于,由下列引起的感染:革兰氏阳性细菌(bacillus)(例如,李斯特菌属(Listeria)、杆菌(bacillus)诸如炭疽杆菌(Bacillus anthracis)、丹毒丝菌属(Erysipelothrix)物种),革兰氏阴性细菌(例如,巴尔通体属(Bartonella)、布鲁氏菌属(Brucella)、弯曲菌属(Campylobacter)、肠杆菌属(Enterobacter)、埃希氏菌属(Escherichia)、弗朗西斯氏菌属(Francisella)、嗜血杆菌属(Hemophilus)、克雷伯氏菌属(Klebsiella)、摩根氏菌属(Morganella)、变形菌属(Proteus)、普罗威登斯菌属(Providencia)、假单胞菌属(Pseudomonas)、沙门氏菌属(Salmonella)、沙雷氏菌属(Serratia)、志贺氏菌属(Shigella)、弧菌属(Vibrio)和耶尔森菌属(Y ersinia)物种)、螺旋体菌(例如,疏螺旋体菌属(Borrelia)物种,包括引起莱姆病的伯氏疏螺旋体(Borrelia burgdorferi))、厌氧菌(例如,放线菌属(Actinomyces)和梭菌属(Clostridium)物种)、革兰氏阳性和阴性球菌、肠球菌属(Enterococcus)物种、链球菌属(Streptococcus)物种、肺炎球菌属(Pneumococcus)物种、葡萄球菌属(Staphylococcus)物种和奈瑟菌属(Neisseria)物种。感染性细菌的具体例子包括,但不限于:幽门螺杆菌(Helicobacter pyloris)、嗜肺军团菌(Legionellapneumophilia)、结核分枝杆菌、鸟分枝杆菌、细胞内分枝杆菌(Mycobacteriumintracellulare)、堪萨斯分枝杆菌(Mycobacterium kansaii)、戈登分枝杆菌(Mycobacterium gordonae)、金黄色葡萄球菌(Staphylococcus aureus)、淋病奈瑟氏菌(Neisseria gonorrhoeae)、脑膜炎奈瑟氏菌(Neisseria meningitidis)、单核细胞增生性李斯特菌(Listeria monocytogenes)、化脓性链球菌(Streptococcus pyogenes)(A组链球菌)、无乳链球菌(Streptococcus agalactiae)(B组链球菌)、绿色链球菌(Streptococcusviridans)、粪链球菌(Streptococcus faecalis)、牛链球菌(Streptococcus bovis)、肺炎链球菌(Streptococcus pneumoniae)、流感嗜血杆菌(Haemophilus influenzae)、炭疽杆菌(Bacillus antracis)、红斑丹毒丝菌(Erysipelothrix rhusiopathiae)、破伤风梭菌(Clostridium tetani)、产气肠杆菌(Enterobacter aerogenes)、肺炎克雷伯菌(Klebsiella pneumoniae)、多杀巴斯德氏菌(Pasturella multocida)、具核梭杆菌(Fusobacterium nucleatum)、念珠状链杆菌(Streptobacillus moniliformis)、梅毒密螺旋体(Treponema pallidium)、细弱密螺旋体(Treponema pertenue)、钩端螺旋体属(Leptospira)、立克次体属(Rickettsia)和衣氏放线菌(Actinomyces israelii)、不动杆菌属(Acinetobacter)、芽孢杆菌属(Bacillus)、博得特氏菌(Bordetella)、疏螺旋体属(Borrelia)、布鲁氏菌属(Brucella)、弯曲杆菌属(Campylobacter)、衣原体属(Chlamydia)、嗜衣原体属(Chlamydophila)、梭菌属(Clostridium)、棒状杆菌属(Corynebacterium)、肠球菌属、嗜血杆菌、螺旋杆菌、分枝杆菌属、支原体属(Mycoplasma)、寡养单胞菌属(Stenotrophomonas)、密螺旋体属(Treponema)、弧菌属、耶尔森氏菌属、鲍曼不动杆菌(Acinetobacter baumanii)、百日咳博德特氏菌(Bordetella pertussis)、流产布鲁氏菌(Brucella abortus)、犬布鲁氏菌(Brucella canis)、羊种布鲁氏菌(Brucellamelitensis)、猪布鲁氏菌(Brucella suis)、空肠弯曲菌(Campylobacter jejuni)、肺炎衣原体、沙眼衣原体、鹦鹉衣原体(Chlamydophila psittaci)、肉毒梭菌(Clostridiumbotulinum)、艰难梭菌(Clostridium difficile)、产气荚膜梭菌(Clostridiumperfringens)、白喉杆菌(Corynebacterium diphtheriae)、坂崎肠杆菌(Enterobactersazakii)、聚团肠杆菌(Enterobacter agglomerans)、阴沟肠杆菌(Enterobactercloacae)、粪肠球菌(Enterococcus faecalis)、屎肠球菌(Enterococcus faecium)、大肠杆菌(Escherichia coli)、土拉热弗朗西斯菌(Francisella tularensis)、幽门螺杆菌(Helicobacter pylori)、嗜肺军团菌(Legionella pneumophila)、肾脏钩端螺旋体(Leptospira interrogans)、麻风分枝杆菌(Mycobacterium leprae)、结核分枝杆菌(Mycobacterium tuberculosis)、溃疡分枝杆菌(Mycobacterium ulcerans)、肺炎支原体(Mycoplasma pneumoniae)、铜绿假单胞菌(Pseudomonas aeruginosa)、立克氏立克次体(Rickettsia rickettsii)、伤寒沙门氏菌(Salmonella typhi)、鼠伤寒沙门氏菌(Salmonella typhimurium)、肠道沙门氏菌(Salmonella enterica)、宋内志贺氏菌(Shigella sonnei)、表皮葡萄球菌(Staphylococcus epidermidis)、腐生性葡萄球菌(Staphylococcus saprophyticus)、嗜麦芽寡养单胞菌(Stenotrophomonasmaltophilia)、霍乱弧菌(Vibrio cholerae)、鼠疫耶尔森氏菌(Yersinia pestis)等。在一些情况下,感染性细菌是淋病奈瑟氏菌或沙眼衣原体。
本文所述的任一个装置和方法可以被用来检测与生物样品中的一种或多种病毒相关的核酸的存在与否。病毒的非限制实例包括疱疹病毒(例如,人巨细胞病毒(HCMV)、单纯疱疹病毒I(HSV-1)、单纯疱疹病毒2(HSV-2)、水痘带状疱疹病毒(VZV)、EB病毒)、甲型流感病毒和丙型肝炎病毒(HCV)或小核糖核酸病毒诸如柯萨奇病毒B3(CVB3)。其他病毒可以包括,但不限于,乙型肝炎病毒、HIV、痘病毒、嗜肝DNA病毒(hepadavirus)、逆转录病毒和RNA病毒诸如黄病毒、披膜病毒、冠状病毒、丁型肝炎病毒、正粘病毒、副粘病毒、棒状病毒、布尼亚病毒、丝状病毒、腺病毒、人疱疹病毒、8型、人乳头状瘤病毒、BK病毒、JC病毒、天花、乙型肝炎病毒、人博卡病毒、细小病毒B19、人星形病毒、诺瓦克病毒、柯萨奇病毒、甲型肝炎病毒、脊髓灰质炎病毒、鼻病毒、严重急性呼吸综合征病毒、丙型肝炎病毒、黄热病病毒、登革病毒、西尼罗病毒、风疹病毒、戊型肝炎病毒和人类免疫缺陷病毒(HIV)。在一些实施方案中,病毒是包膜病毒。此类包膜病毒的实例包括,但不限于,为下列科成员的病毒:嗜肝DNA病毒科、疱疹病毒科、虹色病毒科、痘病毒科、黄病毒科、披膜病毒科、逆转录病毒科、冠状病毒科、丝状病毒科、棒状病毒科、布尼亚病毒科、正粘液病毒科、副粘液病毒科和沙粒病毒科。其他实例包括,但不限于,嗜肝DNA病毒乙型肝炎病毒(HBV)、土拨鼠肝炎病毒、地松鼠肝炎(嗜肝DNA病毒科)病毒、鸭乙型肝炎病毒、苍鹭乙型肝炎病毒、疱疹病毒单纯疱疹病毒(HSV)1型和2型、水痘带状疱疹病毒、巨细胞病毒(CMV)、人巨细胞病毒(HCMV)、小鼠巨细胞病毒(MCMV)、豚鼠巨细胞病毒(GPCMV)、EB病毒(EBV)、人疱疹病毒6(HHV变体A和B)、人疱疹病毒7(HHV-7)、人疱疹病毒8(HHV-8)、卡波希肉瘤相关疱疹病毒(KSHV)、乙型痘病毒痘苗病毒、天花病毒(variola virus)、天花病毒(smallpox virus)、猴痘病毒、牛痘病毒、骆驼痘病毒、小鼠脱脚病病毒(ectromelia virus)、小鼠痘病毒、兔痘病毒、浣熊痘病毒、接触传染性软疣病毒、口疮病毒、挤奶工结节病毒、波文丘疹性口炎病毒(bovin papullarstomatitis virus)、绵羊痘病毒、山羊痘病毒、结节性皮肤病病毒、禽痘病毒、金丝雀痘病毒、鸽痘病毒、麻雀痘病毒、粘液瘤病毒、野兔纤维瘤病毒、兔纤维瘤病毒、松鼠纤维瘤病毒、猪痘病毒、特纳河痘病毒、亚巴痘病毒、黄病毒登革病毒、丙型肝炎病毒(HCV)、GB肝炎病毒(GBV-A、GBV-B和GBV-C)、西尼罗病毒、黄热病病毒、圣路易斯脑炎病毒、日本脑炎病毒、波瓦森病毒(Powassan virus)、蜱传脑炎病毒(tick-borne encephalitis virus)、科萨努尔森林病病毒(Kyasanur Forest disease virus)、披膜病毒(Togavirus)、委内瑞拉马脑炎(VEE)病毒、基孔肯亚病毒(chikungunya virus)、罗斯河病毒、马亚罗病毒、辛德比斯病毒、风疹病毒、逆转录病毒人类免疫缺陷病毒(HIV)1型和2型、人类T细胞白血病病毒(HTLV)1型、2型和5型、小鼠乳腺肿瘤病毒(MMTV)、劳斯肉瘤病毒(RSV)、慢病毒、冠状病毒、严重急性呼吸综合征(SARS)病毒、丝状病毒埃博拉病毒、马尔堡病毒、偏肺病毒(MPV)诸如人偏肺病毒(HMPV)、棒状病毒狂犬病病毒、水泡性口膜炎病毒、布尼亚病毒、克里米亚-刚果出血热病毒、里夫特裂谷热病毒、拉克罗斯病毒、汉坦病毒、正粘病毒、流感病毒(甲型、乙型、丙型)、副粘病毒、副流感病毒(PIV1、2和3型)、呼吸道合胞病毒(A和B型)、麻疹病毒、腮腺炎病毒、沙粒病毒、淋巴细胞性脉络膜脑膜炎病毒、胡宁病毒、马丘坡病毒、瓜纳瑞托病毒、拉沙病毒、Ampari病毒、弗莱克索病毒、伊派病毒、莫巴拉病毒、莫佩亚病毒、拉蒂诺病毒、巴拉那病毒、皮秦德病毒、Punta torn病毒(PTV)、塔卡里伯病毒和太米阿米病毒。在一些实施方案中,病毒是无包膜病毒,其实例包括,但不限于,为下列科成员的病毒:细小病毒科、圆环病毒科、多瘤病毒科、乳头状瘤病毒科、腺病毒科、虹色病毒科、呼肠弧病毒科、双RNA病毒科、萼状病毒科和小核糖核酸病毒科。具体实例包括,但不限于,犬细小病毒、细小病毒Bl9,猪圆环病毒1型和2型、BFDV(喙羽病病毒、鸡贫血病毒、多瘤病毒、猿猴病毒40(SV40)、JC病毒、BK病毒、虎皮鹦鹉掉羽病病毒、人乳头状瘤病毒、牛乳头状瘤病毒(BPV)1型、棉尾兔乳头状瘤病毒、人腺病毒(HAdV-A、HAdV-B、HAdV-C、HAdV-D、HAdV-E和HAdV-F)、禽腺病毒A、牛腺病毒D、蛙腺病毒、呼肠孤病毒、人环状病毒、人colti病毒、哺乳动物原呼肠孤病毒、蓝舌病病毒、轮状病毒A、轮状病毒(B组至G组)、科罗拉多蜱热病毒、水生呼肠病毒A、质型多角体病毒属1、斐济病病毒、水稻矮缩病毒、水稻齿叶矮缩病毒、昆虫非包涵体病毒1、真菌呼肠弧病毒1、双RNA病毒、法氏囊病病毒、胰腺坏死病毒、杯状病毒、猪水泡性溃疡病毒、兔出血病病毒、诺瓦克病毒、札幌病毒、小核糖核酸病毒、人脊椎灰质炎病毒(1-3)、人科萨奇病毒Al-22、24(CAl-22和CA24,CA23(埃可病毒9))、人科萨奇病毒(Bl-6(CBl-6))、人埃可病毒1-7,9,11-27,29-33、vilyuish病毒、猿猴肠道病毒1-18(SEVI-18)、猪肠道病毒1-11(PEVl-11)、牛肠道病毒1-2(BEVI-2)、甲型肝炎病、鼻病毒、嗜肝病毒、心病毒、口蹄疫病毒和埃可病毒。病毒可以是噬菌体。噬菌体的实例包括,但不限于,T4、TS、λ噬菌体、T7噬菌体、G4、Pl、
Figure BDA0002484958940000821
嗜热变形杆菌病毒1、M13、MS2、Qβ、
Figure BDA0002484958940000822
X174、Ф29、PZA、Ф15、BS32、Bl03、M2Y(M2)、Nf、GA-I、FWLBcl、FWLBc2、FWLLm3、B4。参考数据库可以包括噬菌体的序列,所述噬菌体是致病的、保护性的或两者均有。在一些情况下,病毒选自下列科的成员:黄病毒科(例如,黄病毒属、瘟病毒属和丙型肝炎病毒(Hepacivirus)属的成员),其包括丙型肝炎病毒、黄热病病毒;蜱传病毒,诸如加德格兹谷病毒、凯丹姆病毒、科萨努尔森林病病毒、兰加特病毒、鄂木斯克出血热病毒、波瓦森病毒、罗亚尔农场病毒、卡西病毒、蜱传脑炎病毒、纽多佛病毒、索夫吉病毒、羊跳跃病病毒和纳基许病毒;海鸟蜱传病毒,诸如米斑病毒、索马里滋里夫病毒和秋列尼病毒;蚊传病毒,诸如阿纳病毒、登革病毒、凯多各病毒、卡西帕科利病毒、科坦戈病毒、日本脑炎病毒、墨累山谷脑炎病毒、圣路易斯脑炎病毒、乌苏土病毒、西尼罗病毒、雅温得病毒、科科贝拉病毒、巴格扎病毒、伊尔乌斯病毒(Ilheus virus)、以色列-土耳其脑膜脑脊髓炎病毒、恩塔亚病毒、塔布苏病毒、寨卡病毒、斑齐病毒、博博衣病毒、埃杰山病毒、朱格拉病毒、萨博亚病毒、塞皮克病毒、乌干达S病毒、韦塞尔斯布朗病毒病毒、黄热病病毒;和具有未知节肢动物媒介的病毒,诸如恩特伯蝙蝠病毒、横须贺病毒、阿波衣病毒、牛骨山脊病毒、朱蒂亚帕病毒、摩多克鼠病毒、萨尔别霍病毒、圣帕利塔病毒、布卡拉沙蝙蝠病毒、卡勒岛病毒、达喀尔蝙蝠病毒、蒙大拿鼠耳蝙蝠白细胞脑炎病毒、粉判蝙蝠病毒、里约布拉沃病毒、塔玛纳蝙蝠病毒和细胞融合剂病毒。在一些情况下,病毒选自下列科的成员:沙粒病毒科,其包括伊派病毒、拉沙病毒(例如,Josiah、LP或GA391株)、淋巴细胞性脉络丛脑膜炎病毒(LCMV)、莫巴拉病毒、莫佩亚病毒、阿玛帕里病毒、弗莱克索病毒、瓜纳瑞托病毒、胡宁病毒、拉蒂诺病毒、马丘坡病毒、奥立华斯病毒、帕腊南病毒、皮秦德病毒、皮里陶病毒、萨比亚病毒、塔卡里伯病毒、太米阿米病毒、白水河病毒,Chapare病毒和Lujo病毒。在一些情况下,病毒选自以下科的成员:布尼亚病毒科,(例如,汉坦病毒属、奈洛病毒属、正本雅病毒属和白蛉病毒属的成员),其包括汉坦病毒、辛诺柏病毒、道格比病毒、布尼安维拉病毒、裂谷热病毒、拉克罗斯病毒、庞塔托鲁病毒(PTV)、加利福尼亚脑炎病毒和克里米亚-刚果出血热(CCHF)病毒。在一些情况下,病毒选自以下科的成员:纤丝病毒科,其包括埃博拉病毒(例如,扎伊尔、苏丹、象牙海岸、雷斯顿和乌干达株)和马尔堡病毒(例如,安哥拉、Ci67、穆索克、波普、拉文和维多利亚湖株);披膜病毒科的成员(例如,甲病毒属的成员),其包括委内瑞拉马脑炎病毒(VEE)、东方马脑炎病毒(EEE)、西方马脑炎病毒(WEE)、辛德比斯病毒、风疹病毒、西门立克森林病毒、罗斯河病毒、巴马森林病毒、奥-奈氏病毒和基孔肯亚病毒;痘病毒科的成员(例如,正痘病毒属的成员),其包括天花病毒、猴痘病毒和牛痘病毒;疱疹病毒科的成员,其包括单纯疱疹病毒(HSV;1、2和6型),人疱疹病毒(例如,7和8型)、巨细胞病毒(CMV)、EB病毒(EBV)、水痘-带状疱疹病毒和卡波西肉瘤相关的疱疹病毒(KSHV);正粘病毒科的成员,其包括流感病毒(甲型、乙型和丙型),诸如H5Nl禽流感病毒或HINI猪流感病毒;冠状病毒科的成员,其包括严重急性呼吸综合征(SARS)病毒;弹状病毒科的成员,其包括狂犬病病毒和水疱性口膜炎病毒(VSV);副粘病毒科的成员,其包括人呼吸道合胞病毒(RSV)、新城疫病毒、亨德拉病毒、尼帕病毒、麻疹病毒、牛瘟病毒、犬瘟热病毒、仙台病毒、人副流感病毒(例如,1、2、3和4)、鼻病毒和腮腺炎病毒;小RNA病毒科的成员,其包括脊髓灰质炎病毒、人肠病毒(A、B、C和D)、甲型肝炎病毒和科萨奇病毒;嗜肝DNA病毒科的成员,其包括乙型肝炎病毒;乳头状瘤病毒科的成员,其包括人乳头状瘤病毒;细小病毒科的成员,其包括腺相关病毒;星状病毒科的成员,其包括星状病毒;多瘤病毒科的成员,其包括JC病毒、BK病毒和SV40病毒;嵌杯状病毒科的成员,其包括诺瓦克病毒;呼肠弧病毒科的成员,其包括轮状病毒;和逆转录病毒科的成员,其包括人免疫缺陷病毒(HIV;例如,I型和2型),和人T-淋巴细胞病毒I型和II型(分别是HTLV-1和HTLV-2)。
本文所述的任一个装置和方法可以被利用来检测与生物样品中的一种或多种真菌相关的核酸的存在与否。感染性真菌病原体的实例包括,不限于,曲霉属(Aspergillus)、芽生菌属(Blastomyces)、球孢子菌属(Coccidioides)、隐球菌属(Cryptococcus)、组织胞浆菌属(Histoplasma)、副球孢子菌属(Paracoccidioides)、孢子丝菌属(Sporothrix)和接合菌纲(Zygomycetes)的至少三个属。上述真菌以及其他许多真菌都可以在宠物和伴生动物中引起疾病。本发明的教导包括与动物直接或间接接触的基质。引起动物疾病的生物体包括糠秕马拉色菌(Malassezia furfur)、絮状表皮癣菌(Epidermophyton floccosur)、须毛癣菌(Trichophyton mentagrophytes)、红色毛癣菌(Trichophyton rubrum)、断发毛癣菌(Trichophyton tonsurans)、马毛癣菌(Trichophytonequinum)、刚果嗜皮菌(Dermatophilus congolensis)、犬小孢子菌(Microsporum canis)、奥杜盎小孢子菌(Microsporu audouinii)、石膏样小孢子菌(Microsporum gypseum)、卵形糠秕孢子菌(Malassezia ovale)、假埃希氏菌属(Pseudallescheria)、帚霉属(Scopulariopsis)、足放线病菌属(Scedosporium)和白色念珠菌(Candida albicans)。真菌感染病原体的进一步实例包括,但不限于曲霉菌、皮炎芽生菌(Blastomyces dermatitidis)、念珠菌属、粗球孢子菌(Coccidioides immitis)、新生隐球菌(Cryptococcus neoformans)、荚膜组织胞浆菌荚膜变种(Histoplasma capsulatum var.capsulatum)、巴西芽生菌(Paracoccidioidesbrasiliensis)、申克孢子丝菌(Sporothrix schenckii)、接合菌属(Zygomycetes spp.)、伞状犁头霉(Absidia corymbifera)、微小根毛霉(Rhizomucor pusillus)或少根根霉(Rhizopus arrhizus)。
本文所述的任一个装置和方法可以被用来检测与生物样品中的一种或多种寄生虫相关的核酸的存在与否。寄生虫的非限制性实例包括疟原虫(Plasmodium)、利什曼原虫(Leishmania)、巴贝虫(Babesia)、密螺旋体属(Treponema)、疏螺旋体属(Borrelia)、锥虫(Trypanosoma)、弓形虫(Toxoplasma gondii)、恶性疟原虫(Plasmodium falciparum)、间日疟原虫(P.vivax)、卵形疟原虫(P.ovale)、三日疟原虫(P.malariae)、锥虫属(Trypanosoma spp.)或军团菌属(Legionella spp.)。在一些情况下,所述寄生虫是阴道毛滴虫。

Claims (80)

1.一种使用分子诊断测试装置检测核酸的方法,所述方法包括:
将所述分子诊断测试装置耦合到电源;
将生物样品通过输入开口传送到所述分子诊断测试装置内的样品制备模块中;
仅通过单一动作使所述分子诊断测试装置致动从而使所述分子诊断测试装置:
A)通过所述样品制备模块的加热器加热所述生物样品以裂解一部分所述生物样品从而产生输入样品;
B)将所述输入样品传送到所述分子诊断测试装置内的扩增模块,所述扩增模块限定反应容积;
C)加热在所述反应容积内的所述输入样品以扩增所述输入样品内的所述核酸,由此产生含有靶扩增子的输出溶液;以及
D)在所述分子诊断测试装置内的检测模块内,使下述中的每一个反应:(i)所述输出溶液和(ii)被配制成产生指示所述输出溶液内所述靶扩增子的存在的信号的试剂,所述检测模块包括被配置成俘获所述靶扩增子以产生所述信号的检测表面;以及
读出与所述信号相关的结果。
2.根据权利要求1所述的方法,其中所述单一动作是盖上所述分子诊断测试装置的盖子。
3.一种使用分子诊断测试装置检测核酸的方法,所述方法包括:
将所述分子诊断测试装置耦合到电源;
将生物样品通过输入开口传送到所述分子诊断测试装置内的样品制备模块中;
用与所述分子诊断测试装置连接的盖子遮盖所述输入开口;
仅响应于遮盖所述输入开口,使所述分子诊断测试装置:
A)通过所述样品制备模块的加热器加热所述生物样品以裂解一部分所述生物样品从而产生输入样品;
B)将所述输入样品传送到所述分子诊断测试装置内的扩增模块,所述扩增模块限定反应容积;
C)加热在所述反应容积内的所述输入样品以扩增所述输入样品内的所述核酸,从而产生包含靶扩增子的输出溶液;以及
D)在所述分子诊断测试装置内的检测模块内,使下述中的每一个反应:(i)所述输出溶液和(ii)被配制成产生指示所述输出溶液内所述靶扩增子的存在的信号的试剂,所述检测模块包括被配置成俘获所述靶扩增子以产生所述信号的检测表面;以及
读出与所述信号相关的结果。
4.根据权利要求3所述的方法,其中所述分子测试装置是一次性使用装置,所述方法进一步包括:
在所述读出后丢弃所述分子测试装置。
5.根据权利要求3所述的方法,其中将所述分子诊断测试装置耦合到所述电源包括下列中的任一种:通过电线将所述分子诊断测试装置耦合到所述电源,将所述电源的端子耦合到所述分子诊断测试装置的相应端子,或移除所述电源与所述分子诊断测试装置内的电子控制之间的绝缘构件。
6.根据权利要求3所述的方法,其中所述遮盖所述输入开口通过单一动作执行。
7.根据权利要求6所述的方法,其中所述遮盖所述输入开口包括:A)将所述盖子的密封部移动到所述输入开口上方,B)致动开关从所述电源向所述加热器提供电力,以及C)通过所述单一动作从所述分子诊断测试装置内的密封试剂容器释放所述试剂。
8.根据权利要求6所述的方法,其中在所述遮盖后,所述盖子的锁止部与所述分子诊断测试装置不可逆地接合以防止所述输入开口被打开。
9.根据权利要求7所述的方法,所述方法进一步包括:
在所述耦合之前将包括所述密封试剂容器的所述分子诊断测试装置保存至少6个月。
10.一种检测核酸的方法,所述方法包括:
在样品制备模块内混合逆转录酶与生物样品以形成逆转录溶液;
在所述样品制备模块内,将所述逆转录溶液加热至裂解温度范围内的第一温度以释放核糖核酸(RNA)分子;
在所述样品制备模块内,将所述逆转录溶液加热至逆转录温度范围内的第二温度以产生互补的脱氧核糖核酸(cDNA)分子;
在所述样品制备模块内,将所述逆转录溶液加热至高于失活温度的第三温度从而导致所述逆转录酶失活;以及;
将所述逆转录溶液传送至扩增模块。
11.根据权利要求10所述的方法,其中所述逆转录溶液不含核糖核酸酶抑制剂。
12.根据权利要求11所述的方法,其中加热至第一温度和加热至第二温度在至少10分钟内执行。
13.根据权利要求12所述的方法,其中:
所述样品制备模块包括限定流路的流动构件和与所述流动构件耦合的加热器;以及
所述加热至第一温度和所述加热至第二温度通过致动所述加热器并通过所述流路传送所述逆转录溶液来执行。
14.根据权利要求13所述的方法,其中所述流路是蛇形流路。
15.根据权利要求12所述的方法,其中所述逆转录溶液的体积为至少50微升。
16.根据权利要求12所述的方法,其中:
所述加热至第一温度包括以每秒0.1摄氏度-每秒100摄氏度的速率加热所述逆转录溶液;以及
所述加热至第二温度包括以每秒0.1摄氏度-每秒100摄氏度的速率加热所述逆转录溶液。
17.根据权利要求12所述的方法,其中所述生物样品是未过滤的样品。
18.根据权利要求13所述的方法,其中所述逆转录溶液的流速为使得所述逆转录溶液被加热至所述第三温度持续至少约25秒的时间的流速,所述第三温度为约92摄氏度-约98摄氏度。
19.一种设备,所述设备包括:
外壳;
在所述外壳内的样品制备模块,所述样品制备模块限定接纳生物样品的样品输入容积和输入开口,通过所述输入开口能够进入所述样品输入容积,所述样品制备模块包括被配置成加热所述生物样品以产生输入溶液的加热器;
布置在所述外壳内的试剂模块,所述试剂模块包括试剂容器,所述试剂容器包含被配制成促进从所述输入溶液产生指示靶扩增子存在的信号的检测试剂,所述检测试剂被密封在所述试剂容器内;
检测模块,所述检测模块包括被配置成从所述输入溶液俘获所述靶扩增子的检测表面,所述检测模块与所述试剂模块流体连通使得响应于被传送到所述检测模块中的所述试剂而产生所述信号;以及
与所述外壳可移动地连接的盖子,所述盖子包括密封部、开关部和试剂致动器,所述盖子被配置成在第一盖子位置和第二盖子位置之间相对于所述外壳移动,当所述盖子处于所述第一盖子位置时所述输入开口暴露,当所述盖子处于所述第二盖子位置时所述盖子的所述密封部遮盖所述输入开口,所述开关部被配置成当所述盖子从所述第一盖子位置移动到所述第二盖子位置时致动开关以向所述加热器提供电力,所述试剂致动器被配置成当所述盖子从所述第一盖子位置移动到所述第二盖子位置时使所述试剂从所述密封的试剂容器中释放。
20.根据权利要求19所述的设备,其中所述盖子包括锁止部,所述锁止部不可逆地接合所述外壳、所述样品制备模块或所述试剂模块中的至少一个从而将所述盖子保持在所述第二盖子位置处。
21.根据权利要求20所述的设备,其中所述盖子的所述锁止部是突起,当所述盖子处于所述第二盖子位置时,所述突起配合地接纳在由所述外壳限定的开口内。
22.根据权利要求19所述的设备,其中:
所述外壳的所述输入开口是第一输入开口;
所述盖子限定第二输入开口,当所述盖子处于第一盖子位置时所述第二输入开口与所述第一输入开口平齐。
23.根据权利要求22所述的设备,其中当所述盖子处于所述第二盖子位置时,所述盖子的所述密封部流体隔离所述样品输入容积。
24.根据权利要求19所述的设备,其中:
所述试剂模块包括试剂外壳和刺孔器,所述试剂外壳限定试剂储库,当所述刺孔器刺破所述试剂容器的一部分时,所述试剂从所述密封的试剂容器释放到所述试剂储库中,所述试剂储库被配置成被置于与所述检测模块流体连通;以及
所述试剂致动器包括突起,当所述盖子从所述第一盖子位置移动至所述第二盖子位置时,所述突起施加力以使所述刺孔器刺破所述试剂容器的所述部分。
25.根据权利要求24所述的设备,其中:
所述盖子的所述试剂致动器是第一试剂致动器;以及
所述试剂模块包括在所述盖子和所述试剂外壳之间的第二试剂致动器,所述第二试剂致动器包括可变形构件,所述第一试剂致动器的所述突起被配置成对所述可变形构件施加力使得所述可变形构件移动,从而传递所述力以使所述试剂容器在所述试剂储库内移动并与所述刺孔器接触。
26.根据权利要求24所述的设备,其中:
所述试剂模块包括被配置成将所述试剂容器连接在所述试剂储库内的试剂容器支撑构件,所述试剂容器支撑构件具有密封部和连接部,所述密封部连接到所述试剂外壳从而流体隔离所述试剂储库,所述连接部连接到所述试剂容器的一部分从而将所述试剂容器支撑于所述试剂储库内的第一容器位置,当所述试剂容器处于所述第一容器位置时,所述试剂容器远离所述刺孔器,
所述试剂容器支撑构件被配置成响应于由所述试剂致动器所施加的力从初始构型变形为变形的构型,当所述试剂容器支撑构件从所述初始构型转变为所述变形的构型时,所述试剂容器移动到所述试剂储库内的第二容器位置并与所述刺孔器接触。
27.根据权利要求24所述的设备,其中所述试剂容器支撑构件在所述初始构型偏置。
28.根据权利要求19所述的设备,所述设备进一步包括:
所述外壳内的扩增模块,所述扩增模块被配置成接纳来自所述样品制备模块的所述输入溶液,所述扩增模块被配置成加热所述输入溶液以扩增所述输入溶液内的核酸,从而产生包含所述靶扩增子的检测溶液。
29.根据权利要求28所述的设备,所述设备进一步包括:
布置在所述外壳内的流体泵,所述流体泵被配置成在所述扩增模块内产生所述输入溶液的输入流;和
在所述外壳内的控制模块,所述控制模块包括所述开关和处理器,当所述盖子从所述第一盖子位置移动到所述第二盖子位置时所述开关向所述处理器提供电力,所述处理器被配置成调节向所述流体泵的电力输入以控制所述扩增模块内所述样品的所述输入流的速率。
30.根据权利要求19所述的设备,所述设备进一步包括:
在所述外壳内的控制模块,所述控制模块包括所述开关和处理器,所述处理器被配置成控制向所述加热器的电力传输,所述盖子的所述开关部包括开关突起,所述开关突起被配置成当所述盖子处于所述第二盖子位置时与所述开关接合。
31.根据权利要求19所述的设备,其中所述试剂是第一试剂或第二试剂之一,所述第一试剂被配制成响应于所述第一试剂被传送到所述检测模块中而与所述靶扩增子结合,所述第二试剂被配制成当被所述第一试剂催化时产生所述信号。
32.根据权利要求31所述的设备,其中所述第二试剂是被配制成当所述第二试剂与所述第一试剂接触时产生不溶性有色颗粒的沉淀底物。
33.根据权利要求19所述的设备,其中:
所述试剂容器是第一试剂容器;
所述试剂是第一试剂,所述第一试剂是催化试剂或沉淀试剂之一,所述催化试剂被配制成响应于所述第一试剂被传送到所述检测模块中而与所述靶扩增子结合,所述沉淀试剂被配制成当被所述催化试剂催化时产生所述信号;以及
所述试剂模块包括第二试剂容器,所述第二试剂容器包含溶液,所述溶液包括洗涤缓冲液和封闭缓冲液,所述封闭缓冲液被配制成减少所述检测模块内所述靶扩增子远离所述检测表面的附着。
34.一种使用分子诊断测试装置检测核酸的方法,所述方法包括:
在第一时间将第一体积的第一试剂溶液从所述分子诊断测试装置内的试剂模块传送到所述分子诊断测试装置内的检测模块中,所述检测模块包括被配置成俘获与所述核酸相关的靶扩增子的检测表面,所述第一试剂溶液包括封闭剂和洗涤缓冲液,所述第一体积的所述第一试剂溶液包含足以吸附到所述检测模块内的表面的量的所述封闭溶液;
在第二时间将包含所述靶扩增子的样品溶液传送到所述检测模块中使得所述靶扩增子被俘获在所述检测表面上;
在所述第二时间后将第二试剂溶液传送到所述检测模块中,所述第二试剂溶液被配制成导致产生指示所述样品溶液内存在所述靶扩增子的信号;以及
在所述第二时间后将第二体积的所述第一试剂溶液传送到所述检测模块中,所述第二体积的所述第一试剂溶液包含所述洗涤缓冲液,所述洗涤缓冲液的量足以将来自所述样品溶液或所述第二试剂溶液中的至少一个的未结合成分从所述检测模块移除。
35.根据权利要求34所述的方法,其中所述分子诊断测试装置是独立的分子诊断测试装置,并且所述检测方法的执行不需要任何外部仪器。
36.根据权利要求34所述的方法,其中所述试剂模块包括第一试剂容器,所述第一试剂溶液在所述第一时间传送之前被密封在所述第一试剂容器内,所述方法进一步包括:
在所述分子诊断测试装置内从所述第一试剂容器释放所述第一试剂溶液。
37.根据权利要求36所述的方法,所述方法进一步包括:
在所述释放之前将包括所述密封的第一试剂容器的所述分子诊断测试装置保存至少6个月。
38.根据权利要求36所述的方法,其中:
所述试剂模块包括限定试剂储库的试剂外壳;
所述释放第一试剂溶液包括将所述第一试剂溶液释放到所述试剂储库中;
在所述第一时间传送第一体积的第一试剂溶液包括将第一体积的第一试剂溶液从所述试剂储库传送到所述检测模块中并将至少一部分所述第一体积的第一试剂溶液从所述检测模块返回至所述试剂储库;以及
在所述第二时间后传送第二体积的第一试剂溶液包括从所述试剂储库传送所述第二体积的第一试剂溶液,所述第二体积包括返回至所述试剂储库的所述部分的所述第一体积。
39.根据权利要求38所述的方法,其中:
在所述第一时间传送第一体积的第一试剂溶液、在所述第二时间传送所述样品溶液和在所述第二时间后传送第二体积的第一试剂溶液各自通过所述外壳内的流体泵执行。
40.根据权利要求36所述的方法,其中所述封闭剂包括牛血清白蛋白,并且所述洗涤缓冲液包括洗涤剂。
41.根据权利要求40所述的方法,其中所述第一试剂溶液包括0.02%-5%的牛血清白蛋白和0.05%-10%的洗涤剂。
42.根据权利要求34所述的方法,所述方法进一步包括:
在所述第二时间之前将输入样品传送至所述分子诊断测试装置内的扩增模块,所述扩增模块限定反应容积;以及
加热所述反应容积内的所述输入样品以扩增所述输入样品内的所述核酸,从而产生包含所述靶扩增子的所述样品溶液。
43.一种使用分子诊断测试装置检测核酸的方法,所述方法包括:
通过输入开口将生物样品传送到所述分子诊断测试装置内的样品制备模块中;
使所述分子诊断测试装置致动从而使所述分子诊断测试装置:
A)将第一体积的试剂溶液从所述分子诊断测试装置内的试剂模块传送到所述分子诊断测试装置内的检测模块,所述检测模块包括被配置成俘获与所述核酸相关的靶扩增子的检测表面,所述试剂溶液包括封闭剂和洗涤缓冲液,所述封闭剂被配制成吸附到所述检测模块内的表面;
B)将所述第一体积的所述试剂溶液从所述检测模块传送回所述试剂模块;
C)从所述生物样品产生包含与所述核酸相关的所述靶扩增子的输出溶液;
D)将所述输出溶液传送到所述检测模块中使得所述靶扩增子被俘获在所述检测表面上;以及
E)将第二体积的所述试剂溶液从所述试剂模块传送到所述检测模块中从而将来自所述输出溶液的未结合成分从所述检测模块移除;以及
读出与在所述检测表面上俘获的所述靶扩增子相关的结果。
44.根据权利要求43所述的方法,其中所述分子检测装置是一次性使用装置,所述方法进一步包括:
在所述读出后丢弃所述分子测试装置。
45.根据权利要求43所述的方法,其中使所述分子诊断测试装置致动仅通过单一动作执行。
46.根据权利要求45所述的方法,其中所述单一动作是闭合所述分子诊断测试装置的盖子从而将所述生物样品保留在所述样品制备模块中。
47.根据权利要求43所述的方法,其中:
所述试剂模块包括试剂容器和限定试剂储库的试剂外壳,在所述致动前所述试剂溶液被密封在所述试剂容器内;以及
使分子诊断测试装置致动进一步使所述分子诊断测试装置在所述第一体积的所述试剂溶液被传送到所述检测模块之前将所述试剂溶液释放到所述试剂储库中。
48.一种使用一次性分子诊断测试装置检测靶RNA分子的方法,所述方法包括:
将输入样品传送到所述一次性分子诊断测试装置的外壳内的逆转录模块;
加热所述逆转录模块内的所述输入样品以产生与所述靶RNA分子相关的靶DNA分子;
将所述输入样品从所述逆转录模块传送到所述外壳内的扩增模块,所述扩增模块限定反应容积并包括加热器;
通过所述加热器加热在所述反应容积的至少一部分内的所述输入样品以扩增所述输入样品内的所述靶DNA分子,从而产生包含靶扩增子的输出溶液;以及
将下述中的每一个传送到检测模块中:A)所述输出溶液和B)被配制成产生指示所述输出溶液内所述靶扩增子的存在的信号的试剂,所述检测模块包括被配置成保留所述靶扩增子以产生所述信号的检测表面,
当所述输入样品的病毒载量大于10个拷贝/毫升时,所述一次性分子诊断测试装置产生所述信号。
49.根据权利要求48所述的方法,其中所述输入样品是血浆样品,所述方法进一步包括:
分离血液样品以产生包含所述靶RNA分子的所述血浆样品。
50.根据权利要求49所述的方法,其中所述分离在所述一次性分子诊断测试装置的所述外壳内执行。
51.根据权利要求48所述的方法,其中所述分离在所述一次性分子诊断测试装置的所述外壳外面执行,所述方法进一步包括:
在所述分离后,将所述血浆样品传送到所述一次性分子诊断测试装置的样品制备模块中。
52.根据权利要求48所述的方法,所述方法进一步包括:
在所述读出后丢弃所述一次性分子测试装置。
53.根据权利要求48所述的方法,其中:
所述信号是可见信号;以及
所述检测模块包括吸收剂构件,所述吸收剂构件被配置成接纳由所述扩增模块产生的所述输出溶液并产生所述可见信号。
54.一种设备,所述设备包括:
外壳;
在所述外壳内的样品制备模块,所述样品制备模块限定被配置成接纳血液样品的输入储库,所述样品制备模块被配置成从所述血液样品分离血浆样品,所述血浆样品包含靶RNA分子;
在所述外壳内的逆转录模块,所述逆转录模块被配置成加热所述血浆样品以产生与所述靶RNA分子相关的靶cDNA分子,从而产生扩增溶液;和
布置在所述外壳内的扩增模块,所述扩增模块包括流动构件和加热器,所述流动构件限定被配置成接纳所述扩增溶液的反应容积,所述加热器被配置成将热能传送到所述反应容积中以扩增所述扩增溶液内的所述靶cDNA分子,从而产生包含靶扩增子的输出溶液。
55.根据权利要求54所述的设备,其中所述样品制备模块包括疏水血浆分离器。
56.根据权利要求54所述的设备,其中所述样品制备模块包括被配置成分离所述血浆样品的旋流过滤器。
57.一种使用一次性分子诊断测试装置检测靶RNA分子的方法,所述方法包括:
将生物样品传送到所述一次性分子诊断测试装置内的样品制备模块中;以及
使所述一次性分子诊断测试装置致动从而使所述一次性分子诊断测试装置:
加热在所述样品制备模块的逆转录部分内的所述生物样品以产生与所述靶RNA分子相关的靶DNA分子,从而产生扩增样品;
将所述靶cDNA和与所述靶cDNA分子的多个靶序列相关的引物组合物混合;
将所述扩增样品传送到扩增模块,所述扩增模块在所述一次性分子诊断测试装置的外壳内;
加热所述扩增模块内的所述扩增样品以扩增所述扩增样品内所述靶cDNA分子的所述多个靶序列,从而产生包含多个靶扩增子的输出溶液;以及
将下述中的每一个传送到所述一次性分子诊断测试装置内的检测模块中:A)所述输出溶液和B)被配制成产生指示所述输出溶液内所述靶扩增子的存在的信号的试剂,所述检测模块包括被配置成将所述多个靶扩增子保留在单一区域内以产生所述信号的检测表面;以及
读出来自所述检测表面的所述信号。
58.根据权利要求57所述的方法,其中所述检测表面的所述单一区域包括第一多个俘获探针和第二多个俘获探针,当所述输出溶液被传送到所述检测模块中时,所述第一多个俘获探针与所述靶扩增子的第一靶序列结合,所述第二多个俘获探针与所述靶扩增子的第二靶序列结合。
59.根据权利要求57所述的方法,其中所述第一多个俘获探针包括单链核酸、抗体或结合蛋白中的任一种。
60.根据权利要求57所述的方法,其中所述检测表面限定检测通道的至少一部分边界,所述检测溶液、所述第一试剂和所述第二试剂通过所述检测通道传送。
61.根据权利要求60所述的方法,其中所述检测模块包括与所述检测表面相对的透明罩,所述检测通道在所述罩和所述检测表面之间的深度为约0.125mm-约0.750mm。
62.根据权利要求61所述的方法,其中所述检测通道的宽度为约2mm-约5mm。
63.根据权利要求62所述的方法,其中所述检测溶液的体积为至少10微升。
64.一种设备,所述设备包括:
分子诊断装置的外壳;和
布置在所述外壳内的试剂模块,所述试剂模块包括试剂外壳、包含密封在其中的试剂的试剂容器、刺孔器和可变形支撑构件,所述试剂外壳限定试剂储库,当所述刺孔器刺破所述试剂容器的一部分时所述试剂从所述试剂容器释放到所述试剂储库,
所述可变形支撑构件包括密封部和连接部,所述密封部连接到所述试剂外壳以流体隔离所述试剂储库,所述连接部连接到所述刺孔器或所述试剂容器中的至少一个,
所述可变形支撑构件被配置成响应于对所述可变形支撑构件施加的致动力从第一构型变形至第二构型,当所述可变形支撑构件处于所述第一构型时,所述可变形支撑构件保持所述刺孔器与所述试剂容器的所述部分相隔开,当所述可变形支撑构件处于所述第二构型时,所述刺孔器刺破所述试剂容器的所述部分。
65.根据权利要求64所述的设备,其中所述可变形支撑构件朝向所述第一构型偏置。
66.根据权利要求65所述的设备,其中所述可变形支撑构件对所述刺孔器或所述试剂容器中的至少一个施加偏置力,所述偏置力足以将所述刺孔器或所述试剂容器中的所述至少一个支撑在保持所述刺孔器与所述试剂容器的所述部分相隔开的位置处。
67.根据权利要求66所述的设备,其中:
所述刺孔器连接在所述试剂储库内;
所述试剂容器可移动地布置在所述试剂储库内;以及
所述可变形支撑构件连接到所述试剂容器,使得当所述可变形支撑构件从所述第一构型转变成所述第二构型时,所述试剂容器从所述试剂储库内的第一容器位置移动到第二容器位置。
68.根据权利要求66所述的设备,其中:
所述刺孔器可移动地布置在所述试剂储库内;以及
所述可变形支撑构件连接到所述刺孔器,使得当所述可变形支撑构件从所述第一构型转变成所述第二构型时,所述刺孔器从第一刺孔器位置移动到第二刺孔器并与所述试剂容器的所述部分接触。
69.根据权利要求64所述的设备,所述设备进一步包括:
所述外壳内的检测模块,所述检测模块包括被配置成俘获来自生物样品的靶分子的检测表面,所述检测模块与所述试剂模块流体连通,使得响应于被传送到所述检测模块中的所述试剂而产生指示所述靶分子存在的信号。
70.根据权利要求69所述的设备,所述设备进一步包括:
在所述外壳内的样品制备模块,所述样品制备模块限定接纳所述生物样品的样品输入容积和输入开口,通过所述输入开口能够进入所述样品输入容积,所述样品制备模块包括被配置成加热所述生物样品以产生输入溶液的加热器;以及
可移动地连接所述外壳的盖子,所述盖子包括密封部和试剂致动器,所述盖子被配置成相对于所述外壳在第一盖子位置和第二盖子位置之间移动,当所述盖子处于所述第一盖子位置时所述输入开口暴露,当所述盖子处于所述第二盖子位置时所述盖子的所述密封部遮盖所述输入开口,所述试剂致动器被配置成当所述盖子从所述第一盖子位置移动到所述第二盖子位置时导致所述可变形支撑构件从所述第一构型变形为所述第二构型。
71.根据权利要求69所述的设备,其中所述试剂是第一试剂或第二试剂之一,所述第一试剂被配制成响应于所述第一试剂被传送到所述检测模块中而与所述靶分子结合,所述第二试剂被配制成当被所述第一试剂催化时产生所述信号。
72.根据权利要求70所述的设备,其中所述第二试剂是被配制成当所述第二试剂与所述第一试剂接触时产生不溶性有色颗粒的沉淀底物。
73.根据权利要求69所述的设备,其中:
所述试剂容器是第一试剂容器;
所述刺孔器是第一刺孔器;
所述试剂是第一试剂,所述第一试剂是催化试剂或沉淀试剂之一,所述催化试剂被配置成响应于所述第一试剂被传送到所述检测模块中而与所述靶分子结合,所述沉淀试剂被配制成当被所述催化试剂催化时产生所述信号;
所述试剂模块包括第二试剂容器,所述第二试剂容器包含溶液,所述溶液包括洗涤缓冲液和封闭缓冲液,所述封闭缓冲液被配制成减少所述检测模块内所述靶扩增子远离所述检测表面的附着;以及
所述可变形支撑构件的所述连接部连接到第二刺孔器或所述第二试剂容器中的至少一个,当所述可变形支撑构件处于所述第一构型时,所述可变形支撑构件保持所述第二刺孔器远离所述第二试剂容器,当所述可变形支撑构件处于所述第二构型时,所述第二刺孔器刺破所述第二试剂容器。
74.一种检测核酸的方法,所述方法包括:
在样品制备模块内混合逆转录酶与生物样品以形成逆转录溶液,所述逆转录溶液不含核糖核酸酶抑制剂;
在所述样品制备模块的反应容积内将所述逆转录溶液加热至裂解温度范围内的第一温度以释放核糖核酸(RNA)分子;
在所述样品制备模块的所述反应容积内将所述逆转录溶液加热至逆转录温度范围内的第二温度以产生互补脱氧核糖核酸(cDNA)分子,所述加热至第一温度和所述加热至第二温度连续地进行,使得在释放所述RNA分子的少于1分钟内产生所述cDNA;以及
将所述逆转录溶液传送到扩增模块。
75.根据权利要求74所述的方法,其中所述加热至第一温度和所述加热至第二温度连续地进行,使得在释放所述RNA分子的少于30秒内产生所述cDNA。
76.根据权利要求74所述的方法,其中:
所述样品制备模块包括限定流路的流动构件和与所述流动构件连接的加热器;以及
所述加热至第一温度和所述加热至第二温度通过启动所述加热器并经由所述流路传送所述逆转录溶液来进行。
77.根据权利要求76所述的方法,其中所述流路是蛇形流路。
78.根据权利要求74所述的方法,其中:
所述生物样品包括MS2噬菌体;
所述第二温度为约50摄氏度-约65摄氏度;以及
所述加热至第一温度从所述MS2噬菌体释放所述核糖核酸(RNA)分子。
79.根据权利要求74所述的方法,其中:
所述生物样品包括甲型流感病毒;
所述第二温度为约50摄氏度-约65摄氏度;以及
所述加热至第一温度从所述甲型流感病毒释放所述核糖核酸(RNA)分子。
80.根据权利要求74所述的方法,其中:
所述生物样品包括汉坦病毒;
所述第二温度为约50摄氏度-约65摄氏度;以及
所述加热至第一温度从所述汉坦病毒释放所述核糖核酸(RNA)分子。
CN201880072796.8A 2017-11-09 2018-11-09 便携式分子诊断装置和检测靶病毒的方法 Pending CN111655866A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762583789P 2017-11-09 2017-11-09
US62/583,789 2017-11-09
US201762594905P 2017-12-05 2017-12-05
US62/594,905 2017-12-05
PCT/US2018/060117 WO2019094784A1 (en) 2017-11-09 2018-11-09 Portable molecular diagnostic device and methods for the detection of target viruses

Publications (1)

Publication Number Publication Date
CN111655866A true CN111655866A (zh) 2020-09-11

Family

ID=66438684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880072796.8A Pending CN111655866A (zh) 2017-11-09 2018-11-09 便携式分子诊断装置和检测靶病毒的方法

Country Status (10)

Country Link
US (2) US11162130B2 (zh)
EP (1) EP3707276A4 (zh)
JP (1) JP7239568B2 (zh)
KR (1) KR20200079264A (zh)
CN (1) CN111655866A (zh)
AU (2) AU2018364741B2 (zh)
CA (1) CA3078976A1 (zh)
MX (1) MX2020004783A (zh)
SG (1) SG11202002931VA (zh)
WO (1) WO2019094784A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112625890A (zh) * 2020-12-23 2021-04-09 广州和实生物技术有限公司 一种核酸poct检测装置及其检测方法
CN112662815A (zh) * 2021-01-25 2021-04-16 中国疾病预防控制中心病毒病预防控制所 用于检测塔卡里伯病毒和太米阿米病毒的引物探针组合、试剂盒及方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10195610B2 (en) 2014-03-10 2019-02-05 Click Diagnostics, Inc. Cartridge-based thermocycler
CA2972587A1 (en) 2014-12-31 2016-07-07 Click Diagnostics, Inc. Devices and methods for molecular diagnostic testing
US10987674B2 (en) 2016-04-22 2021-04-27 Visby Medical, Inc. Printed circuit board heater for an amplification module
WO2017197040A1 (en) 2016-05-11 2017-11-16 Click Diagnostics, Inc. Devices and methods for nucleic acid extraction
WO2018005710A1 (en) 2016-06-29 2018-01-04 Click Diagnostics, Inc. Devices and methods for the detection of molecules using a flow cell
JP7239568B2 (ja) 2017-11-09 2023-03-14 ビスビュー メディカル,インコーポレイテッド 携帯型分子診断デバイスおよび標的ウイルスの検出方法
AU2020394370A1 (en) * 2019-11-27 2022-06-23 Juno Diagnostics, Inc. Systems and devices for sample preparation and analyte detection
IL294294A (en) * 2019-12-30 2022-08-01 Illumina Inc flow cell assemblies and associated reagent selector valves
WO2021138544A1 (en) 2020-01-03 2021-07-08 Visby Medical, Inc. Devices and methods for antibiotic susceptibility testing
US20230105360A1 (en) * 2020-03-09 2023-04-06 Nuclein, Llc Apparatus and methods for molecular diagnostics
US20240218466A1 (en) * 2020-03-23 2024-07-04 Visby Medical, Inc. Devices and methods for detection of target viruses
WO2022018741A1 (en) * 2020-07-23 2022-01-27 Indian Institute Of Technology, Kharagpur A point of care (poc) device for nucleic acid based testing and method thereof
KR102555474B1 (ko) * 2021-05-14 2023-07-14 성균관대학교산학협력단 등온 핵산 증폭 및 검출 장치 및 이를 이용한 등온 핵산 증폭 및 검출 방법
TWI785636B (zh) 2021-06-07 2022-12-01 新加坡商克雷多生醫有限公司 檢測卡匣
WO2023018896A1 (en) * 2021-08-13 2023-02-16 Visby Medical, Inc. Molecular diagnostic devices and methods for retaining and mixing reagents
WO2023235875A1 (en) * 2022-06-03 2023-12-07 Autonomous Medical Devices Incorporated Methods for sample preparation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898374A (zh) * 2003-10-24 2007-01-17 埃格尼股份有限公司 集成的生物-分析和样品制备系统
CN101802164A (zh) * 2007-07-13 2010-08-11 汉迪实验室公司 用于在多个生物样品上进行核酸提取和诊断测试的集成装置
US20110312666A1 (en) * 2010-06-17 2011-12-22 Geneasys Pty Ltd Microfluidic device with triggered photodetection of fluorescing probe-target hybrid
CN103649333A (zh) * 2011-04-20 2014-03-19 梅撒技术国际公司 用于核酸检测和鉴定的集成装置
CN103789198A (zh) * 2014-02-27 2014-05-14 苏州天隆生物科技有限公司 全自动核酸提取仪
CN104023834A (zh) * 2011-05-04 2014-09-03 卢米耐克斯公司 用于集成的样品制备、反应和检测的设备与方法
CN105349530A (zh) * 2015-12-11 2016-02-24 杭州优思达生物技术有限公司 一种新型的核酸检测方法及检测管
US20160186240A1 (en) * 2014-12-31 2016-06-30 Click Diagnostics Devices and methods for molecular diagnostic testing
WO2017090043A1 (en) * 2015-11-26 2017-06-01 Novamed Ltd. Assay device
US20170173585A1 (en) * 2014-07-11 2017-06-22 Advanced Theranostics Inc. Point of care polymerase chain reaction device for disease detection

Family Cites Families (304)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697227A (en) 1966-05-13 1972-10-10 Westinghouse Electric Corp Chemical constituent sampler
US4710355A (en) 1984-06-14 1987-12-01 Olympus Optical Co., Ltd. Reagent delivery device
US4889692A (en) 1984-11-05 1989-12-26 Holtzman Marc E Disposable sample preparation container
USRE33858E (en) 1985-01-25 1992-03-24 Mallinckrodt Sensor Systems Inc. Apparatus for measuring a chemical entity in a liquid
US4789630A (en) 1985-10-04 1988-12-06 Cetus Corporation Ionic compounds containing the cationic meriquinone of a benzidine
IE64511B1 (en) 1988-03-11 1995-08-09 Takeda Chemical Industries Ltd Automated synthesizing apparatus
US6645758B1 (en) 1989-02-03 2003-11-11 Johnson & Johnson Clinical Diagnostics, Inc. Containment cuvette for PCR and method of use
US5229297A (en) 1989-02-03 1993-07-20 Eastman Kodak Company Containment cuvette for PCR and method of use
US5270183A (en) 1991-02-08 1993-12-14 Beckman Research Institute Of The City Of Hope Device and method for the automated cycling of solutions between two or more temperatures
US5273905A (en) 1991-02-22 1993-12-28 Amoco Corporation Processing of slide mounted material
US7297313B1 (en) 1991-08-31 2007-11-20 The Regents Of The University Of California Microfabricated reactor, process for manufacturing the reactor, and method of amplification
US5726026A (en) 1992-05-01 1998-03-10 Trustees Of The University Of Pennsylvania Mesoscale sample preparation device and systems for determination and processing of analytes
US5587128A (en) 1992-05-01 1996-12-24 The Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification devices
US5498392A (en) 1992-05-01 1996-03-12 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification device and method
EP0653965B1 (en) 1992-07-06 1996-05-15 Beckman Instruments, Inc. Fluid delivery system uitlizing multiple port valve
US5503985A (en) 1993-02-18 1996-04-02 Cathey; Cheryl A. Disposable device for diagnostic assays
US5429807A (en) 1993-10-28 1995-07-04 Beckman Instruments, Inc. Method and apparatus for creating biopolymer arrays on a solid support surface
US5631165A (en) 1994-08-01 1997-05-20 Abbott Laboratories Method for performing automated hematology and cytometry analysis
US5633168A (en) 1995-06-07 1997-05-27 Glasscock; Larry M. Controlled dispersion flow analysis system
US20050100946A1 (en) 1995-06-29 2005-05-12 Affymetrix, Inc. Integrated nucleic acid diagnostic device and method for in-situ confocal microscopy
US5856174A (en) 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US6153425A (en) 1995-07-13 2000-11-28 Xtrana, Inc. Self-contained device integrating nucleic acid extraction, amplification and detection
US5773234A (en) 1995-08-07 1998-06-30 Quidel Corporation Method and device for chlamydia detection
US7635597B2 (en) 1995-08-09 2009-12-22 Bayer Healthcare Llc Dry reagent particle assay and device having multiple test zones and method therefor
WO1997006439A1 (en) 1995-08-09 1997-02-20 Quidel Corporation Test strip and method for one step lateral flow assay
US7244622B2 (en) 1996-04-03 2007-07-17 Applera Corporation Device and method for multiple analyte detection
ATE295427T1 (de) 1996-06-04 2005-05-15 Univ Utah Res Found Überwachung der hybridisierung während pcr
US5800784A (en) 1996-07-09 1998-09-01 Horn; Marcus J. Chemical sample treatment system and cassette, and methods for effecting multistep treatment process
US5882903A (en) 1996-11-01 1999-03-16 Sarnoff Corporation Assay system and method for conducting assays
DE29623597U1 (de) 1996-11-08 1999-01-07 Eppendorf - Netheler - Hinz Gmbh, 22339 Hamburg Temperierblock mit Temperiereinrichtungen
US5952664A (en) 1997-01-17 1999-09-14 Imaging Diagnostic Systems, Inc. Laser imaging apparatus using biomedical markers that bind to cancer cells
US6924153B1 (en) 1997-03-06 2005-08-02 Quidel Corporation Quantitative lateral flow assays and devices
US20030027203A1 (en) 1997-03-24 2003-02-06 Fields Robert E. Biomolecular processor
US6126804A (en) 1997-09-23 2000-10-03 The Regents Of The University Of California Integrated polymerase chain reaction/electrophoresis instrument
EP1042061A1 (en) 1997-12-24 2000-10-11 Cepheid Integrated fluid manipulation cartridge
US6369893B1 (en) 1998-05-19 2002-04-09 Cepheid Multi-channel optical detection system
US6303081B1 (en) 1998-03-30 2001-10-16 Orasure Technologies, Inc. Device for collection and assay of oral fluids
US6146591A (en) 1998-05-01 2000-11-14 Miller; C David Biochemical detection system for rapid determination of the presence of toxins, bacteria, and other substances
US5976470A (en) 1998-05-29 1999-11-02 Ontogen Corporation Sample wash station assembly
US6780617B2 (en) 2000-12-29 2004-08-24 Chen & Chen, Llc Sample processing device and method
US7799521B2 (en) 1998-06-24 2010-09-21 Chen & Chen, Llc Thermal cycling
US6313471B1 (en) 1998-08-18 2001-11-06 Molecular Devices Corporation Scanning fluorometer
US20010055799A1 (en) 1998-12-15 2001-12-27 David Baunoch Method and apparatus for automated reprocessing of tissue samples
US6261431B1 (en) 1998-12-28 2001-07-17 Affymetrix, Inc. Process for microfabrication of an integrated PCR-CE device and products produced by the same
US6235479B1 (en) 1999-04-13 2001-05-22 Bio Merieux, Inc. Methods and devices for performing analysis of a nucleic acid sample
US20020177135A1 (en) 1999-07-27 2002-11-28 Doung Hau H. Devices and methods for biochip multiplexing
CA2374423C (en) 1999-05-28 2013-04-09 Cepheid Apparatus and method for analyzing a liquid sample
GB9922971D0 (en) 1999-09-29 1999-12-01 Secr Defence Reaction system
JP2001186881A (ja) 1999-10-22 2001-07-10 Ngk Insulators Ltd Dnaチップの製造方法
US6699713B2 (en) 2000-01-04 2004-03-02 The Regents Of The University Of California Polymerase chain reaction system
FR2812306B1 (fr) 2000-07-28 2005-01-14 Gabriel Festoc Systeme d'amplification en chaine par polymerse de sequences nucleiques cibles
US6374684B1 (en) 2000-08-25 2002-04-23 Cepheid Fluid control and processing system
US8048386B2 (en) 2002-02-25 2011-11-01 Cepheid Fluid processing and control
US6610499B1 (en) 2000-08-31 2003-08-26 The Regents Of The University Of California Capillary array and related methods
US6911181B1 (en) 2000-10-03 2005-06-28 Isis Pharmaceuticals, Inc. Self-dispensing storage device
SE0004297D0 (sv) 2000-11-23 2000-11-23 Gyros Ab Device for thermal cycling
US6780380B2 (en) 2001-01-16 2004-08-24 Triangle Biomedical Sciences, Inc. Tissue processor
AU2002306486A1 (en) 2001-02-09 2002-08-28 Microchem Solutions Method and apparatus for sample injection in microfabricated devices
US6426215B1 (en) 2001-04-06 2002-07-30 Pe Corporation (Ny) PCR plate cover and maintaining device
US6905885B2 (en) 2001-06-12 2005-06-14 The Regents Of The University Of California Portable pathogen detection system
US20040018502A1 (en) 2001-06-14 2004-01-29 Yoshihiko Makino Method for analyzing a target nucleic acid fragment and a kit for analyzing a target nucleic acid fragment
US6514750B2 (en) 2001-07-03 2003-02-04 Pe Corporation (Ny) PCR sample handling device
JP4679818B2 (ja) 2001-07-16 2011-05-11 アイダホ テクノロジー インコーポレーテッド 熱サイクルシステム及びその使用方法
US7280207B2 (en) 2001-07-25 2007-10-09 Applera Corporation Time-delay integration in a flow cytometry system
AUPR707101A0 (en) 2001-08-16 2001-09-06 Corbett Research Pty Ltd Continuous flow thermal device
US6855561B2 (en) 2001-09-10 2005-02-15 Quidel Corporation Method for adding an apparent non-signal line to a lateral flow assay
US7879293B2 (en) 2001-09-28 2011-02-01 Orasure Technologies, Inc. Sample collector and test device
CA2462332C (en) 2001-10-01 2014-12-09 Vision Biosystems Limited Histological tissue specimen treatment
WO2003029397A1 (en) 2001-10-02 2003-04-10 Stratagene Side-wall heater for thermocycler device
US7691333B2 (en) 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
US20030116552A1 (en) 2001-12-20 2003-06-26 Stmicroelectronics Inc. Heating element for microfluidic and micromechanical applications
US6813568B2 (en) 2002-01-09 2004-11-02 Memorial Sloan-Kettering Cancer Center System and process for microfluidics-based automated chemistry
US6677151B2 (en) 2002-01-30 2004-01-13 Applera Corporation Device and method for thermal cycling
US8030000B2 (en) 2002-02-21 2011-10-04 Alere San Diego, Inc. Recombinase polymerase amplification
JP3892743B2 (ja) 2002-03-01 2007-03-14 日本碍子株式会社 反応セルおよびその使用方法
US7179639B2 (en) 2002-03-05 2007-02-20 Raveendran Pottathil Thermal strip thermocycler
EP1376131A1 (en) 2002-06-27 2004-01-02 Inverness Medical Switzerland GmbH Assay device for liquid sample
JP4013671B2 (ja) 2002-07-05 2007-11-28 松下電器産業株式会社 ポリメラーゼ連鎖反応容器及びその製造方法
US7452712B2 (en) 2002-07-30 2008-11-18 Applied Biosystems Inc. Sample block apparatus and method of maintaining a microcard on a sample block
US7291459B2 (en) 2002-12-10 2007-11-06 University Of Alabama At Huntsville Nucleic acid detector and method of detecting targets within a sample
US7560272B2 (en) 2003-01-04 2009-07-14 Inverness Medical Switzerland Gmbh Specimen collection and assay container
JP2006520190A (ja) 2003-01-21 2006-09-07 マイクロニクス, インコーポレイテッド 流体の微小流体的な操作、増幅、および分析(例えば、細菌アッセイおよびアンチグロブリン試験)のための方法およびシステム
US6901217B2 (en) 2003-02-28 2005-05-31 Motorolr, Inc. Conduits integrated in circuit board and method of manufacture
US6781056B1 (en) 2003-02-28 2004-08-24 Motorola, Inc. Heater for temperature control integrated in circuit board and method of manufacture
US7041481B2 (en) 2003-03-14 2006-05-09 The Regents Of The University Of California Chemical amplification based on fluid partitioning
US7151270B2 (en) 2003-05-02 2006-12-19 Leica Microsystems Cms Gmbh Method for classifying object image regions of an object to be detected using a scanning microscope
US7148043B2 (en) 2003-05-08 2006-12-12 Bio-Rad Laboratories, Inc. Systems and methods for fluorescence detection with a movable detection module
US7648835B2 (en) 2003-06-06 2010-01-19 Micronics, Inc. System and method for heating, cooling and heat cycling on microfluidic device
CA2956645A1 (en) 2003-07-12 2005-03-31 David A. Goldberg Sensitive and rapid biodetection
US7517495B2 (en) 2003-08-25 2009-04-14 Inverness Medical Switzerland Gmbh Biological specimen collection and analysis system
US7491527B2 (en) 2003-09-19 2009-02-17 Microfluidic Systems, Inc. Microfluidic differential extraction cartridge
JP4933258B2 (ja) 2003-09-22 2012-05-16 クイデル コーポレーション 試料中の複数分析物の検出装置
NZ547175A (en) 2003-11-14 2009-11-27 Oakville Hong Kong Co Ltd Sample collection cup with integrated sample analysis system
EP1687608A4 (en) 2003-11-14 2013-01-09 Alere Switzerland Gmbh DEVICE FOR QUICKLY SAMPLE SAMPLING AND ANALYSIS AND METHODS OF USE
US7550112B2 (en) 2003-11-14 2009-06-23 Oakville Hong Kong Company Limited Sample collection cup with integrated activatable sample analysis system
US7767439B2 (en) 2003-12-10 2010-08-03 Samsung Electronics Co., Ltd. Real-time PCR monitoring apparatus and method
KR100750586B1 (ko) 2003-12-26 2007-08-20 한국전자통신연구원 미소유체 가열 시스템
CN1942590B (zh) 2004-02-18 2012-09-05 周小川 多元化学和生化反应的流体装置和方法
EP1716404A4 (en) 2004-02-20 2010-05-05 Univ New York State Res Found METHOD AND DEVICE FOR HANDLING LIQUIDS IN MICROFLUIDIC SYSTEMS
KR100552706B1 (ko) 2004-03-12 2006-02-20 삼성전자주식회사 핵산 증폭 방법 및 장치
US7632687B2 (en) 2004-03-23 2009-12-15 Quidel Corporation Hybrid phase lateral flow assay
US20050227275A1 (en) 2004-04-07 2005-10-13 Access Bio, Inc. Nucleic acid detection system
CA2502549C (en) 2004-04-23 2016-02-16 Becton, Dickinson And Company Use of an extraction control in a method of extracting nucleic acids
EP1598429A1 (en) 2004-05-19 2005-11-23 Amplion Ltd. Detection of amplicon contamination during PCR exhibiting two different annealing temperatures
US7662562B2 (en) 2004-08-10 2010-02-16 Becton, Dickinson And Company Method for rapid identification of microorganisms
US7192721B1 (en) 2004-08-26 2007-03-20 Chembio Diagnostic Systems, Inc. Universal rapid test and method for detection of tuberculosis in multiple host species
US7592139B2 (en) 2004-09-24 2009-09-22 Sandia National Laboratories High temperature flow-through device for rapid solubilization and analysis
KR101347951B1 (ko) 2004-10-18 2014-01-07 브랜데이스 유니버시티 핵산 증폭을 위한 프라이머, 프로브 및 방법
EP1805318B1 (en) 2004-10-27 2014-09-03 Cepheid Closed-system multi-stage nucleic acid amplification reactions
JP5165383B2 (ja) 2004-12-23 2013-03-21 アイ−スタツト・コーポレイシヨン 分子診断システム及び方法
KR100601982B1 (ko) 2005-01-20 2006-07-18 삼성전자주식회사 흡열반응을 통한 가열-냉각 과정에 의한 세포 용해 방법
PL1859330T3 (pl) 2005-01-28 2013-01-31 Univ Duke Urządzenia i sposoby manipulacji kropelkami na płytkach obwodów drukowanych
WO2006094149A2 (en) 2005-03-01 2006-09-08 Exact Sciences Corporation Methods and compositions for detecting adenoma
US7189522B2 (en) 2005-03-11 2007-03-13 Chembio Diagnostic Systems, Inc. Dual path immunoassay device
US20060246493A1 (en) 2005-04-04 2006-11-02 Caliper Life Sciences, Inc. Method and apparatus for use in temperature controlled processing of microfluidic samples
US20070026391A1 (en) 2005-04-11 2007-02-01 Ghc Technologies, Inc. Methods and compositions for identifying chemical or biological agents using multiplexed labeling and colocalization detection
US7235216B2 (en) 2005-05-01 2007-06-26 Iba Molecular North America, Inc. Apparatus and method for producing radiopharmaceuticals
KR100695148B1 (ko) 2005-05-02 2007-03-14 삼성전자주식회사 중합효소 연쇄반응용 모듈 및 이를 채용한 다중 중합효소 연쇄반응 장치
US20070042427A1 (en) 2005-05-03 2007-02-22 Micronics, Inc. Microfluidic laminar flow detection strip
EP3714979A1 (en) 2005-05-09 2020-09-30 BioFire Diagnostics, LLC Self-contained biological analysis
WO2006124458A2 (en) 2005-05-11 2006-11-23 Nanolytics, Inc. Method and device for conducting biochemical or chemical reactions at multiple temperatures
WO2006122311A2 (en) 2005-05-11 2006-11-16 The Trustees Of The University Of Pennsylvania Microfluidic chip
US8377398B2 (en) 2005-05-31 2013-02-19 The Board Of Regents Of The University Of Texas System Methods and compositions related to determination and use of white blood cell counts
AU2006261953B2 (en) 2005-06-24 2012-02-23 Board Of Regents, The University Of Texas System Systems and methods including self-contained cartridges with detection systems and fluid delivery systems
TW200714898A (en) 2005-08-02 2007-04-16 3M Innovative Properties Co Apparatus and method for detecting an analyte
US7618588B2 (en) 2005-08-10 2009-11-17 Microfluidic Systems, Inc. Disposable integrated heater and tube assembly for thermally-driven chemical reactions
US7569382B2 (en) 2005-10-05 2009-08-04 Instantlabs Medical Diagnostic Corp. Disposable reactor module and detection system
US8916375B2 (en) 2005-10-12 2014-12-23 University Of Virginia Patent Foundation Integrated microfluidic analysis systems
US7754148B2 (en) 2006-12-27 2010-07-13 Progentech Limited Instrument for cassette for sample preparation
CN100478671C (zh) 2005-10-25 2009-04-15 艾康生物技术(杭州)有限公司 用于液体样本的检测装置和方法
US7858396B2 (en) 2005-10-31 2010-12-28 Orasure Technologies, Inc. Lateral flow assay device with multiple equidistant capture zones
NZ567812A (en) 2005-11-30 2011-04-29 Alere Switzerland Gmbh Detecting analytes using a device with a compressible absorbent member and a test element with reagents
US8173077B2 (en) 2005-12-16 2012-05-08 The Curators Of The University Of Missouri Reusable PCR amplification system and method
US7959877B2 (en) 2005-12-22 2011-06-14 Chembio Diagnostic Systems, Inc. Immunoassay apparatus and kit
US7377291B2 (en) 2005-12-28 2008-05-27 Serveron Corporation Multiport rotary valve
US8703445B2 (en) 2005-12-29 2014-04-22 Abbott Point Of Care Inc. Molecular diagnostics amplification system and methods
US7871568B2 (en) 2006-01-23 2011-01-18 Quidel Corporation Rapid test apparatus
US7794656B2 (en) 2006-01-23 2010-09-14 Quidel Corporation Device for handling and analysis of a biological sample
US20080050735A1 (en) 2006-02-01 2008-02-28 Elena Pushnova Nucleic acid testing method for point-of-care diagnostics and genetic self-monitoring
GB0603965D0 (en) 2006-02-28 2006-04-05 Centeo Biosciences Ltd Incubator apparatus and method
JP5254949B2 (ja) 2006-03-15 2013-08-07 マイクロニクス, インコーポレイテッド 一体型の核酸アッセイ
ES2587007T3 (es) 2006-03-24 2016-10-20 Handylab, Inc. Sistema integrado para procesar muestras microfluídicas, y métodos de uso del mismo
US8088616B2 (en) 2006-03-24 2012-01-03 Handylab, Inc. Heater unit for microfluidic diagnostic system
US7705339B2 (en) 2006-04-25 2010-04-27 University Of South Florida Portable reactor for real-time nucleic acid amplification and detection comprising a reaction chamber formed from a flexible printed circuit board
US8900828B2 (en) 2006-05-01 2014-12-02 Cepheid Methods and apparatus for sequential amplification reactions
US8232091B2 (en) 2006-05-17 2012-07-31 California Institute Of Technology Thermal cycling system
US8137626B2 (en) 2006-05-19 2012-03-20 California Institute Of Technology Fluorescence detector, filter device and related methods
US20080026451A1 (en) 2006-06-15 2008-01-31 Braman Jeffrey C System for isolating biomolecules from a sample
US20080153078A1 (en) 2006-06-15 2008-06-26 Braman Jeffrey C System for isolating biomolecules from a sample
EP2041573B1 (en) 2006-06-23 2019-09-04 PerkinElmer Health Sciences, Inc. Methods and devices for microfluidic point-of-care immunoassays
US7629124B2 (en) 2006-06-30 2009-12-08 Canon U.S. Life Sciences, Inc. Real-time PCR in micro-channels
US8187557B2 (en) 2006-07-13 2012-05-29 Cepheid Reagent reservoir system for analytical instruments
EP1878802A1 (en) 2006-07-14 2008-01-16 Roche Diagnostics GmbH Disposable device for analysing a liquid sample containing a nucleic acid with a nucleic acid amplification apparatus
US8980561B1 (en) 2006-08-22 2015-03-17 Los Alamos National Security, Llc. Nucleic acid detection system and method for detecting influenza
WO2008105814A2 (en) 2006-08-22 2008-09-04 Los Alamos National Security, Llc Miniturized lateral flow device for rapid and sensitive detection of proteins or nucleic acids
GB0617035D0 (en) 2006-08-30 2006-10-11 Inverness Medical Switzerland Fluidic indicator device
GB0718250D0 (en) 2007-08-29 2007-10-31 B G Res Ltd Improvements in and relating to reaction apparatus
US7985716B2 (en) 2006-09-22 2011-07-26 Uchicago Argonne, Llc Nucleic acid sample purification and enrichment with a thermo-affinity microfluidic sub-circuit
WO2008147382A1 (en) 2006-09-27 2008-12-04 Micronics, Inc. Integrated microfluidic assay devices and methods
EP3527671A1 (en) 2006-10-06 2019-08-21 Applied DNA Sciences Inc. System for a continuous rapid thermal cycle system
US8709787B2 (en) 2006-11-14 2014-04-29 Handylab, Inc. Microfluidic cartridge and method of using same
US8263392B2 (en) 2006-11-14 2012-09-11 University Of Utah Research Foundation Methods and compositions related to continuous flow thermal gradient PCR
US20080113391A1 (en) 2006-11-14 2008-05-15 Ian Gibbons Detection and quantification of analytes in bodily fluids
US8735103B2 (en) 2006-12-05 2014-05-27 Electronics And Telecommunications Research Institute Natural convection-driven PCR apparatus and method using disposable polymer chip
GB0625309D0 (en) 2006-12-19 2007-01-24 Inverness Medical Switzerland Device
US8338166B2 (en) 2007-01-04 2012-12-25 Lawrence Livermore National Security, Llc Sorting, amplification, detection, and identification of nucleic acid subsequences in a complex mixture
US7998757B2 (en) 2007-01-22 2011-08-16 Orasure Technologies, Inc. Container and method for supporting home testing and diagnosis of infectious diseases
US20110039303A1 (en) 2007-02-05 2011-02-17 Stevan Bogdan Jovanovich Microfluidic and nanofluidic devices, systems, and applications
US8298763B2 (en) 2007-03-02 2012-10-30 Lawrence Livermore National Security, Llc Automated high-throughput flow-through real-time diagnostic system
CA2984820C (en) 2007-04-04 2021-12-07 Ande Corporation Plastic microfluidic separation and detection platforms
JP4992524B2 (ja) 2007-04-13 2012-08-08 株式会社島津製作所 反応容器プレート及び反応処理方法
US8580575B2 (en) 2007-04-13 2013-11-12 Shimadzu Corporation Reactor plate and reaction processing method
US8435461B2 (en) 2007-04-20 2013-05-07 Quidel Corporation Analytical devices with integrated desiccant
KR101228308B1 (ko) 2007-05-23 2013-01-31 삼성전자주식회사 미세유동 칩을 이용한 디스크형 미세유동장치 및 생체물질마이크로어레이 칩을 이용한 디스크형 미세유동장치
GB0710957D0 (en) 2007-06-07 2007-07-18 Norchip As A device for carrying out cell lysis and nucleic acid extraction
AU2008269201B2 (en) 2007-06-21 2011-08-18 Gen-Probe Incorporated Instrument and receptacles for use in performing processes
JP5045268B2 (ja) 2007-06-28 2012-10-10 ソニー株式会社 反応処理装置
US8133671B2 (en) 2007-07-13 2012-03-13 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US8076129B2 (en) 2007-07-26 2011-12-13 Shimadzu Corporation Reactor plate and reaction processing method
WO2009018473A1 (en) 2007-07-31 2009-02-05 Micronics, Inc. Sanitary swab collection system, microfluidic assay device, and methods for diagnostic assays
US7955840B2 (en) 2007-08-23 2011-06-07 Akonni Biosystems Thermal cycler for PCR including temperature control bladder
WO2009049268A1 (en) 2007-10-12 2009-04-16 Rheonix, Inc. Integrated microfluidic device and methods
CL2008003008A1 (es) 2007-10-12 2009-10-02 Bigtec Private Ltd Un micro dispositivo portatil de reaccion en cadena de polimerasa (pcr) basado en un micro chip de ceramica de coccion conjunta de baja temperatura (ltcc) que comprende camara de reaccion, calentador, control de temperatura del calentador, deteccion optica de interfaz de comunicacion, y el metodo para monitorearlo y controlarlo.
US8222048B2 (en) 2007-11-05 2012-07-17 Abbott Laboratories Automated analyzer for clinical laboratory
US8075854B2 (en) 2007-11-08 2011-12-13 The Ohio State University Research Foundation Bioprocessing Innovative Company Microfluidic chips for rapid multiplex ELISA
DE102007062441A1 (de) 2007-12-20 2009-06-25 Aj Innuscreen Gmbh Mobiles Schnelltestsystem für die Nukleinsäureanalytik
WO2009117167A1 (en) 2008-01-02 2009-09-24 Blood Cell Storage, Inc. Devices and processes for nucleic acid extraction
KR101465701B1 (ko) 2008-01-22 2014-11-28 삼성전자 주식회사 핵산 증폭 장치
WO2009108260A2 (en) 2008-01-22 2009-09-03 Microchip Biotechnologies, Inc. Universal sample preparation system and use in an integrated analysis system
US20090186344A1 (en) 2008-01-23 2009-07-23 Caliper Life Sciences, Inc. Devices and methods for detecting and quantitating nucleic acids using size separation of amplicons
WO2009092564A2 (en) 2008-01-23 2009-07-30 Roche Diagnostics Gmbh Integrated instrument performing synthesis and amplification
US20090215050A1 (en) 2008-02-22 2009-08-27 Robert Delmar Jenison Systems and methods for point-of-care amplification and detection of polynucleotides
CN101538567B (zh) 2008-03-20 2012-09-19 杭州优思达生物技术有限公司 过滤式微量核酸临床样品快速处理方法
US20110160090A1 (en) 2008-05-05 2011-06-30 Los Alamos National Laboratory Nanocrystal-Based Lateral Flow Microarrays and Low-Voltage Signal Detection Systems
EP3067694A1 (en) 2008-05-05 2016-09-14 Los Alamos National Security, LLC Lateral flow-based nucleic acid sample preparation device, integrated with passive fluid flow control
WO2010011828A1 (en) 2008-07-23 2010-01-28 Ancora Pharmaceuticals Inc. Automated oligosaccharide synthesizer
EP2163620A1 (de) 2008-09-03 2010-03-17 Qiagen GmbH Verfahren zum Isolieren und Reinigen von Nukleinsäuren
US8408421B2 (en) 2008-09-16 2013-04-02 Tandem Diabetes Care, Inc. Flow regulating stopcocks and related methods
US9156010B2 (en) 2008-09-23 2015-10-13 Bio-Rad Laboratories, Inc. Droplet-based assay system
EP2331259B1 (en) 2008-09-23 2013-09-11 Koninklijke Philips Electronics N.V. Thermocycling process
EP2172703A1 (en) 2008-10-03 2010-04-07 J & H ApS Emergency light device for marine environments
US8058005B2 (en) 2008-10-23 2011-11-15 Honeywell International Inc. Method for single nucleotide polymorphism and mutation detection using real time polymerase chain reaction microarray
AU2009313556A1 (en) 2008-11-04 2010-05-14 Blood Cell Storage, Inc. Nucleic acid extraction on curved glass surfaces
US8110148B2 (en) 2008-11-06 2012-02-07 Siemens Medical Solutions Usa, Inc. Apparatus and method using rotary flow distribution mechanisms
JP5798487B2 (ja) 2008-11-20 2015-10-21 ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト−ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー Fretに基づく病原体の迅速診断
CN101556277B (zh) 2009-01-05 2012-12-26 艾博生物医药(杭州)有限公司 检测装置
US8058630B2 (en) 2009-01-16 2011-11-15 Fluidigm Corporation Microfluidic devices and methods
JP5715068B2 (ja) 2009-01-30 2015-05-07 マイクロニクス, インコーポレイテッド 携帯型高利得蛍光検出システム
CN102422143A (zh) 2009-03-10 2012-04-18 新加坡科技研究局 处理生物样品和/或化学样品的装置
EP2412020B1 (en) 2009-03-24 2020-09-30 University Of Chicago Slip chip device and methods
SG176669A1 (en) 2009-06-05 2012-01-30 Integenx Inc Universal sample preparation system and use in an integrated analysis system
WO2010141940A1 (en) 2009-06-05 2010-12-09 Alere San Diego, Inc. Recombinase polymerase amplification reagents and kits
US9625454B2 (en) * 2009-09-04 2017-04-18 The Research Foundation For The State University Of New York Rapid and continuous analyte processing in droplet microfluidic devices
US8008080B2 (en) 2009-09-23 2011-08-30 Ecolab Usa Inc. Valve analytical system
EE201000013A (et) 2010-01-29 2011-10-17 Selfdiagnostics O� Meetod ja kiirtesti seade sihtm„rk-molekuli proovimaterjalist detekteerimiseks
KR101882940B1 (ko) 2010-02-23 2018-07-30 루미넥스 코포레이션 일체화된 샘플 제조, 반응 및 검출을 위한 장치 및 방법
US8791675B2 (en) 2010-03-22 2014-07-29 Pine Valley Investments, Inc. Mobile wireless communications device including removable electrical power supply module and related methods
SG184539A1 (en) 2010-04-09 2012-11-29 Life Technologies Corp Improved thermal uniformity for thermal cycler instrumentation using dynamic control
US8435737B2 (en) 2010-06-02 2013-05-07 Cal Poly Corporation Primers for the rapid and specific detection of propane-oxidizing and butane-oxidizing microorganisms and methods of using same
US9725754B2 (en) 2010-07-29 2017-08-08 Sean F. Boyle Generic sample preparation
KR20120020528A (ko) 2010-08-30 2012-03-08 삼성전자주식회사 중합효소 연쇄반응 장치
EP2426201A1 (en) 2010-09-06 2012-03-07 Qiagen GmbH Method of isolating purified RNA with reduced DNA contaminations
US20130149710A1 (en) 2010-09-07 2013-06-13 The Arizona Board Of Regents On Behalf Of The University Of Arizona Microdroplet-manipulation systems and methods for automated execution of molecular biological protocols
CN103118784A (zh) 2010-09-22 2013-05-22 康宁股份有限公司 微孔微流体装置
US8795592B2 (en) 2010-09-23 2014-08-05 Analogic Corporation Sample thermal cycling
US8945843B2 (en) 2010-12-09 2015-02-03 Analogic Corporation Thermocooler with thermal breaks that thermally isolate a thermocycling region from at least one guard heat region
EP2668501B1 (en) 2011-01-27 2019-06-12 Invisible Sentinel, Inc. Analyte detection devices, multiplex and tabletop devices for detection of analytes, and uses thereof
US8603835B2 (en) 2011-02-10 2013-12-10 Chembio Diagnostic Systems, Inc. Reduced step dual path immunoassay device and method
WO2012121225A1 (ja) 2011-03-04 2012-09-13 株式会社カネカ 核酸の検出方法及びその方法に用いるデバイス、キット
EP2502674A1 (en) * 2011-03-22 2012-09-26 Koninklijke Philips Electronics N.V. Method for performing molecular reactions by using immiscible intermediate fluids
EP2689005A4 (en) 2011-03-23 2014-09-03 California Inst Of Techn SYSTEM FOR CARRYING OUT NUCLEIC ACID AMPLIFICATION FOR A POLYMERASE CHAIN REACTION
US9469871B2 (en) 2011-04-14 2016-10-18 Corporos Inc. Methods and apparatus for point-of-care nucleic acid amplification and detection
US8911941B2 (en) 2011-04-14 2014-12-16 Kenneth J. Michlitsch Methods and apparatus for point-of-care nucleic acid amplification and detection
US9447456B2 (en) 2011-04-25 2016-09-20 University Of Notre Dame Du Lac Systems and methods for bead-free detection of nucleotides
JP2012242118A (ja) 2011-05-16 2012-12-10 Canon Inc 流体デバイスを用いる熱処理装置、および流体の処理方法
WO2012159063A2 (en) 2011-05-19 2012-11-22 Blood Cell Strorage, Inc. Gravity flow fluidic device for nucleic acid extraction
US9435765B2 (en) 2011-07-22 2016-09-06 Tecan Trading Ag Cartridge and system for manipulating samples in liquid droplets
US20150258273A1 (en) 2011-08-31 2015-09-17 Forrest W. Payne Electrochemically-Actuated Microfluidic Devices
US9352312B2 (en) 2011-09-23 2016-05-31 Alere Switzerland Gmbh System and apparatus for reactions
US8894946B2 (en) 2011-10-21 2014-11-25 Integenx Inc. Sample preparation, processing and analysis systems
EP2773892B1 (en) 2011-11-04 2020-10-07 Handylab, Inc. Polynucleotide sample preparation device
CN108715890A (zh) 2011-11-11 2018-10-30 爱库倍特公司 用于进行扩增子挽救多重聚合酶链式反应(pcr)的系统和方法
WO2013077391A1 (ja) 2011-11-25 2013-05-30 凸版印刷株式会社 試料分析チップ並びに試料分析方法及び遺伝子解析方法
CN103184143A (zh) 2011-12-29 2013-07-03 三星电子株式会社 固体试剂溶解器件以及使用其溶解固体试剂的方法
WO2013112755A1 (en) 2012-01-24 2013-08-01 The Trustees Of Columbia University In The City Of New York Field optimized assay devices, methods, and systems
US9533308B2 (en) 2012-02-10 2017-01-03 California Institute Of Technology PC board-based polymerase chain reaction systems, methods and materials
US9322054B2 (en) 2012-02-22 2016-04-26 Lockheed Martin Corporation Microfluidic cartridge
US9035204B2 (en) 2012-02-29 2015-05-19 Reliance Controls Corporation Switch assembly with sequentially actuated power and neutral switching
WO2013131057A1 (en) 2012-03-01 2013-09-06 Quidel Corporation System and apparatus for point-of-care diagnostics
US10273532B2 (en) 2012-03-09 2019-04-30 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification method
US9238833B2 (en) 2012-04-17 2016-01-19 California Institute Of Technology Thermally controlled chamber with optical access for high-performance PCR
US9150907B2 (en) 2012-04-27 2015-10-06 General Electric Company Microfluidic flow cell assemblies and method of use
US9044729B2 (en) 2012-07-27 2015-06-02 International Park Of Creativity Methods and devices for electromagnetic amplification of nucleic acids
CA2879729A1 (en) 2012-08-07 2014-02-13 California Institute Of Technology Ultrafast thermal cycler
US9364833B2 (en) 2012-08-17 2016-06-14 Lexmark International, Inc. Micro-fluidic modules on a chip for diagnostic applications
ES2673315T3 (es) 2012-08-28 2018-06-21 Akonni Biosystems, Inc. Método y kit para purificar ácidos nucleicos
CN104737024B (zh) 2012-09-05 2018-01-09 塞弗德公司 流体分析系统中的通用对接站和数据门
CN104838264A (zh) 2012-09-11 2015-08-12 康奈尔大学 用于生物分子反应点收集测量的设备和方法
US9580679B2 (en) 2012-09-21 2017-02-28 California Institute Of Technology Methods and devices for sample lysis
WO2014085926A1 (en) 2012-12-03 2014-06-12 Vladimir Evtodienko Pressure assisted lateral flow diagnostic device
WO2014100725A1 (en) 2012-12-21 2014-06-26 Micronics, Inc. Portable fluorescence detection system and microassay cartridge
WO2014113770A1 (en) 2013-01-21 2014-07-24 Cornell University Smartphone-based apparatus and method for obtaining repeatable, quantitative colorimetric measurement
US20150361419A1 (en) 2013-01-21 2015-12-17 Nanobiosys Inc. Microfluidic chip for extracting nucleic acids, device for extracting nucleic acids comprising same, and method for extracting nucleic acids using same
US9995412B2 (en) * 2013-03-01 2018-06-12 Wave 80 Biosciences, Inc. Long-throw microfluidic actuator
WO2014137940A1 (en) * 2013-03-01 2014-09-12 Wave 80 Biosciences, Inc. Methods and systems for enhanced microfluidic processing
US9623409B2 (en) 2013-03-11 2017-04-18 Cue Inc. Cartridges, kits, and methods for enhanced mixing for detection and quantification of analytes
WO2014164563A1 (en) 2013-03-13 2014-10-09 Quidel Corporation Pcr assays and reagents for molecular detection of infectious agents
MX2015012031A (es) 2013-03-15 2016-03-08 Nanobiosym Inc Sistemas y métodos para el análisis con dispositivo móvil de ácidos nucleicos y proteínas.
CN105473740B (zh) 2013-07-03 2021-04-09 克维拉公司 靶向抗生素敏感性测试的方法
WO2015019522A1 (ja) 2013-08-08 2015-02-12 パナソニック株式会社 核酸増幅デバイス、核酸増幅装置及び核酸増幅方法
US10576426B2 (en) 2013-12-19 2020-03-03 The Trustees Of The University Of Pennsylvania Plasma separator apparatus and associated methods
CN106132543B (zh) 2013-12-20 2018-09-11 现场科学有限公司 全血分离采样装置
JP2017503175A (ja) 2013-12-31 2017-01-26 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッドCanon U.S. Life Sciences, Inc. 現場配置可能な小型フォーマットの迅速一次結果マイクロ流体システム
US20180135108A1 (en) 2014-01-20 2018-05-17 Board Of Trustees Of Michigan State University Method for detecting bacterial and fungal pathogens
US10195610B2 (en) 2014-03-10 2019-02-05 Click Diagnostics, Inc. Cartridge-based thermocycler
CN110982689A (zh) 2014-03-11 2020-04-10 伊鲁米那股份有限公司 一次性的集成微流体盒及其制备和使用的方法
JP2017514438A (ja) 2014-04-14 2017-06-01 エスアールアイ インターナショナルSRI International 携帯型核酸分析システム及び高性能マイクロ流体電気活性ポリマーアクチュエータ
EP3594360B1 (en) 2014-04-24 2021-06-23 Lucira Health, Inc. Colorimetric detection of nucleic acid amplification
EP2942394A1 (en) 2014-05-09 2015-11-11 Molzym GmbH & Co. KG New method for isolating microbial DNA
US10697007B2 (en) * 2014-06-27 2020-06-30 The Regents Of The University Of California PCR-activated sorting (PAS)
WO2016040523A1 (en) 2014-09-12 2016-03-17 Click Diagnostics, Inc. Multiplex optical detection
USD776290S1 (en) 2014-12-31 2017-01-10 W.H.P.M. Bioresearch And Technology Fecal occult blood detector
EP3248018B1 (en) 2015-01-22 2020-01-08 Becton, Dickinson and Company Devices and systems for molecular barcoding of nucleic acid targets in single cells
AU2016253147B2 (en) 2015-04-24 2021-07-22 Mesa Biotech, Inc. Fluidic test cassette
GB201510723D0 (en) 2015-06-18 2015-08-05 Alere Switzerland Gmbh High throughput isothermal nucleic acid amplification
CN107787453A (zh) 2015-06-23 2018-03-09 Poc医疗系统有限公司 使用寡核苷酸检测生物标志物的装置和方法
CN105239164B (zh) 2015-07-22 2017-12-08 广州市达瑞生物技术股份有限公司 一种胎儿游离dna文库定量的标准品及其制备方法
US10040069B2 (en) 2015-07-23 2018-08-07 General Electric Company Amplification and detection of nucleic acids
CN114740213A (zh) 2015-07-24 2022-07-12 塞弗德公司 分子诊断化验系统
EP3400284A4 (en) 2016-01-08 2019-10-23 Advanced Theranostics Inc. INDEPENDENT, FULLY INTEGRATED AND CAREFUL DEVICE FOR THE DETECTION OF TARGET NUCLEIC ACIDS
WO2017151195A1 (en) 2016-02-29 2017-09-08 The Penn State Research Foundation Nucleic acid molecular diagnosis
EP3429752A4 (en) 2016-03-14 2019-10-30 Lucira Health, Inc. SYSTEMS AND METHODS FOR PERFORMING BIOLOGICAL TESTS
AU2017232342B2 (en) 2016-03-14 2022-04-21 Pfizer Inc. Devices and methods for biological assay sample preparation and delivery
AU2017232344B2 (en) 2016-03-14 2022-08-04 Pfizer Inc. Selectively vented biological assay devices and associated methods
WO2017160839A1 (en) 2016-03-14 2017-09-21 Diassess Inc. Devices and methods for modifying optical properties
US10987674B2 (en) 2016-04-22 2021-04-27 Visby Medical, Inc. Printed circuit board heater for an amplification module
WO2017197040A1 (en) 2016-05-11 2017-11-16 Click Diagnostics, Inc. Devices and methods for nucleic acid extraction
WO2018005710A1 (en) 2016-06-29 2018-01-04 Click Diagnostics, Inc. Devices and methods for the detection of molecules using a flow cell
WO2018005870A1 (en) 2016-06-30 2018-01-04 Click Diagnostics, Inc. Devices and methods for nucleic acid extraction
WO2018119443A1 (en) 2016-12-23 2018-06-28 The Regents Of The University Of California Method and device for digital high resolution melt
US10146909B2 (en) 2017-04-06 2018-12-04 Diassess Inc. Image-based disease diagnostics using a mobile device
RU2761479C2 (ru) 2017-04-21 2021-12-08 Меса Байотек, Инк. Флюидная кассета для тестирования
US10549275B2 (en) 2017-09-14 2020-02-04 Lucira Health, Inc. Multiplexed biological assay device with electronic readout
JP7239568B2 (ja) 2017-11-09 2023-03-14 ビスビュー メディカル,インコーポレイテッド 携帯型分子診断デバイスおよび標的ウイルスの検出方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898374A (zh) * 2003-10-24 2007-01-17 埃格尼股份有限公司 集成的生物-分析和样品制备系统
CN101802164A (zh) * 2007-07-13 2010-08-11 汉迪实验室公司 用于在多个生物样品上进行核酸提取和诊断测试的集成装置
US20110312666A1 (en) * 2010-06-17 2011-12-22 Geneasys Pty Ltd Microfluidic device with triggered photodetection of fluorescing probe-target hybrid
CN103649333A (zh) * 2011-04-20 2014-03-19 梅撒技术国际公司 用于核酸检测和鉴定的集成装置
CN104023834A (zh) * 2011-05-04 2014-09-03 卢米耐克斯公司 用于集成的样品制备、反应和检测的设备与方法
CN103789198A (zh) * 2014-02-27 2014-05-14 苏州天隆生物科技有限公司 全自动核酸提取仪
US20170173585A1 (en) * 2014-07-11 2017-06-22 Advanced Theranostics Inc. Point of care polymerase chain reaction device for disease detection
US20160186240A1 (en) * 2014-12-31 2016-06-30 Click Diagnostics Devices and methods for molecular diagnostic testing
WO2017090043A1 (en) * 2015-11-26 2017-06-01 Novamed Ltd. Assay device
CN105349530A (zh) * 2015-12-11 2016-02-24 杭州优思达生物技术有限公司 一种新型的核酸检测方法及检测管

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ADAM K WHITE等: "High-throughput microfluidic single-cell RT-qPCR", PROC NATL ACAD SCI U S A ., vol. 108, no. 34, pages 13999 - 14004, XP055152556, DOI: 10.1073/pnas.1019446108 *
NORIKO SUEHIRO等: "A simplified method for obtaining plant viral RNA for RT-PCR", J VIROL METHODS ., vol. 125, no. 1, pages 67 - 73 *
何启迪等: "微流控PCR芯片的研究进展", 分析化学, vol. 44, no. 04, pages 542 - 550 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112625890A (zh) * 2020-12-23 2021-04-09 广州和实生物技术有限公司 一种核酸poct检测装置及其检测方法
CN112662815A (zh) * 2021-01-25 2021-04-16 中国疾病预防控制中心病毒病预防控制所 用于检测塔卡里伯病毒和太米阿米病毒的引物探针组合、试剂盒及方法

Also Published As

Publication number Publication date
AU2018364741A1 (en) 2020-04-16
MX2020004783A (es) 2020-08-13
US20210071236A1 (en) 2021-03-11
WO2019094784A1 (en) 2019-05-16
US11162130B2 (en) 2021-11-02
EP3707276A1 (en) 2020-09-16
US20220042076A1 (en) 2022-02-10
SG11202002931VA (en) 2020-04-29
US20190169677A1 (en) 2019-06-06
US11168354B2 (en) 2021-11-09
KR20200079264A (ko) 2020-07-02
AU2018364741B2 (en) 2021-03-25
AU2021202030A1 (en) 2021-04-29
JP7239568B2 (ja) 2023-03-14
CA3078976A1 (en) 2019-05-16
JP2021502057A (ja) 2021-01-28
EP3707276A4 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
CN111655866A (zh) 便携式分子诊断装置和检测靶病毒的方法
JP6755533B2 (ja) アッセイ
CN111487423B (zh) 用于增强检测和分析物定量的系统及方法
US9315858B2 (en) Apparatus for point-of-care detection of nucleic acid in a sample
US20090061450A1 (en) System and method for diagnosis of infectious diseases
CN103173346B (zh) 使用结合元件用于分析的装置和方法
JP2018505660A (ja) 分子診断試験のためのデバイス及び方法
WO2018057998A1 (en) Fluidic systems including vessels and related methods
Islam et al. Toward a next-generation diagnostic tool: A review on emerging isothermal nucleic acid amplification techniques for the detection of SARS-CoV-2 and other infectious viruses
WO2007106552A2 (en) System and method for diagnosis of infectious diseases
US20210291176A1 (en) Rapid diagnostic test with blister pack
Seok et al. Sensitive, single-pot, two-stage assay for hepatitis viruses
McDonald et al. Multiplexing for the detection of multiple biowarfare agents shows promise in the field
US20240218466A1 (en) Devices and methods for detection of target viruses
US12037635B2 (en) Portable molecular diagnostic device and methods for the detection of target viruses
US20220120743A1 (en) Flow control lines for lateral flow assays
US20230160025A1 (en) Point-of-care sars-cov-2 virus diagnostic device and methods of use thereof
Akula et al. NANOLYSER Project Report
WO2021248053A2 (en) Point-of-care sars-cov-2 virus diagnostic device and methods of use thereof
KR20230068430A (ko) 미생물의 신속한 고처리량 식별을 위한 미세유체 디바이스 및 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40037022

Country of ref document: HK

WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200911

WD01 Invention patent application deemed withdrawn after publication