US20080113391A1 - Detection and quantification of analytes in bodily fluids - Google Patents
Detection and quantification of analytes in bodily fluids Download PDFInfo
- Publication number
- US20080113391A1 US20080113391A1 US11/939,509 US93950907A US2008113391A1 US 20080113391 A1 US20080113391 A1 US 20080113391A1 US 93950907 A US93950907 A US 93950907A US 2008113391 A1 US2008113391 A1 US 2008113391A1
- Authority
- US
- United States
- Prior art keywords
- sample
- fluidic device
- analyte
- bodily fluid
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000001124 Body Fluids Anatomy 0.000 title claims description 178
- 238000001514 detection method Methods 0.000 title abstract description 48
- 238000011002 quantification Methods 0.000 title description 6
- 239000000523 sample Substances 0.000 claims description 358
- 238000006243 chemical reaction Methods 0.000 claims description 188
- 239000012491 analyte Substances 0.000 claims description 174
- 238000004166 bioassay Methods 0.000 claims description 156
- 239000000376 reactant Substances 0.000 claims description 106
- 239000003153 chemical reaction reagent Substances 0.000 claims description 76
- HVYWMOMLDIMFJA-DPAQBDIFSA-N (3β)-Cholest-5-en-3-ol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 74
- 238000002156 mixing Methods 0.000 claims description 74
- 238000000862 absorption spectrum Methods 0.000 claims description 58
- 102000004190 Enzymes Human genes 0.000 claims description 54
- 108090000790 Enzymes Proteins 0.000 claims description 54
- 239000003814 drug Substances 0.000 claims description 52
- 239000003085 diluting agent Substances 0.000 claims description 50
- 238000010521 absorption reaction Methods 0.000 claims description 44
- 210000004369 Blood Anatomy 0.000 claims description 40
- 239000008280 blood Substances 0.000 claims description 40
- 238000010790 dilution Methods 0.000 claims description 40
- 229940079593 drugs Drugs 0.000 claims description 40
- 229940107161 Cholesterol Drugs 0.000 claims description 36
- 239000005101 luminescent paint Substances 0.000 claims description 36
- 235000012000 cholesterol Nutrition 0.000 claims description 34
- 238000004891 communication Methods 0.000 claims description 34
- 210000001519 tissues Anatomy 0.000 claims description 30
- 201000010099 disease Diseases 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 26
- WQZGKKKJIJFFOK-GASJEMHNSA-N D-Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 22
- 239000000090 biomarker Substances 0.000 claims description 22
- 239000008103 glucose Substances 0.000 claims description 22
- 230000000875 corresponding Effects 0.000 claims description 20
- 239000012470 diluted sample Substances 0.000 claims description 16
- 238000001914 filtration Methods 0.000 claims description 16
- 239000002359 drug metabolite Substances 0.000 claims description 14
- 150000002632 lipids Chemical class 0.000 claims description 14
- WQZGKKKJIJFFOK-VFUOTHLCSA-N β-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 14
- 238000008214 LDL Cholesterol Methods 0.000 claims description 12
- 108010028554 LDL Cholesterol Proteins 0.000 claims description 12
- 238000003018 immunoassay Methods 0.000 claims description 12
- 230000031700 light absorption Effects 0.000 claims description 12
- 239000003550 marker Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 10
- 238000007865 diluting Methods 0.000 claims description 8
- 238000007824 enzymatic assay Methods 0.000 claims description 6
- 239000012530 fluid Substances 0.000 abstract description 40
- 239000000047 product Substances 0.000 description 124
- 238000002835 absorbance Methods 0.000 description 48
- 239000003795 chemical substances by application Substances 0.000 description 48
- 230000002934 lysing Effects 0.000 description 36
- 210000004027 cells Anatomy 0.000 description 30
- 238000005259 measurement Methods 0.000 description 28
- 102000004965 antibodies Human genes 0.000 description 26
- 108090001123 antibodies Proteins 0.000 description 26
- 238000001228 spectrum Methods 0.000 description 26
- 241000894007 species Species 0.000 description 24
- 229940088598 Enzyme Drugs 0.000 description 22
- 238000002965 ELISA Methods 0.000 description 20
- 239000000463 material Substances 0.000 description 20
- 210000001736 Capillaries Anatomy 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 108010082126 Alanine Transaminase Proteins 0.000 description 16
- 229940072417 Peroxidase Drugs 0.000 description 16
- 108090000437 Peroxidases Proteins 0.000 description 16
- 102000003992 Peroxidases Human genes 0.000 description 16
- 238000000295 emission spectrum Methods 0.000 description 16
- MHAJPDPJQMAIIY-UHFFFAOYSA-N hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 16
- 230000003287 optical Effects 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- 102100010966 GPT Human genes 0.000 description 14
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 14
- 210000003491 Skin Anatomy 0.000 description 14
- 239000000975 dye Substances 0.000 description 14
- 239000007788 liquid Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 230000000051 modifying Effects 0.000 description 14
- 150000007523 nucleic acids Chemical class 0.000 description 14
- 108020004707 nucleic acids Proteins 0.000 description 14
- RLFWWDJHLFCNIJ-UHFFFAOYSA-N Ampyrone Chemical compound CN1C(C)=C(N)C(=O)N1C1=CC=CC=C1 RLFWWDJHLFCNIJ-UHFFFAOYSA-N 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 239000003599 detergent Substances 0.000 description 12
- -1 e.g. Substances 0.000 description 12
- 238000005755 formation reaction Methods 0.000 description 12
- 230000003285 pharmacodynamic Effects 0.000 description 12
- 230000000275 pharmacokinetic Effects 0.000 description 12
- 102000004169 proteins and genes Human genes 0.000 description 12
- 108090000623 proteins and genes Proteins 0.000 description 12
- 230000004044 response Effects 0.000 description 12
- 239000002699 waste material Substances 0.000 description 12
- 239000002207 metabolite Substances 0.000 description 10
- 239000003973 paint Substances 0.000 description 10
- 239000008177 pharmaceutical agent Substances 0.000 description 10
- 239000011148 porous material Substances 0.000 description 10
- 235000018102 proteins Nutrition 0.000 description 10
- 238000004088 simulation Methods 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 8
- 210000003296 Saliva Anatomy 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 230000002429 anti-coagulation Effects 0.000 description 8
- 239000003146 anticoagulant agent Substances 0.000 description 8
- DPXDJGUFSPAFJZ-UHFFFAOYSA-L disodium;4-[3-methyl-N-(4-sulfonatobutyl)anilino]butane-1-sulfonate Chemical class [Na+].[Na+].CC1=CC=CC(N(CCCCS([O-])(=O)=O)CCCCS([O-])(=O)=O)=C1 DPXDJGUFSPAFJZ-UHFFFAOYSA-L 0.000 description 8
- 238000011068 load Methods 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- 230000001988 toxicity Effects 0.000 description 8
- 231100000419 toxicity Toxicity 0.000 description 8
- KPGXRSRHYNQIFN-UHFFFAOYSA-L 2-oxoglutarate(2-) Chemical compound [O-]C(=O)CCC(=O)C([O-])=O KPGXRSRHYNQIFN-UHFFFAOYSA-L 0.000 description 6
- 238000008620 Cholesterol Assay Methods 0.000 description 6
- 108010089254 Cholesterol Oxidase Proteins 0.000 description 6
- 108010042687 EC 1.2.3.3 Proteins 0.000 description 6
- 210000003743 Erythrocytes Anatomy 0.000 description 6
- 229940088597 Hormone Drugs 0.000 description 6
- 210000003324 RBC Anatomy 0.000 description 6
- 210000002966 Serum Anatomy 0.000 description 6
- 102000000019 Sterol Esterase Human genes 0.000 description 6
- 108010055297 Sterol Esterase Proteins 0.000 description 6
- 230000002860 competitive Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N edta Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 6
- 239000005556 hormone Substances 0.000 description 6
- 230000000144 pharmacologic effect Effects 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 229920000136 polysorbate Polymers 0.000 description 6
- 210000001175 Cerebrospinal Fluid Anatomy 0.000 description 4
- 210000003722 Extracellular Fluid Anatomy 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 210000002381 Plasma Anatomy 0.000 description 4
- 229920001213 Polysorbate 20 Polymers 0.000 description 4
- 229940076788 Pyruvate Drugs 0.000 description 4
- 210000000582 Semen Anatomy 0.000 description 4
- 210000001138 Tears Anatomy 0.000 description 4
- 229920004890 Triton X-100 Polymers 0.000 description 4
- 210000002700 Urine Anatomy 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 235000013405 beer Nutrition 0.000 description 4
- 102000005936 beta-Galactosidase Human genes 0.000 description 4
- 108010005774 beta-Galactosidase Proteins 0.000 description 4
- 230000031018 biological processes and functions Effects 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M buffer Substances [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 230000001079 digestive Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- SFNALCNOMXIBKG-UHFFFAOYSA-N ethylene glycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCO SFNALCNOMXIBKG-UHFFFAOYSA-N 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000002496 gastric Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 150000004676 glycans Polymers 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000003908 liver function Effects 0.000 description 4
- 230000002101 lytic Effects 0.000 description 4
- 230000004962 physiological condition Effects 0.000 description 4
- 229920000023 polynucleotide Polymers 0.000 description 4
- 239000002157 polynucleotide Substances 0.000 description 4
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- 150000004804 polysaccharides Polymers 0.000 description 4
- 238000000159 protein binding assay Methods 0.000 description 4
- LCTONWCANYUPML-UHFFFAOYSA-M pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- KEAYESYHFKHZAL-UHFFFAOYSA-N sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- IRQRBVOQGUPTLG-UHFFFAOYSA-M sodium;3-(N-ethyl-3-methylanilino)-2-hydroxypropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(O)CN(CC)C1=CC=CC(C)=C1 IRQRBVOQGUPTLG-UHFFFAOYSA-M 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000003595 spectral Effects 0.000 description 4
- 230000001225 therapeutic Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000009736 wetting Methods 0.000 description 4
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- ZTQGWROHRVYSPW-UHFFFAOYSA-N 3-(N-ethyl-3-methylanilino)-2-hydroxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CC(O)CN(CC)C1=CC=CC(C)=C1 ZTQGWROHRVYSPW-UHFFFAOYSA-N 0.000 description 2
- ZTOJFFHGPLIVKC-UHFFFAOYSA-N 3-ethyl-2-[(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound S1C2=CC(S(O)(=O)=O)=CC=C2N(CC)C1=NN=C1SC2=CC(S(O)(=O)=O)=CC=C2N1CC ZTOJFFHGPLIVKC-UHFFFAOYSA-N 0.000 description 2
- ZTOJFFHGPLIVKC-CLFAGFIQSA-N ABTS Chemical compound S/1C2=CC(S(O)(=O)=O)=CC=C2N(CC)C\1=N\N=C1/SC2=CC(S(O)(=O)=O)=CC=C2N1CC ZTOJFFHGPLIVKC-CLFAGFIQSA-N 0.000 description 2
- 102100001249 ALB Human genes 0.000 description 2
- 101710027066 ALB Proteins 0.000 description 2
- 229960003767 Alanine Drugs 0.000 description 2
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 2
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 2
- 210000000170 Cell Membrane Anatomy 0.000 description 2
- 206010009802 Coagulopathy Diseases 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- QNAYBMKLOCPYGJ-UWTATZPHSA-N L-Alanine Natural products C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- WHALSQRTWNBBCV-UHFFFAOYSA-N S-aminosulfanylthiohydroxylamine Chemical compound NSSN WHALSQRTWNBBCV-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N Tetrafluoroethylene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N Thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- FPKOPBFLPLFWAD-UHFFFAOYSA-N Trinitrotoluene Chemical compound CC1=CC=C([N+]([O-])=O)C([N+]([O-])=O)=C1[N+]([O-])=O FPKOPBFLPLFWAD-UHFFFAOYSA-N 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- LIPOUNRJVLNBCD-UHFFFAOYSA-N acetyl dihydrogen phosphate Chemical compound CC(=O)OP(O)(O)=O LIPOUNRJVLNBCD-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000001058 adult Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000004523 agglutinating Effects 0.000 description 2
- 229940050528 albumin Drugs 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 230000000903 blocking Effects 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000035602 clotting Effects 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000001808 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 229920003013 deoxyribonucleic acid Polymers 0.000 description 2
- 230000001419 dependent Effects 0.000 description 2
- 230000001809 detectable Effects 0.000 description 2
- 230000023077 detection of light stimulus Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000007877 drug screening Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000002532 enzyme inhibitor Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000002949 hemolytic Effects 0.000 description 2
- 150000007857 hydrazones Chemical class 0.000 description 2
- 230000002209 hydrophobic Effects 0.000 description 2
- 230000002706 hydrostatic Effects 0.000 description 2
- 230000002218 hypoglycaemic Effects 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 230000003100 immobilizing Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000000977 initiatory Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 238000009114 investigational therapy Methods 0.000 description 2
- 230000000670 limiting Effects 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- PEEHTFAAVSWFBL-UHFFFAOYSA-N maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 2
- AWIJRPNMLHPLNC-UHFFFAOYSA-N methanethioic S-acid Chemical compound SC=O AWIJRPNMLHPLNC-UHFFFAOYSA-N 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 2
- 230000016087 ovulation Effects 0.000 description 2
- 238000005691 oxidative coupling reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001717 pathogenic Effects 0.000 description 2
- 244000052769 pathogens Species 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000037368 penetrate the skin Effects 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 230000002974 pharmacogenomic Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000035935 pregnancy Effects 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 239000000651 prodrug Substances 0.000 description 2
- 229940002612 prodrugs Drugs 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 229910052904 quartz Inorganic materials 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000036387 respiratory rate Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000011534 wash buffer Substances 0.000 description 2
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/92—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502715—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502753—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/60—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving cholesterol
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/52—Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
- G01N33/525—Multi-layer analytical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/5302—Apparatus specially adapted for immunological test procedures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0605—Metering of fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0631—Purification arrangements, e.g. solid phase extraction [SPE]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0654—Lenses; Optical fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0819—Microarrays; Biochips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/087—Multiple sequential chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0874—Three dimensional network
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/16—Surface properties and coatings
- B01L2300/168—Specific optical properties, e.g. reflective coatings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/062—LED's
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/20—Oxygen containing
Abstract
This invention is in the field of medical devices. Specifically, the present invention provides portable medical devices that allow detection of analytes from a biological fluid. The methods and devices are particularly useful for providing point-of-care testing for a variety of medical applications.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/865,805 filed Nov. 14, 2006, which is incorporated herein by reference in its entirety.
- Many medical procedures require tests to be performed with a sample of a patient's fluid. The ability to rapidly and accurately detect a wide range of analytes present in a bodily fluid is often critical for diagnosis, prognosis, and treatment of diseases.
- Traditionally, detecting a range of analytes present in a bodily fluid such as blood has been performed in laboratories by trained technicians. Performing such assays is usually time-consuming and costly. The desire for rapid turnaround time creates a need to facilitate testing that can be delivered at the point-of-care. Point-of-care testing is particularly desirable because it rapidly delivers results to medical practitioners, enables faster consultation, and avoids unattended deterioration of a patient's condition.
- Although several point of care testing devices are available, the majority of which is adapted to detect a single analyte, or one type of analytes for a single indication. Examples of such point of care devices are tests for glucose, drugs of abuse, serum cholesterol, pregnancy, or ovulation.
- Thus, there remains a need for alternative designs of point of care systems that are capable of detecting a range of analytes from bodily fluid. A desirable system would allow quantitative and qualitative measurements of analytes in a more cost effective and timely fashion. The present invention addresses this need and provides related advantages as well.
- One aspect of the present invention is the design of a system to effect detection of different analytes in a bodily fluid. In one embodiment, the present invention provides a system that typically comprises a) a fluidic device comprising a cartridge, said cartridge comprising a sample collection unit and an assay assembly, wherein said sample collection unit allows a sample of bodily fluid to react with reactants contained within said assay assembly to yield a colored product having an absorbance spectrum corresponding to at least one wavelength from a light source; b) a light source transmitting the at least one wavelength to the assay assembly; and c) a detector that detects absorption of light of the at least one wavelength, wherein said absorption is indicative of the presence of the analyte in said bodily fluid. In general, the amount of absorption is related to the concentration of the analyte in the bodily fluid. Preferably, the amount of absorption is stoichiometrically related to the concentration of the analyte in the bodily fluid. The subject system is preferably configured to be a point-of-care system.
- In a related but separate embodiment, the present invention provides a fluidic device capable of detecting the presence or absence of an analyte in a bodily fluid from a subject. The fluidic device can be part of the system described above. The subject fluidic device typically comprises (a) a cartridge, said cartridge comprising a sample collection unit, an assay assembly, and (b) a light source, wherein said sample collection unit is configured to collect a sample of bodily fluid from said subject and wherein said assay assembly comprises at least one reaction site containing a reactant that reacts with said analyte to yield a colored product having an absorbance spectrum corresponding to at least one wavelength from said light source. Where desired, the fluidic device can be employed to detect a plurality of analytes.
- The assay assembly employed in the subject fluidic device or system is generally configured to run an enzymatic assay yielding a colored product. The assay assembly can be configured to run assays capable of detecting a wide variety of analytes. Non-limiting exemplary analytes include drug, drug metabolite, biomarker indicative of a disease, tissue specific marker, and tissue specific enzyme. Preferred analytes for detection include without limitation HDL cholesterol, LDL cholesterol, total cholesterol, lipids, and glucose. Where desired, the assay assembly is configured to run an immunoassay.
- The light source employed in the subject fluidic device or system typically produces at least one wavelength corresponding to the absorbance spectrum of the colored product generated by an assay. A suitable light source can comprise a light emitting diode and/or luminescent paint. Where luminescent paint is used as the light source, it is typically coated on the assay assembly.
- The present invention also provides a method of detecting an analyte in a bodily fluid from a subject. The method typically involves the steps of a) introducing a sample of bodily fluid into a fluidic device comprising a sample collection unit and an assay assembly, said assay assembly comprising reactants that are capable of reacting with said analytes; b) allowing said sample of bodily fluid to react with said reactants contained within said assay assembly to yield a colored product having an absorbance spectrum corresponding to at least one wavelength from a light source; c) transmitting the at least one wavelength to the fluidic device from said light source; and d) detecting absorption of light of the at least one wavelength transmitted to the fluidic device, wherein said absorption is indicative of the presence of the analyte in said bodily fluid. The method can be employed to detect analytes in a sample of bodily fluid that is less than about 500 ul, less than about 50 ul, or less than about 20 ul, or even less than about 10 ul. Where desired, the methods can be applied to detect analytes in a predetermined amount of bodily fluid that can be undiluted, unprocessed or diluted or processed by, e.g., filtration, centrifugation and other like processes.
- All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
- The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
-
FIG. 1 depicts an exemplary point-of-care system of the present invention. -
FIG. 2 shows a perspective view of various layers of an exemplary fluidic device of the present invention. -
FIGS. 3 and 4 illustrate the fluidic network within an exemplary fluidic device. -
FIG. 5 illustrates an exemplary sample collection unit of the present invention. -
FIG. 6 illustrates an exemplary sample collection well in fluidic communication with a metering channel, and a metering element. -
FIG. 7 shows an exemplary fluidic network between a metering channel, a mixing chamber and a filter. -
FIG. 8 shows an absorption spectrum of a Trinder product. -
FIG. 9 shows the spectral response of an assay simulation using a light source having an emission spectrum that perfectly overlaps with an absorption spectrum of an absorbing species. -
FIG. 10 shows a light attenuation response for a cholesterol assay. -
FIG. 11 shows simulation of the signal modulation for an assay in which a light emission spectrum and an absorption spectrum of the absorbing species overlaps, and the λmax varies between the two spectrums by 50 nm. -
FIG. 12 shows simulation of the signal modulation for an assay in which a light emission spectrum and an absorption spectrum of the absorbing species overlaps, and the λmax varies between the two spectrums by 50 nm, where an edge filter with a cut-off below the lower λmax is used on either the emission or detection side of the optical system. - One aspect of the present invention is a system for detecting an analyte in a sample of bodily fluid from a subject. The terms “subject” and “patient” are used interchangeably herein, which refer to a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets.
- The system is capable of detecting and/or quantifying analytes that are associated with specific biological processes, physiological conditions, disorders or stages of disorders.
- The subject system typically comprises a fluidic device having one or more of the following components: a sample collection unit, an assay assembly, a light source, a detector, and optionally a communication assembly. In one embodiment, the subject system comprises: a) a fluidic device comprising a cartridge, said cartridge comprising a sample collection unit and an assay assembly, wherein said sample collection unit allows a sample of bodily fluid to react with reactants contained within said assay assembly to yield a colored product having an absorbance spectrum corresponding to at least one wavelength from a light source; b) a light source transmitting the at least one wavelength to the assay assembly; and c) a detector that detects absorption of light of the at least one wavelength, wherein said absorption is indicative of the presence of the analyte in said bodily fluid.
- The sample collection unit typically allows a sample of bodily fluid to be collected from a subject to react with reactants contained within the assay assembly for generating a signal indicative of the presence of the analyte of interest. The sample collection unit may take a variety of configurations so long as it collects and delivers the sample of bodily fluid to the assay assembly. In some embodiments, the sample collection unit is in fluidic communication with one or more components of the subject system or fluidic device.
- Where desired, the sample collection unit is configured to collect a sample of bodily fluid from the subject and to deliver a predetermined portion of the sample to be assayed by the assay assembly. In this manner, the device automatically meters the appropriate volume of the sample that is to be assayed. The sample collection unit can comprise a sample collection well, a metering channel, and a metering element. Generally, the sample collection well collects the bodily fluid from the patient. The metering channel is in fluidic communication with the sample collection well and is dimensioned to collect the predetermined portion of the sample to be assayed. The metering element is adapted to prevent a volume of sample larger than the predetermined portion of the sample from being assayed.
-
FIG. 5 illustrates a top view of an exemplary sample collection unit (SCU) showing sample collection well (SCW) in fluidic communication with metering channel (MC), and metering element (ME). - As shown, the sample collection well (SCW) comprises a through hole with a larger diameter at the top tapering to a smaller diameter at the bottom. The through hole is intended to be the location where the sample is provided to the fluidic device, such as by fingerstick or pipetted blood. The sample collection well (SCW) may be any inlet which allows for a sample to be received by the fluidic device.
- The metering channel (ME) can be in fluidic communication with the sample collection well (SCW) to receive the sample. The metering channel (MC) has a proximal end (PE) and a distal end (DE). The distal end (DE) of the metering channel (MC) can include a stop junction (SJ) as will be described below.
- In some illustrative embodiments the metering channel (MC) is about 10 mm long and has a cross section of about 1 mm2. In other embodiments the metering channel (MC) is about 12.5 mm long and is about 0.9 mm wide and about 0.9 mm high.
- A predetermined portion of sample as used herein can generally refer to the volume of sample inside the metering channel (MC) between the stop junction (SJ) and the metering element (ME) after it has closed the fluidic connection between the sample collection well (SCW) and the metering channel (MC). In some embodiments the dimensions of the metering channel (MC) typically determines the volume of the predetermined portion of sample. The volume of a predetermined portion in a subject sample collection unit (SCU) may be less than 50, less than 40, less than 30 or 20 microliters. In a preferred embodiment, the volume of a predetermined portion is about 10 microliters.
- The metering channel (MC) is preferably capable of holding, prior to actuation of the metering element (ME), a volume of sample greater than the predetermined portion such that the stop junction (SJ) does not allow sample to flow into the mixing chamber (MiC) when stressed by a hydrostatic pressure of sample from the sample collection unit (SCU).
- In some embodiments the metering element is adapted to prevent a volume of sample greater than the predetermined portion from being assayed. Generally, the metering element (ME) can be adapted to pinch off the sample inside the metering channel (MC) from the sample collection well (SCW). The metering element (ME) can be a one-time valve initially open and adapted to be actuated by mechanical action by the reader assembly, as described herein.
FIG. 6 is a perspective view of the metering element (ME) as a pin shown in an open, or unactuated, position that can be mechanically actuated by the reader assembly to close off the fluidic connection between the sample collection well (SCW) and the metering channel (MC). The metering element (ME) can take any shape and can be of any size, and can be moved into a position to prevent a volume of sample greater than the predetermined portion from being assayed by any technique, e.g., manual force or magnetic force. - In some embodiments the metering channel (MC) has a stop junction (SJ) at its distal end (DE). In
FIG. 5 , stop junction (SJ) comprises metering channel (MC) opening into the larger mixing chamber (MiC), thereby creating an abrupt end to the capillary dimensions of metering channel (MC). The stop junction (SJ) is shown comprising a right-angled junction between the metering channel (MC) and the mixing chamber (MiC). - The stop junction (SJ) can be adapted to prevent sample from flowing into the mixing chamber (MiC) before the predetermined portion of sample has been metered. While the stop junction (SJ) as shown in
FIG. 5 does not comprise any moveable elements, the stop junction (SJ) may also comprise a valve or other blocking element that prevents the predetermined portion of sample from flowing from the metering channel (MC) into the mixing chamber (MiC). - An alternative method of loading the sample into the fluidic device is by side loading rather than loading the sample onto the top of the fluidic device. In such an embodiment, the metering channel (MC) terminates on the side or preferably, at a corner, of the cartridge. The metering channel (MC) can be in direct communication with the mixing chamber (MiC) and the diluent chamber (DC) can be connected by a channel to the metering channel (MC) similar to the top loading embodiment above. The sample can be drawn into the metering channel (MC) by capillary action but does not enter the diluent flush channel (DFC) as that channel is initially sealed from the metering channel (MC). The user or an automated mechanism in the reader assembly then seals the proximal end (PE) of the sample capillary prior to actuating the dilution operation as described above.
- In some embodiments the inner surface of the sample collection well (SCW) and/or the metering channel (MC) may be coated with a surfactant and/or an anti-coagulant solution. The surfactant provides a wetting surface to the hydrophobic layers of the fluidic device and facilitate filling of the metering channel (MC) with the fluid sample, e.g., blood, such that the wetness of the metering channel (MC) can not be so large that the stop junction (SJ) cannot contain the blood at the distal end (DE) of the metering channel (MC). The anti-coagulant solution can help prevent the sample, e.g., blood, from clotting when provided to the fluidic device. Exemplary surfactants that can be used include without limitation, Tween, Triton, Pluronic and other non-hemolytic detergents that provide the proper wetting characteristics of a surfactant. EDTA is a non-limiting anti-coagulant that can be used.
- In one embodiment the solution comprises 2% Tween, 25 mg/mL EDTA in 50% Methanol/50% H2O, which is then air dried. A methanol/water mixture provides a means of dissolving the EDTA and Tween, and also dries quickly from the surface of the plastic. The solution can be applied to the layers of the fluidic device by any means that will ensure an even film over the surfaces to be coated, such as, e.g., pipetting, spraying, or wicking.
- In some embodiments the sample collection unit (SCU) also comprises a dilution chamber (DC) in fluidic communication with the metering channel (MC), wherein the dilution chamber (DC) is configured to store a diluent and comprises a port for engaging pressure means for transferring the diluent from the dilution chamber (DC) into the metering channel (MC).
FIG. 5 shows dilution chamber (DC) and diluent flush channel (DFC) fluidly connecting dilution chamber (DC) with the metering channel (MC). The diluent flush channel (DFC) can be adapted to be filled with diluent from the dilution chamber (DC). - In some embodiments the sample collection unit (SCU) further comprises a mixing chamber (MiC) in fluidic communication with the metering channel (MC), wherein the mixing chamber (MiC) is configured to mix the predetermined portion of the sample with the diluent to yield a diluted sample. An exemplary mixing chamber (MiC) is shown in
FIG. 5 . The mixing chamber (MiC) is preferably dimensioned such that the intersection between the metering channel (MC) and the mixing chamber (MiC) creates a stop junction (SJ) to prevent the predetermined portion of sample from entering the mixing chamber (MiC) until the diluent flushes the sample into the mixing chamber (MiC). - In some embodiments the mixing chamber (MiC) includes a movable mixing element (MME) that causes the mixing of the predetermined portion of the sample with the diluent. Exemplary moveable mixing element (MME) is shown in
FIG. 5 with a general ball shape. - In one embodiment the movable mixing element (MME) is magnetically controlled, e.g., a magnetically controlled ball in the mixing chamber (MiC) that, when magnetically controlled, will cause the mixing of the predetermined portion of the sample and the diluent. The ball can be about 5% of the combined volume of the sample and diluent. The ball can be magnetically controlled to move in a reciprocal, linear fashion, within the mixing chamber (MiC).
- The moveable mixing element (MME) is shown inside the mixing chamber (MiC), however, it is contemplated that the mixing element may operate outside of the fluidic device, for example when the reader assembly is adapted to agitate the fluidic device and thereby mixing the predetermined portion of sample and the diluent.
- In some embodiments the sample collection unit (SCU) further comprises a filter (F) configured to filter the diluted sample before it is assayed. Exemplary filter (F) is shown in
FIG. 5 . In some embodiments the filter (F) is fluidly connected to and downstream to the mixing chamber (MiC) as shown inFIG. 5 . - While the sample collection unit (SCU) can include a dilution chamber (DC), mixing chamber (MiC), and a filter (F), it is contemplated that some or all of these components may not be included in the sample collection unit (SCU). It may, for example, be unnecessary to filter a sample and thus the sample collection unit (SCU) may not have a filter.
-
FIG. 7 shows an exemplary fluidic network between a metering channel, a mixing chamber and a filter. - In some embodiments it may be desirable to detect the presence of analytes on a cell surface, within a cell membrane, or inside a cell. The difficulty of detecting such analytes is that cells and other formed elements are particulate and components of cells do not readily interact with traditional assay chemistries which are designed to operate on analytes in solution. Cell-surface analytes react slowly and inefficiently with surface bound probes, and analytes inside the cell can not react at all with bound probes. To allow the detection of such analytes, in some embodiments the fluidic device may include a lysing assembly to lyse cells present in the bodily fluid sample. The lysing assembly may be incorporated with the sample collection unit, a dilution chamber, and/or a filtration chamber. In some embodiments the sample collection unit, dilution chamber, and lysing component are within the same element in the fluidic device. In some embodiments the lysing component may be incorporated with an assay reagent described below.
- Where desired, lysing agents may be impregnated and then dried into porous mats, glass fiber mats, sintered frits or particles such as Porex, paper, or other similar material. Lysing agents may be dried onto flat surfaces. Lysing agents may also be dissolved in liquid diluents or other liquid reagents. In some embodiments porous materials are used to store the lysing agents because they can store a lysing agent in dry form likely to be very stable. They can also facilitate the mixing of the bodily fluid sample with the lysing agent by providing a tortuous path for the sample as it moves through the porous material. In some embodiments such porous materials have a disc shape with a diameter greater than its thickness. In some embodiments lysing agents may be dried onto porous materials using lyophilization, passive evaporation, exposure to warm dry flowing gas, or other known methods.
- A variety of lysing agents are available in the art and are suitable for use in connection with the subject fluidic device. Preferred lysing agents are non-denaturing, such as non-denaturing detergents. Non-limiting examples of non-denaturing detergents include thesit, sodium deoxylate, triton X-100, and tween-20. The agents are preferably non-volatile in embodiments where the agents are impregnated into a solid porous materials. In some embodiments lysing agents are mixed together. Other materials may be mixed with the lysing agents to modify the lytic effects. Such exemplary materials may be, without limitation, buffers, salts, and proteins. In some embodiments lysing agents will be used in amounts that are in excess of the minimum amount required to lyse cells. In some embodiments lysing agents will be used that can lyse both white and red cells.
- The sample collection unit can be adapted to receive any bodily fluids suspected to contain an analyte of interest, such bodily fluids include but are not limited to blood, serum, saliva, urine, gastric and digestive fluid, tears, stool, semen, vaginal fluid, interstitial fluids derived from tumorous tissue, and cerebrospinal fluid.
- The volume of bodily fluid to be received in the sample collection unit is generally less than about 500 microliters, or may be less than about 50 microliters.
- In some embodiments, the bodily fluids are used directly for detecting the analytes present therein with the subject fluidic device without further processing. Where desired, however, the bodily fluids can be pre-treated before performing the analysis with the subject fluidic devices using any methods described herein or known in the art. The choice of pre-treatments will depend on the type of bodily fluid used and/or the nature of the analyte under investigation. For instance, where the analyte is present at low level in a sample of bodily fluid, the sample can be concentrated via any conventional means to enrich the analyte. Methods of concentrating an analyte include but are not limited to drying, evaporation, centrifugation, sedimentation, precipitation, and amplification. Where the analyte is a nucleic acid, it can be extracted using various lytic enzymes or chemical solutions according to the procedures set forth in Sambrook et al. (“Molecular Cloning: A Laboratory Manual”), or using nucleic acid binding resins following the accompanying instructions provided by manufactures. Where the analyte is a molecule present on or within a cell, extraction can be performed using lysing agents including but not limited to denaturing detergent such as SDS or non-denaturing detergent such as thesit, sodium deoxylate, triton X-100, and tween-20.
- In some embodiments, pretreatment can include diluting and/or mixing the sample, and filtering the sample to remove, e.g., red blood cells from a blood sample.
- A bodily fluid may be drawn from a patient and brought into the fluidic device in a variety of ways, including but not limited to, lancing, injection, or pipetting. In one embodiment, a lancet punctures the skin and draws the sample into the fluidic device using, for example, gravity, capillary action, aspiration, or vacuum force. The lancet may be part of the fluidic device, or part of a reader assembly, or a stand alone component. In another embodiment where no active mechanism is required, a patient can simply provide a bodily fluid to the fluidic device, as for example, could occur with a saliva sample. The collected fluid can be placed in the sample collection unit within the fluidic device. In yet another embodiment, the fluidic device comprises at least one microneedle which punctures the skin. The microneedle can be used with a fluidic device alone, or can puncture the skin after the fluidic device is inserted into a reader assembly.
- A sample collection unit in a fluidic device may provide a bodily fluid sample from a patient by any of the methods described above. If necessary, the sample may first be processed by diluting the bodily fluid in a dilution chamber, and/or may be filtered by separating the plasma from the red blood cells in a filtration chamber as described above. In some embodiments the sample collection unit, diluting chamber, and filtration chamber may be the same component, and in some embodiments they may be different components, or any two may be the same component and the other may be a separate component. In some embodiments there may be more than one sample collection unit in the fluidic device or system.
- The assay assembly contained in the subject system or fluidic device comprises reactants capable of reacting with analytes to yield colored products that are indicative of the presence of the analytes. As used herein, the term “analytes” refers to any substances in a bodily fluid that can be used for generating colored products for detection. Exemplary analytes include without limitation drugs, prodrugs, pharmaceutical agents, drug metabolites, a biomarker indicative of a disease, a tissue specific marker, a tissue specific enzyme biomarkers such as expressed proteins and cell markers, antibodies, serum proteins, cholesterol, polysaccharides, nucleic acids, gene, protein, or hormone, or any combination thereof. At a molecular level, the analytes can be polypeptide glycoprotein, polysaccharide, lipid, nucleic acid, and a combination thereof. Preferred detectable analytes include but are not limited to HDL cholesterol, LDL cholesterol, total cholesterol, lipids, glucose, and enzymes.
- J As noted above, the assay assembly of the subject system or fluidic device is configured to detect analytes based on formation of a colored product from a reaction scheme that is indicative of its presence. Exemplary classes of analytes that can be detected in this manner include: a) analytes that can be converted chemically to a colored product via a color-producing reaction; b) analytes that catalyze the formation of colored products from chemical reactants; and c) analytes that can be detected through binding of an agent that then participates in a color-producing reaction, either as a chemical reagent or a promoter of a chemical reaction. Additional examples of analytes that can yield colored products are illustrated in e.g., Tietz Textbook of Clinical Chemistry (Second Ed., Burtis and Ashwood, Saunders, 1994).
- Analytes that can be converted chemically to a colored product via a color-producing reaction include enzyme substrates and co-factors. Non-limiting examples of such analytes include glucose, cholesterol, and triglycerides. In particular, levels of total cholesterol (i.e., the sum of free and esterified cholesterol) in a bodily fluid can be spectrophotometrically measured by well-known color-forming assays by reacting the fluid with reactants including cholesterol esterase, cholesterol oxidase, an oxidizable dye such as n,n-bis(4-sulfobutyl)-3-methylaniline, disodium salt (TODB), 4-aminoantipyrine, and horse radish peroxidase.
- A vast number of analytes can catalyze the formation of a colored products from chemical reactants, thus are amenable for detection by optical means. Examples of such analytes include alanine aminotransferase (ALT) and aspartate aminotransferase. Alanine aminotransferase (ALT) is an analyte indicative of liver function. The reactants for use in this assay may include alphaketoglutarate, pyruvate oxidase, an oxidizable dye such as N,N-Bis(4-sulfobutyl)-3-methylaniline, disodium salt (TODB), 4-aminoantipyrine, and horse radish peroxidase.
- The third class of analytes is typically detected via a color-producing immunoassay, such as an enzyme-linked immunosorbent assay (ELISA). In a typical ELISA, an analyte is specifically bound by an antibody, which in turn is detected by a secondary, enzyme-linked antibody. The linked enzyme catalyzes a color-producing reaction. Such enzymes include but are not limited to β-galactosidase, alkaline phophatase, and horse radish peroxidase.
- The choice of suitable reactants will depend on the particular analytes being examined. In general, any reactants capable of reacting with analytes either directly or indirectly to generate colored products, which can then be detected optically, are suited for use in the subject system. Exemplary reactants include but are not limited to one or more enzymes, co-factors, dyes, and other reagents as needed to convert these and analytes to a colored product.
- Of particular interest are several color forming reactants for use in the present invention. In one embodiment, peroxidase reactions are preferably used to generate colored products. Peroxidase chromogens are well known in the art, as exemplified by Trinder reagents such as TODB or TOOS (N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline, sodium salt, dehydrate) used in combination with 4-aminoantipyrene, triaryl imidazoles, and ABTS (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid). In the chemistry of peroxidase reactions with Trinder reagents, two colorless organic molecules form a colored product in the presence of peroxidase and hydrogen peroxide. This peroxidase chemistry advantageously generates an intensely colored product and is not subject to interference from substances in blood plasma.
- Reactants in the assay assembly can be contained in reaction sites, either as fluids or dry reagents. In the case of dry reagents, the reaction site preferably forms a rigid support on which a reactant can be immobilized. The reaction site surface is also chosen to provide characteristics for detection of light absorbance. For instance, the reaction site may be functionalized glass, Si, Ge, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, or combinations thereof. Other appropriate materials may be used in accordance with the present invention.
- One skilled in the art will appreciate that there are many ways of immobilizing various reactants onto a support where reaction can take place. The immobilization may be covalent or noncovalent, via a linker moiety, or tethering them to an immobilized moiety. These methods are well known in the field of solid phase synthesis and micro-arrays (Beier et al., Nucleic Acids Res. 27:1970-1-977 (1999). Non-limiting exemplary binding moieties for attaching either nucleic acids or proteinaceous molecules such as antibodies to a solid support include streptavidin or avidinibiotin linkages, carbamate linkages, ester linkages, amide, thiolester, (N)-functionalized thiourea, functionalized maleimide, amino, disulfide, amide, hydrazone linkages, and among others. In addition, a silyl moiety can be attached to a nucleic acid directly to a substrate such as glass using methods known in the art.
- In a preferred embodiment, there are multiple reaction sites in an assay assembly which can allow for detection of multiple analytes of interest from the same sample of bodily fluid. In some embodiments there are 2, 3, 4, 5, 6, or more reaction sites, or any other number of reaction sites as may be necessary to carry out the intent of the invention.
- In embodiments with multiple reaction sites in a fluidic device, each reaction site may be immobilized with reactants different from reactants immobilized at a different reaction site. In a fluidic device with, for example, three reaction sites, there may be three different reactants, each immobilized to a different reaction site to detect three different analytes of interest in the sample.
- In some embodiments, the reactants are contained in a reactant chamber. A reactant chamber is preferably in fluid communication with at least one reaction site, and when the fluidic device is actuated, reactants contained in the reactant chamber are released into a fluidic channel within the fluidic device and introduced into a reaction site. Reactants may be contained in reactant chambers as fluids or dry reagents, as described above with respect to reactants contained in reaction sites. In some embodiments there may be two, three, four, five, six, or more, or any number of reactant chambers as are necessary to fulfill the purposes of the invention.
- In addition to color-forming reactants, the present invention may include other reagents. Such reagents can be stored with reactants in reaction sites or reactant chambers, if appropriate. In another embodiment reagents are stored separately, and there is at least one reagent chamber. Reagents may be stored in a fluid or dry state, similar to reactants. In some embodiments there may be two, three, four, five, six, or more, or any number of reagent chambers as are necessary to fulfill the purposes of the invention. A reagent chamber is preferably in fluid communication with at least one reaction site, and when the fluidic device is actuated, reagents contained in said reagent chambers are released into the fluidic channels within the fluidic device and introducted into a reaction site.
- Reagents according to the present invention include without limitation wash buffers, enzyme substrates, dilution buffers, conjugates, enzyme-labeled conjugates, DNA amplifiers, sample diluents, wash solutions, sample pre-treatment reagents including additives such as detergents, polymers, chelating agents, albumin-binding reagents, enzyme inhibitors, enzymes, anticoagulants, red-cell agglutinating agents, antibodies, or other materials necessary to run an assay in a fluidic device. In general, reagents especially those that are relatively unstable when mixed with liquid are confined in a defined region (e.g. a reagent chamber) within the subject fluidic device. The containment of reagents can be effected by valves that are normally closed and designed for one-time opening, preferably in a unidirectional manner. In some embodiments the reagents are initially stored dry and liquified upon initiation of the assay being run on the fluidic device.
- In some embodiments a reactant site, reactant chamber or reagent chamber contains approximately about 50 ul to about 1 ml of fluid. In some embodiments the chamber may contain about 100 ul of fluid. The volume of liquid in a reactant or reagent chamber may vary depending on the type of assay being run or the sample of bodily fluid provided.
- In preferred embodiments of the invention the fluidic device includes at least one waste chamber to trap or capture all liquids after they have been used in the assay. In preferred embodiments, there is more than one waste chamber, at least one of which is to be used with a calibration assembly described herein below. On-board waste chambers also allow the device to be easily disposable. The waste chamber is preferably in fluidic communication with at least one reaction site.
- A colored product of an analyte-detecting assay of the present invention is typically detected by measurement of absorbance of light by the colored product. Light will be directed to the colored product in a reaction site from a source that emits a spectrum of light in which at least one wavelength of light corresponds to the absorption spectrum of the colored product. The spectrum of the light emitted by a source accordingly will be similar to the spectrum of the absorbing species in the colored product of the analyte-detecting reaction. Preferably, the emission spectrum from the light source will overlap the absorption spectrum of the absorbing species, preferably by at least about 50%, 60%, 70%, 80%, 90% or 95%. However, the present invention does not require an exact overlap between the light source emission spectrum and the absorption spectrum of the colored product, as described in the examples provided herein. Use of monochromatic light sources and/or filters can generally provide a means to match the characteristics of the absorption and the light source.
- The colored products detected by the subject system typically have an absorption range of about 250 nm to about 900 nm. Preferably, the color to be measured is generally in a visible range of about 400 to about 800 nm.
- The absorbance of the colored product can be readily detected and in a range that is preferably stoichiometrically or linearly corresponds to the amount of analyte present. According to Beer's law, absorbance=concentration×extinction coefficient×optical path length. Chromophores in the visible wavelength range and typically used in clinical chemistry have extinction coefficients in the range of about 103-105 L/(mole×cm). As shown in Table 1 of Example 1, a concentration of 1.5 mM analyte, diluted by 1:30 fold, gives an absorbance of 0.25 (44% transmission) when measured at the maximum absorbance (at λmax of 500 nm, the extinction coefficient=50,000 L/(mole×cm) with a path length of 0.1 cm (typical of single use cartridges). This absorbance is readily measurable by simple transmission optical systems.
- A variety of light sources may be utilized for the present invention depending on the particular type of application and absorbance spectrum requirements for a given analyte of interest. An example of an appropriate light source includes, but is not limited to, an incandescent bulb, a light emitting diode, luminescent paint, and a laser. Preferably, the light source is an economical, low intensity light source well suited for point-of-care testing. When coupled with a photomultiplier tube detector, the number of photons generated by the light source need only be a few thousand over a measurement interval, which can range from a few milliseconds to a several minutes.
- One type of light source applicable for the present invention is luminescent paint. Such paint is generally formulated using very tiny quantities of a long-lived radioisotope together with a material that glows or scintillates non-destructively when irradiated. The paint can be appropriately colored by addition of dyes. The paint will generally be coated on the non-transparent walls of a reaction site where analyte assay chemistry generates a colored product. Light emitted from the paint can be detected through a transparent surface of the reaction site to allow measurement of absorbance due to a colored product. The spectrum of the light emitted will generally be a function of the scintillant material and the absorbance characteristics of the chemistry used in forming a colored product.
- Another applicable light source for the present invention is a Light Emitting Diode (LED). A LED can provide colored light at moderate intensity. The spectrum of the emitted light can be selected over the visible range. A LED typically has a more narrow range of emission wavelengths of about 30 nm. Thus, use of a LED as a light source will depend on the absorbance spectrum of an absorbing species used in the detection of a particular analyte.
- Detection and measurement of colored products generated due to the presence of a given analyte can be made directly from a reaction site or alternatively from a detection site to which the colored product is transported. Preferably, detection will be made from a reaction site. Unless specified otherwise, the term “reaction site” as used herein will refer to both the site at which a reaction occurs and at which the colored product of the reaction is detected. The reaction site will typically be a well that is cylindrical in shape having a defined length between two opposed flat surfaces for determination of absorbance. For example, the point-of-care fluidic devices of the present invention might have a reaction site that is 0.1 cm in length. At least one or both of the flat surfaces of the reaction site will be transparent to allow detection of the colored product with standard transmission optics. The non-transparent surfaces of the reaction site may be made of opaque, white light scattering material.
- The detector of light transmitted from a light source through a reaction site will be capable of detecting absorbance of light by the colored product in the reaction site. Examples of suitable detectors include, but are not limited to, a photomultiplier tube, a photodiode or an avalanche photodiode.
- In a system of the present invention, the position of the light detector in the system relative to the fluidic device will depend on factors such as the type of light source used and the relative position of the light source to the fluidic device. In the case where the light source is a luminescent paint contained within a reaction site of the device, the detector will be positioned to detect light emitted from a transparent surface of the reaction site.
- In the situation where the light source is external to a fluidic device, a detector could be positioned either on the same side or an opposite side of the fluidic device relative to the light source. A reaction site can be configured with a single transparent surface, through which light is both directed to the reaction and detected from the reaction. In this scenario, a detector is positioned on the same side of the fluidic device as the light source, with the detector shielded such that the only light detected is that from the reaction site of the fluidic device. Alternatively, a reaction site can be configured with two flat, opposed transparent surfaces such that the reaction site is effectively an optical cuvette. In this configuration, the light source would emit light to one side of the reaction site in the fluidic device and the detector would detect the light transmitted through the colored product to the opposite side of the reaction site in the fluidic device.
- The fluidic devices of the present invention preferably function as handheld devices in a point-of-care system. The term “handheld” refers to a device that is both small and light enough to be easily held in an adult's hand, and can readily be placed by hand into operation within a point-of-care system. A handheld device of the present invention may assume a variety of overall configurations, such as rectangular, triangular, circular, oval and so forth. Regardless of the overall configuration, a handheld device of the present invention may typically be enclosed within rectangular dimensions of about 30×30×15 cm (length×width×height), or about 12×10×5 cm, or about 8×6×1.5 cm, and even smaller, such as about 7×5×1 cm.
- A “point-of-care” system as used herein refers to a system that may be used at a patient's home, bedside, or other environment for performing any type of bodily fluid analysis or test outside of a central laboratory. A point-of-care system of the present invention will enable testing to be efficiently carried out by a patient or an assistant, a health care provider, and so forth. A point-of-care system preferably has dimensions and a configuration that allows it to be conveniently transported to a user's desired environment and readily used for testing.
-
FIG. 1 illustrates an exemplary system of the present invention. As illustrated, a fluidic device provides a bodily fluid from a patient and can be inserted into a reader assembly. The fluidic device may take a variety of configurations and in some embodiments the fluidic device may be in the form of a cartridge. An identifier (ID) detector may detect an identifier on the fluidic device. The identifier detector communicates with a communication assembly via a controller which transmits the identifier to an external device. Where desired, the external device sends a protocol stored on the external device to the communication assembly based on the identifier. The protocol to be run on the fluidic device may comprise instructions to the controller of the reader assembly to perform the protocol on the fluidic device, including but not limited to a particular assay to be run and a detection method to be performed. Once the assay is performed on the fluidic device, a signal indicative of an analyte in the bodily fluid sample is generated and detected by a detector. The detected signal may then be communicated to the communications assembly, where it can be transmitted to the external device for processing, including without limitation, calculation of the analyte concentration in the sample. -
FIG. 2 illustrates exemplary layers of a fluidic device according to the present invention prior to assembly of the fluidic device.FIGS. 3 and 4 show a top and bottom view, respectively, of an exemplary fluidic device after the device has been assembled. The different layers are designed and assembled to form a three dimensional fluidic channel network. A sample collection unit provides a sample of bodily fluid from a patient. A reader assembly comprises actuating elements (not shown) that can actuate the fluidic device to start and direct the flow of a bodily fluid sample and assay reagents in the fluidic device. In some embodiments actuating elements first cause the flow of sample in the fluidic device from a sample collection unit 4 to reaction sites 6, and then to waste chamber 8 following completion of reactions in the sites. If necessary for a given reaction, the actuating elements initiate flow of reagents from reagent chambers 10 to reaction sites, and then to waste chamber 8 in a manner similar to that of the sample. - A fluidic device of the present system can run a variety of assays, regardless of the analyte being detected from a bodily fluid sample. A protocol dependent on the identity of the fluidic device may be transferred from an external device where it can be stored to a reader assembly to enable the reader assembly to carry out the specific protocol on the fluidic device. In preferred embodiments, the fluidic device has an identifier (ID) that is detected or read by an identifier detector. The identifier can then be communicated to a communication assembly, where it can then be transferred or transmitted to an external device.
- In one embodiment, a bodily fluid sample is provided to a fluidic device, which is then inserted into a reader assembly. In some embodiments the fluidic device is partially inserted manually, and then a mechanical switch in the reader assembly automatically properly positions the fluidic device inside the reader assembly. Any other mechanism known in the art for inserting a disk or cartridge into a device may be used as well. In some embodiments only manual insertion may be required.
- In preferred embodiments the reader assembly houses a controller which controls a pump and a series of valves to control and direct the flow of liquid within the fluidic device. In some embodiments the reader assembly may comprises multiple pumps. The sample and reagents are preferably pulled through the fluidic channels by a vacuum force created by sequentially opening and closing at least one valve while activating a pump within the reader assembly. Methods of using at least one valve and at least one pump to create a vacuum force are well known. While a negative pulling force may be used, a positive pushing force may also be generated by at least one pump and valve according to the present invention. In other embodiments movement of fluid on the fluidic device may be by electro-osmotic, capillary, piezoelectric, or microactuator action.
- One of the advantages of the present invention is that any reagents necessary to perform an assay on a fluidic device according to the present invention are preferably on-board, or housed within the fluidic device before, during, and after the assay. In this way the only inlet or outlet from the fluidic device is preferably the bodily fluid sample initially provided by the fluidic device. This design also helps create an easily disposable fluidic device where all fluids or liquids remain in the device. The on-board design also prevents leakage from the fluidic device into the reader assembly which should remain free from contamination from the fluidic device.
- The subject apparatus and systems provide an effective means for high throughput and/or real-time detection of analytes present in a bodily fluid from a subject. The detection methods may be used in a wide variety of circumstances including identification and quantification of analytes that are associated with specific biological processes, physiological conditions, disorders or stages of disorders. As such, the subject apparatus and systems have a broad spectrum of utility in, e.g. drug screening, disease diagnosis, phylogenetic classification, parental and forensic identification. The subject apparatus and systems are also particularly useful for advancing preclinical and clinical stage development of therapeutics, improving patient compliance, monitoring adverse drug responses associated with a prescribed drug, and developing individualized medicine.
- Accordingly, in one embodiment, the present invention provides a method of detecting an analyte in a bodily fluid from a subject. The method typically involves the steps of (a) introducing a sample of bodily fluid into a fluidic device having a sample collection unit and an assay assembly, the assay assembly having reactants that are capable of reacting with an analyte; (b) allowing the sample of bodily fluid to react with the reactants contained within the assay assembly to yield a colored product having an absorbance spectrum corresponding to at least one wavelength from a light source; (c) transmitting light having the at least one wavelength to the fluidic device from the light source; and (d) detecting absorption of light of the at least one wavelength transmitted to the fluidic device, wherein the absorption is indicative of the presence of the analyte in said bodily fluid.
- Any bodily fluids suspected to contain an analyte of interest can be used in conjunction with the subject methods of detection. Commonly employed bodily fluids include but are not limited to blood, serum, saliva, urine, gastric and digestive fluid, tears, stool, semen, vaginal fluid, interstitial fluids derived from tumorous tissue, and cerebrospinal fluid. The volume of bodily fluid to be used in methods of the present invention is generally less than about 500 microliters, and preferably less than about 50 microliters. Where desired, a sample of 1 to 50 microliters, 1 to 40 microliters, 1 to 30 microliters, 1 to 20 microliters, or 1 to 10 microliters can be used for detecting an analyte using the subject fluidic device.
- A bodily fluid may be drawn from a patient and brought into the fluidic device in a variety of ways, including but not limited to, lancing, injection, or pipetting. In one embodiment, a lancet punctures the skin and draws the sample into the fluidic device using, for example, gravity, capillary action, aspiration, or vacuum force. The lancet may be part of the fluidic device, or part of a reader assembly, or as a stand alone component. Where needed, the lancet may be activated by a variety of mechanical, electrical, electromechanical, or any other known activation mechanism or any combination of such methods. In another embodiment where no active mechanism is required, a patient can simply provide a bodily fluid to the fluidic device, as for example, could occur with a saliva sample. The collected fluid can be placed in the sample collection unit within the fluidic device. In yet another embodiment, the fluidic device comprises at least one microneedle which punctures the skin. The microneedle can be used with a fluidic device alone, or can puncture the skin after the fluidic device is inserted into a reader assembly.
- In some embodiments a microneedle is about the size of a human hair and has an integrated microreservoir or cuvette. The microneedle may painlessly penetrate the skin and draw a small blood sample. More preferably, the microneedle collects about 0.01 to about 1 microliter, preferably about 0.05 to about 0.5 microliters and more preferably about 0.1 to about 0.3 microliters of capillary blood. In some embodiments a microneedle may be constructed out of silicon and is about 10 to about 200 microns in diameter, preferably about 50 to about 150 microns in diameter, and most preferably about 100 microns in diameter, making their application to the skin virtually painless. To ensure that a capillary is actually struck by a needle, a plurality of microneedles may be used for sample collection. Such microneedles may be of the type marketed by Pelikan (Palo Alto, Calif.) and/or Kumetrix (Union City, Calif.). U.S. Pat. No. 6,503,231 discloses microneedles which may be used with the present invention.
- In preferred embodiments a microneedle is only used once and then discarded. In some embodiments a mechanical actuator can insert and withdraw the microneedle from the patient, discard the used needle, and reload a new microneedle.
- In some embodiments the method of detecting an analyte in a bodily fluid from a subject includes metering a predetermined portion of the sample, in which this predetermined portion is assayed for the presence of analytes. The volume of the predetermined portion will preferably be less than about 500 microliters, more preferably about less than 50 microliters, or even more preferably, the volume is about 10 microliters.
- A precise sample volume is determined by several features. In one embodiment a subject places a sample of bodily fluid into the sample collection well, after which the sample is drawn into a metering channel by capillary action until it reaches a stop junction at the entrance of the mixing chamber. The metering channel preferably has physical dimensions and surface characteristics which reliably promote flow of blood from the sample collection well.
- In a preferred embodiment, a predetermined portion of a sample is diluted and mixed with a diluent to yield a diluted sample, which is then assayed for the presence of analytes. A predetermined portion is diluted with a diluent that is typically contained in a diluent chamber, with the portion and diluent being mixed in a mixing chamber. Preferably, the diluent is flowed into the metering channel, which flushes the sample into the mixing chamber. A precise volume of diluent is stored in the dilution chamber. A precise volume of diluent, a precise volume of the predetermined portion of a sample, and efficient combination and mixing of the two volumes allows the sample to be diluted with a high degree of precision.
- In some embodiments, the fluid sample will be filtered before entering a reaction chamber. For example, blood may be filtered to remove red blood cells. Where a sample is diluted before assaying, filtering will typically occur after dilution. Filtering will occur in a filter chamber, through which the sample is transported before entering into a reaction site.
- A variety of assays may be performed on a fluidic device according to the present invention to detect an analyte of interest in a sample. Analytes that may be detected by the subject methods include, but are not limited to, drugs, drug metabolites, biomarkers indicative of disease, tissue specific markers, tissue specific enzymes, hormones, antibodies, pathogens, HDL cholesterol, LDL cholesterol, total cholesterol, lipids, and glucose.
- The subject methods involve reactants that are capable of reacting with an analyte of interest to generate a color product for detection by optical means. The choice of reactants will depend on the particular analyte being examined.
- For detection of levels of total cholesterol (i.e., the sum of free and esterified cholesterol) in a bodily fluid, reactants including cholesterol esterase, cholesterol oxidase, an oxidizable dye such as n,n-bis(4-sulfobutyl)-3-methylaniline, disodium salt (TODB), 4-aminoantipyrine, and horse radish peroxidase can be employed. In this reaction scheme, cholesterol esterase converts esterified cholesterol to free cholesterol. Cholesterol oxidase transforms the free cholesterol into cholest-4-ene-3-one and hydrogen peroxide. The amount of hydrogen peroxide generated can be quantified by a spectrophotometric assay, for example the oxidative coupling of 4-aminoantipyrine and TODB in the presence of peroxidase to form a chromophore. The amount of chromophore formed is then measured by light attenuation (absorbance), which corresponds to the amount of total cholesterol.
- Measuring the ALT levels as a way for assaying liver function can be carried out by reacting the analyte from a bodily fluid with reactants such as alphaketoglutarate, pyruvate oxidase, an oxidizable dye such as N,N-Bis(4-sulfobutyl)-3-methylaniline, disodium salt (TODB), 4-aminoantipyrine, and horse radish peroxidase. In this assay reaction scheme, ALT catalyzes the transfer of amino groups from L-alanine to alphaketoglutarate, producing pyruvate and glutamate. Pyruvate oxidase oxidizes the pyruvate to acetylphosphate and hydrogen peroxide. Horseradish peroxidase catalyzes the reaction of the peroxide reacts with TODB to form a colored product at a rate proportional to the ALT concentration of the sample. The resultant colored product in the reaction is measured by light absorbance.
- The methods of the present invention can also be used to detect analytes, such as small molecule drugs, biomarkers, hormones, and antibodies, through binding of an agent that then participates in a color-producing reaction. For example, an analyte can be detected through binding and color formation that occurs in immunoassays, such as an enzyme-linked immunosorbent assay (ELISA). In a typical ELISA, an analyte is specifically bound by an antibody, which in turn is detected by a secondary, enzyme-linked antibody. The linked enzyme catalyzes a color-producing reaction. Enzymes such as β-galactosidase, alkaline phophatase and horse radish peroxidase are often utilized for color formation in ELISAs. The light absorbance of colored products generated in an ELISA is typically in a range well suited for the present invention. Reactants of the present invention accordingly will include reagents for an ELISA or similar immunoassay. Unlike typical assays for detection of analytes that are chemical reactants or promote a chemical reaction, ELISA immunoassays require wash steps, and thus generally will occur in separate, dedicated reaction sites.
- A colored product will be detected in methods of the present invention through measurement of absorbance of light by the colored product. The light to be transmitted in the methods of the present invention will be from a source that emits a spectrum of light in which at least one wavelength of light corresponds to the absorption spectrum of the colored product. The range of absorption spectra of colored products will correspond to a wavelength range of about 250 nm to about 900 nm. Preferably, the color to be measured is generally in a visible range of about 400 to about 800 nm. The spectrum of light emitted by a source accordingly will be similar to the absorption spectrum of the colored product. Preferably, the emission spectrum from a light source will exactly overlap the absorption spectrum of the absorbing species. However, an exact overlap between the light source emission spectrum and the absorption spectrum of the colored product is not required for measurement by the methods of the present invention, as described in the examples provided herein. Monochromatic light sources and/or filters generally can be used to provide a means to match the characteristics of the absorption and the light source.
- A variety of light sources may be utilized for the present invention depending on the particular type of application and absorbance spectrum requirements for a given analyte of interest. An example of an appropriate light source includes, but is not limited to, an incandescent bulb, a light emitting diode, luminescent paint, and a laser.
- The position of the light source relative to the reaction site will depend on the particular source of light. Typically, a light source will transmit light into the reaction site through a transparent, flat surface of the reaction site. In this scenario, the light source will be external to the fluidic device, with the reaction site aligned with the light source so that light is transmitted directly into the reaction site. To enable measurement from several reaction sites, the fluidic device and light source will be moveable relative to each other to allow alignment of more than one individual reaction site with the light source. Either the fluidic device, light source, or a combination of the two can be moveable within a system to allow alignment.
- As an alternative to light being transmitted into the reaction site from an external source, the methods of the present invention can utilize a luminescent paint as an internal light source. In this scenario, the luminescent paint will emit light through a colored product contained in the reaction site. For example, the reaction site could have a cylindrical shape, with two flat opposed surfaces, with one being transparent, the other being coated with a luminescent paint. The luminescent paint will emit light through the colored product, which could be detected by a detector as detailed below. Luminescent paint is generally formulated using very tiny quantities of a long-lived radioisotope together with a material that glows or scintillates non-destructively when irradiated. The paint can be appropriately colored by addition of dyes. The spectrum of light emitted will generally be a function of the scintillant material and the absorbance characteristics of the chemistry used in forming a colored product.
- The light generated in the methods of the present invention will be detected by a detector that will be external to the fluidic device. Examples of suitable detectors include, but are not limited to, a photomultiplier tube, a photodiode or an avalanche photodiode.
- The position of the light detector relative to the fluidic device will depend on the light source used and its relative position to the fluidic device. In the case where the light source is a luminescent paint contained within a reaction site of the device, the detector can be positioned as necessary to be aligned with a transparent surface of the reaction site to detect light emitted through a colored product.
- In the situation where the light source is external to a fluidic device, a detector could be positioned either on the same side or an opposite side of the fluidic device relative to the light source. A reaction site can be configured with a single transparent surface to allow both light transmission into the site and detection from the site. In this scenario, a detector would be positioned on the same side of the fluidic device as the light source, and shielded such that the only light detected is that emitted from the reaction site of the fluidic device. Alternatively, a reaction site can be configured with two flat, opposed transparent surfaces such that the reaction site is effectively an optical cuvette. In this configuration, the light source would transmit light to one side of the reaction site in the fluidic device and the detector would detect the light transmitted through the colored product to the opposite side of the reaction site in the fluidic device. In either scenario, the detector will be positioned to align with the reaction site to detect light emission.
- To allow measurement from several reaction sites, the fluidic device and light detector will be moveable relative to each other to allow alignment of more than one individual reaction site with the light detector. Either the fluidic device, the detector, or a combination of the two can be moveable to allow alignment.
- In addition to detection of the presence of an analyte in a bodily fluid, the methods of the present invention also provide for quantitation of the concentration of an analyte in a bodily fluid through measurement of absorbance. Concentration of the analyte is related to the amount of light adsorbed by the colored product. In the case of analytes that can be converted directly or indirectly into colored product,.such as cholesterol, the conversion to product is typically stoichiometric. For instance, the amount of color produced can linearly increase with the amount of analyte present. The corresponding absorbance can be proportionately related to the amount of color produced, and therefore the concentration of analyte present. However, at high concentrations, the proportionality of absorbance to concentration set forth by Beer's Law does not necessarily hold. Thus, an accurate measurement of analyte present at high concentration may depend on an appropriate dilution of a bodily fluid, the characteristics of the particular absorbing species, and the length of cell path from which determination of absorbance is made.
- Analytes that are detected by their ability to catalyze formation of a colored product, such as the enzyme ALT, can be quantified following a particular length of reaction time. By allowing an analyte enzyme to react for a fixed period of time, appropriate quantities of measurable, colored product can be generated. For example, a fixed period of time under conditions in which the amount of an analyte enzyme is a rate-limiting factor can give rise to uM-nM quantities of colored product. The quantity of product generated can be measured at the end of the time period by measurement of light attenuation and determination of absorbance. The amount of analyte can then be determined based on the amount of product generated over time, based on known kinetics of a given analyte under the conditions of a particular assay used. An accurate measurement of analyte will depend on the particular analyte being examined, conditions under which it is assayed (at what dilution, temperature, and so on), the characteristics of the particular absorbing species, and the length of cell path from which determination of absorbance is made.
- In some embodiments immunoassays are run on the fluidic device. While competitive binding assays, which are well known in the art, may be run in some embodiments, in preferred embodiments a two-step method is used which eliminates the need to mix a conjugate and a sample before exposing the mixture to an antibody, which may be desirable when very small volumes of sample and conjugate are used, as in the fluidic device of the present invention. A two-step assay has additional advantages over the competitive binding assays when use with a fluidic device as described herein. It combines the ease of use and high sensitivity of a sandwich (competitive binding) immunoassay with the ability to assay small molecules.
- In an exemplary two-step assay, the sample containing analyte first flows over a reaction site containing antibodies. The antibodies bind the analyte present in the sample. After the sample passes over the surface, a solution with analyte conjugated to a marker at a high concentration is passed over the surface. The conjugate saturates any of the antibodies that have not yet bound the analyte. Before equilibrium is reached and any displacement of pre-bound unlabelled analyte occurs, the high-concentration conjugate solution is washed off. The amount of conjugate bound to the surface is then measured by the appropriate technique, and the detected conjugate is inversely proportional to the amount of analyte present in the sample.
- The methods of the present invention provide for monitoring more than one pharmacological parameter useful for assessing efficacy and/or toxicity of a therapeutic agent. For the purposes of this invention, a “therapeutic agent” is intended to include any substances that have therapeutic utility and/or potential. Such substances include but are not limited to biological or chemical compounds such as simple or complex organic or inorganic molecules, peptides, proteins, or polynucleotides. A vast array of compounds can be synthesized, for example polymers, such as polypeptides and polynucleotides, and synthetic organic compounds based on various core structures, and these are also included in the term “therapeutic agent”. In addition, various natural sources can provide compounds for screening, such as plant or animal extracts, and the like. It should be understood, although not always explicitly stated that the agent is used alone or in combination with another agent, having the same or different biological activity as the agents identified by the inventive screen. The agents and methods also are intended to be combined with other therapies.
- Pharmacodynamic (PD) parameters according to the present invention include without limitation physical parameters such as temperature, heart rate/pulse, blood pressure, and respiratory rate, and biomarkers such as proteins, cells, and cell markers. Biomarkers could be indicative of disease or could be a result of the action of a drug. Pharmacokinetic (PK) parameters according to the present invention include without limitation drug and drug metabolite concentration. Identifying and quantifying the PK parameters in real time from a sample volume is extremely desirable for proper safety and efficacy of drugs. If the drug and metabolite concentrations are outside a desired range and/or unexpected metabolites are generated due to an unexpected reaction to the drug, immediate action may be necessary to ensure the safety of the patient. Similarly, if any of the pharmacodynamic (PD) parameters fall outside the desired range during a treatment regime, immediate action may have to be taken as well.
- In preferred embodiments physical parameter data is stored in or compared to store profiles of physical parameter data in a bioinformatics system which may be on an external device incorporating pharmacogenomic and pharmacokinetic data into its models for the determination of toxicity and dosing. Not only does this generate data for clinical trials years prior to current processes but also enables the elimination of current disparities between apparent efficacy and actual toxicity of drugs through real-time continuous monitoring. During the go/no go decision process in clinical studies, large scale comparative population studies can be conducted with the data stored on the database. This compilation of data and real-time monitoring allows more patients to enter clinical trials in a safe fashion earlier than currently allowed. In another embodiment biomarkers discovered in human tissue studies can be targeted by the device for improved accuracy in detemiining drug pathways and efficacy in cancer studies.
- Being able to monitoring the rate of change of an analyte concentration or PD or PK over a period of time in a single subject, or performing trend analysis on the concentration, PD, or PK, whether they are concentrations of drugs or their metabolites, can help prevent potentially dangerous situations. For example, if glucose were the analyte of interest, the concentration of glucose in a sample at a given time as well as the rate of change of the glucose concentration over a given period of time could be highly useful in predicting and avoiding, for example, hypoglycemic events. Such trend analysis has widespread beneficial implications in drug dosing regimen. When multiple drugs and their metabolites are concerned, the ability to spot a trend and take proactive measures is often desirable.
- The present invention allows for automatic quantification of a pharmacological parameter of a patient as well as automatic comparison of the parameter with, for example, the patient's medical records which may include a history of the monitored parameter, or medical records of another group of subjects. Coupling real-time analyte monitoring with an external device which can store data as well as perform any type of data processing or algorithm, for example, provides a device that can assist with typical patient care which can include, for example, comparing current patient data with past patient data.
- Where a statistically significant discrepancy exists between the detected values and the threshold value, a further action may be taken by a medical practitioner. Such action may involve a medical action such as adjusting dosage of the therapeutic agent; it may also involve a business decision such as continuing, modifying, or terminating the clinical trial.
- One advantage of the current invention is that assay results can be substantially immediately communicated to any third party that may benefit from obtaining the results. For example, once the analyte concentration is determined at the external device, it can be transmitted to a patient or medical personnel who may need to take further action. The communication step to a third party can be performed wirelessly, and by transmitting the data to a third party's hand held device, the third party can be notified of the assay results virtually anytime and anywhere. Thus, in a time-sensitive scenario, a patient may be contacted immediately anywhere if urgent medical action may be required.
- In some embodiments a patient may be provided with a plurality of fluidic devices to use to detect a variety of analytes. A subject may, for example, use different fluidic devices on different days of the week.
- In some embodiments, the methods of the present invention are applicable for obtaining pharmacological data useful for assessing efficacy and/or toxicity of a pharmaceutical agent from a test animal. When using laboratory animals in preclinical testing of a pharmaceutical agent, it is often necessary to kill the test subject to extract enough blood to perform an assay to detect an analyte of interest. This has both financial and ethical implications, and as such it may be advantageous to be able to draw an amount of blood from a test animal such that the animal does not need to be killed. In addition, this can also allow the same test animal to be tested with multiple pharmaceutical agents at different times, thus allowing for a more effective preclinical trial. On average, the total blood volume in a mouse, for example, is 6-8 mL of blood per 100 gram of body weight. A benefit of the current invention is that only a very small volume of blood is required to perform preclinical trials on mice or other small labaratory animals. In some embodiment between about 1 microliter and about 50 microliters are drawn. In prefered embodiment between about 1 microliter and 10 microliters are drawn. In preferred embodiments about 5 microliters of blood are drawn.
- A further advantage of keeping the test animal alive is evident in a preclinical time course study. When multiple mice, for example, are used to monitor the levels of an analyte in a test subject's bodily fluid over time, the added variable of using multiple subjects is introduced into the trial. When, however, a single test animal can be used as its own control over a course of time, a more accurate and beneficial preclinical trial can be performed.
- In some embodiments the methods of the present invention can be used in methods of automatically monitoring patient compliance with a medical treatment. After determination of an analyte in a bodily fluid, the level of analyte can be compared with a known profile associated with the medical treatment to determine if the patient is compliant or noncompliant with the medical treatment; and notifying a patient of the compliance or noncompliance.
- Noncompliance with a medical treatment, including a clinical trial, can seriously undermine the efficacy of the treatment or trial. As such, in some embodiments the system of the present invention can be used to monitor patient compliance and notify the patient or other medical personnel of such noncompliance. For example, a patient taking a pharmaceutical agent as part of medical treatment plan can take a bodily fluid sample which is assayed as described herein, but a detected metabolite concentration, for example, may be at an elevated level compared to a known profile thereby indicating multiple doses of the pharamaceutical agent have been taken. Such a known profile may be located or stored on an external device.
- The following examples illustrate and explain the invention. The scope of the invention is not limited by these examples.
- Several color forming chemistries are applicable for use in the present invention, including those of peroxidase reactions. Peroxidase chromophores are well known in the art, as exemplified by Trinder reagents such as TODB or TOOS. A Trinder reagent will generate a reaction product having an absorption spectrum such as that exemplified in
FIG. 8 . As shown inFIG. 8 , the width of the absorption spectrum, at about half height of spectrum is about 100 nm. The width of the spectrum indicates that the absorption characteristics of a Trinder reagent make measurement of absorption applicable over a range of wavelengths. - In the present invention, a light source may have an emission spectrum that perfectly overlaps with the absorption spectrum of the absorbing species. Using values that are typical for the chemistry and devices of the present invention, Table 1 shows the calculation for one analyte concentration. As shown in Table 1, an analyte having a concentration of 1.5 mM gives an absorbance of 0.25 (44 % transmission) after dilution 1:30 when measured at the maximum absorbance (at λmax=50,000) with a pathlength of 0.1 cm, which would be typical of single use cartridges.
FIG. 9 demonstrates the spectral response at this concentration, from which it can be seen that the best response is at λmax of 500 nm. -
TABLE 1 Conditions for spectra Luminescence λmax 500 nm Half width 30 nm Intensity 100000 counts (total) Absorption λmax 500 nm Half width 40 nm εM (λmax) 50000 Pathlength, l 0.1 cm Conc. (sample) 1.50E−03 M Dilution 30 Fold A @ λmax 2.50E−01 ΔT@ λmax 4.38E+01% - Using the parameters given in Example 2, the response of a cholesterol assay is shown in
FIG. 10 based on attenuation of light at λmax. As shown inFIG. 10 , the assay signal measured at λmax is well modulated over the clinical range of tested cholesterol levels. - In this example, the parameters are as given in Example 2, with the exception that there is a large offset between the spectrum of the light source and the absorption spectrum, with λmax being 50 nm higher for the absorption spectrum (550 nm rather than 500 nm). As seen in
FIG. 11 , the light attenuation at the λmax of emission (500 nm) is much less than for the ideal case, as shown inFIG. 9 . At higher wavelengths, however, the fractional signal modulation between the two spectrums is improved, albeit at a lower signal level of absorption than that seen at λmax. While the light emission and absorption spectrums will preferably overlap exactly, the overlap need not be an exact match for utility in the present invention. - As shown in Example 4, overlap between light emission and absorption spectrums need not be an exact match for use in the present invention. However, monochromatic light sources and/or filters can generally be used to create a near exact match of the characteristics between a light source and the colored product absorption. Using the same parameters as used in Example 4,
FIG. 12 demonstrates use of an edge filter with a cut-off of 490 nm used on either the light transmission or detection side of the optical system to improve signal modulation. - While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and'substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
Claims (54)
1. A system for detecting an analyte in a bodily fluid from a subject, comprising:
a) a fluidic device comprising a cartridge, said cartridge comprising a sample collection unit and an assay assembly, wherein said sample collection unit allows a sample of bodily fluid to react with reactants contained within said assay assembly to yield a colored product having an absorbance spectrum corresponding to at least one wavelength from a light source;
b) a light source transmitting the at least one wavelength to the assay assembly; and
c) a detector that detects absorption of light of the at least one wavelength, wherein said absorption is indicative of the presence of the analyte in said bodily fluid.
2. The system of claim 1 , wherein the amount of absorption is related to the concentration of the analyte in said bodily fluid.
3. The system of claim 1 , wherein the amount of absorption is stoichiometrically related to the concentration of the analyte in said bodily fluid.
4. The system of claim 1 , wherein the fluidic device is a hand-held device.
5. The system of claim 1 , wherein the system is a point-of-care system.
6. The system of claim 1 , wherein the light source comprises a light emitting diode.
7. The system of claim 1 , wherein the light source comprises luminescent paint.
8. The system of claim 7 , wherein said luminescent paint is coated in said assay assembly.
9. The system of claim 1 , wherein the bodily fluid comprises blood.
10. The system of claim 1 , wherein said fluidic device detects a plurality of analytes and said fluidic device comprises reagents for said plurality of analytes.
11. The system of claim 1 , wherein the analyte is selected from the group consisting of drug, drug metabolite, biomarker indicative of a disease, tissue specific marker, and tissue specific enzyme.
12. The system of claim 1 , wherein the analyte is selected from the group consisting of HDL cholesterol, LDL cholesterol, total cholesterol, lipids, glucose, and enzymes.
13. The system of claim 1 , wherein the assay assembly is configured to run an enzymatic assay yielding a colored product.
14. The system of claim 1 , wherein the assay assembly is configured to run an immunoassay.
15. The system of claim 1 , wherein the reactants are selected from the group consisting of enzymes, enzyme substrates, and combinations thereof.
16. The system of claim 1 , wherein the wavelength is in a range of about 400 to about 800 nm.
17. The system of claim 1 , wherein said sample of bodily fluid is less than about 500 ul.
18. The system of claim 1 , wherein said sample of bodily fluid is less than about 50 ul.
19. The system of claim 1 , wherein the detector is a photomultiplier tube, photodiode or avalanche photodiode.
20. A fluidic device for detecting the presence or absence of an analyte in a bodily fluid from a subject, comprising:
a cartridge, said cartridge comprising a sample collection unit, an assay assembly; and
a light source, wherein said sample collection unit is configured to collect a sample of bodily fluid from said subject and wherein said assay assembly comprises at least one reaction site containing a reactant that reacts with said analyte to yield a colored product having an absorbance spectrum corresponding to at least one wavelength from said light source.
21. The fluidic device of claim 20 , wherein said light source is luminescent paint.
22. The fluidic device of claim 21 , wherein said luminescent paint is coated in said assay assembly.
23. The fluidic device of claim 20 , wherein said sample collection unit comprises a sample collection well, a metering channel, and a dilution chamber in fluidic communication with said metering channel, wherein said dilution chamber is configured to store a diluent.
24. The fluidic device of claim 23 , wherein said sample collection unit further comprises a mixing chamber that is configured to mix a predetermined portion of the sample with the diluent to yield a diluted sample.
25. The fluidic device of claim 24 , wherein the sample collection unit further comprises a filter configured to filter the diluted sample before it is assayed.
26. The fluidic device of claim of claim 20 , wherein the analyte is selected from the group consisting of drug, drug metabolite, biomarker indicative of a disease, tissue specific marker, and tissue specific enzyme.
27. The fluidic device of claim 20 , wherein the analyte is selected from the group consisting of HDL cholesterol, LDL cholesterol, total cholesterol, lipids, glucose, and enzymes.
28. The fluidic device of claim 20 , wherein the wavelength is in a range of about 400 to about 800 nm
29. The fluidic device of claim 24 , wherein said predetermined portion of said sample is less than 50 ul.
30. The fluidic device of claim 24 , wherein said predetermined portion of said sample is less than 20 ul.
31. The fluidic device of claim 24 , wherein said portion of said sample is about 10 ul.
32. The fluidic device of claim 20 , wherein said bodily fluid is blood.
33. A method of detecting an analyte in a bodily fluid from a subject, comprising:
a) introducing a sample of bodily fluid into a fluidic device comprising a sample collection unit and an assay assembly, said assay assembly comprising reactants that are capable of reacting with said analytes;
b) allowing said sample of bodily fluid to react with said reactants contained within said assay assembly to yield a colored product having an absorbance spectrum corresponding to at least one wavelength from a light source;
c) transmitting the at least one wavelength to the fluidic device from said light source; and
d) detecting absorption of light of the at least one wavelength transmitted to the fluidic device, wherein said absorption is indicative of the presence of the analyte in said bodily fluid.
34. The method of claim 33 , wherein the amount of absorption is related to the concentration of the analyte in said bodily fluid.
35. The method of claim 33 , wherein the amount of absorption is stoichiometrically related to the concentration of the analyte in said bodily fluid.
36. The method of claim 33 , wherein the light source comprises a light emitting diode.
37. The method of claim 33 , wherein the light source comprises a luminescent paint.
38. The method of claim 37 , wherein said luminescent paint is coated in said assay assembly.
39. The method of claim 33 , wherein the analyte is selected from the group consisting of drug, drug metabolite, biomarker indicative of a disease, tissue specific marker, and tissue specific enzyme.
40. The method of claim 33 , wherein the analyte is selected from the group consisting of HDL cholesterol, LDL cholesterol, total cholesterol, lipids, glucose, and enzymes.
41. The method of claim 33 , wherein the wavelength is in a range of about 400 to about 800 nm.
42. The method of claim 33 , wherein said fluidic device detects a plurality of analytes and said fluidic device comprises reactants for said plurality of analytes.
43. The method of claim 33 , wherein said assay assembly is configured to run an enzymatic assay yielding a colored product.
44. The method of claim 33 , wherein the assay assembly is configured to run an immunoassay.
45. The method of claim 33 , wherein the reactants are selected from the group of enzymes, substrates, and combinations thereof.
46. The method of claim 33 , wherein said sample of bodily fluid is less than about 500 ul.
47. The method of claim 33 , wherein said sample of bodily fluid is less than about 50 ul.
48. The method of claim 33 , further comprising the step of quantifying the amount of said analyte present in said bodily fluid after said detecting step.
49. The method of claim 33 , wherein said introducing comprises metering a predetermined portion of said sample to be assayed in said sample collection unit.
50. The method of claim 49 , further comprising diluting and mixing said predetermined portion of said sample with a diluent in said fluidic device after the metering step to yield a diluted sample.
51. The method of claim 50 , wherein said predetermined portion of said sample is less than 50 ul.
52. The method of claim 50 , wherein said predetermined portion of said sample is less than 20 ul.
53. The method of claim 50 , wherein said predetermined portion of said sample is about 10 ul.
54. The method of claim 50 , further comprising filtering said diluted sample before allowing said diluted sample to react with said reactants.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/939,509 US20080113391A1 (en) | 2006-11-14 | 2007-11-13 | Detection and quantification of analytes in bodily fluids |
PCT/US2007/023904 WO2008085228A2 (en) | 2006-11-14 | 2007-11-14 | Detection and quantification of analytes in bodily fluids |
US12/750,518 US8778665B2 (en) | 2006-11-14 | 2010-03-30 | Detection and quantification of analytes in bodily fluids |
US14/285,562 US9303286B2 (en) | 2006-11-14 | 2014-05-22 | Detection and quantification of analytes in bodily fluids |
US15/054,510 US10156579B2 (en) | 2006-11-14 | 2016-02-26 | Methods for the detection of analytes in small-volume blood samples |
US16/222,845 US20190128902A1 (en) | 2006-11-14 | 2018-12-17 | Methods for the Detection of Analytes in Small-Volume Blood Samples |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86580506P | 2006-11-14 | 2006-11-14 | |
US11/939,509 US20080113391A1 (en) | 2006-11-14 | 2007-11-13 | Detection and quantification of analytes in bodily fluids |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/750,518 Continuation US8778665B2 (en) | 2006-11-14 | 2010-03-30 | Detection and quantification of analytes in bodily fluids |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080113391A1 true US20080113391A1 (en) | 2008-05-15 |
Family
ID=39369639
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/939,509 Abandoned US20080113391A1 (en) | 2006-11-14 | 2007-11-13 | Detection and quantification of analytes in bodily fluids |
US12/750,518 Active 2029-12-20 US8778665B2 (en) | 2006-11-14 | 2010-03-30 | Detection and quantification of analytes in bodily fluids |
US14/285,562 Active 2028-01-11 US9303286B2 (en) | 2006-11-14 | 2014-05-22 | Detection and quantification of analytes in bodily fluids |
US15/054,510 Active US10156579B2 (en) | 2006-11-14 | 2016-02-26 | Methods for the detection of analytes in small-volume blood samples |
US16/222,845 Pending US20190128902A1 (en) | 2006-11-14 | 2018-12-17 | Methods for the Detection of Analytes in Small-Volume Blood Samples |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/750,518 Active 2029-12-20 US8778665B2 (en) | 2006-11-14 | 2010-03-30 | Detection and quantification of analytes in bodily fluids |
US14/285,562 Active 2028-01-11 US9303286B2 (en) | 2006-11-14 | 2014-05-22 | Detection and quantification of analytes in bodily fluids |
US15/054,510 Active US10156579B2 (en) | 2006-11-14 | 2016-02-26 | Methods for the detection of analytes in small-volume blood samples |
US16/222,845 Pending US20190128902A1 (en) | 2006-11-14 | 2018-12-17 | Methods for the Detection of Analytes in Small-Volume Blood Samples |
Country Status (2)
Country | Link |
---|---|
US (5) | US20080113391A1 (en) |
WO (1) | WO2008085228A2 (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060223776A1 (en) * | 2002-03-29 | 2006-10-05 | The Regents Of The University Of California | Microgel particles for the delivery of bioactive materials |
US20060264782A1 (en) * | 2005-05-09 | 2006-11-23 | Holmes Elizabeth A | Point-of-care fluidic systems and uses thereof |
US20080101681A1 (en) * | 2006-11-01 | 2008-05-01 | Armin Uwe Schmiegel | Methods for determining a position and shape of a bag placed in a baggage handling container using x-ray image analysis |
US20090134046A1 (en) * | 2007-06-21 | 2009-05-28 | Gen-Probe Incorporated | Instruments and methods for mixing the contents of a detection chamber |
US20100248277A1 (en) * | 2006-11-14 | 2010-09-30 | Ian Gibbons | Detection and quantification of analytes in bodily fluids |
US8007999B2 (en) | 2006-05-10 | 2011-08-30 | Theranos, Inc. | Real-time detection of influenza virus |
US8158430B1 (en) | 2007-08-06 | 2012-04-17 | Theranos, Inc. | Systems and methods of fluidic sample processing |
US20120214224A1 (en) * | 2011-02-01 | 2012-08-23 | Chan Eugene Y | Flow based clinical analysis |
US20140037516A1 (en) * | 2011-03-15 | 2014-02-06 | Carclo Technical Plastics Limited | Surface preparation |
US8741230B2 (en) | 2006-03-24 | 2014-06-03 | Theranos, Inc. | Systems and methods of sample processing and fluid control in a fluidic system |
US8862448B2 (en) | 2009-10-19 | 2014-10-14 | Theranos, Inc. | Integrated health data capture and analysis system |
US8974399B2 (en) | 2010-10-15 | 2015-03-10 | Avent, Inc. | System and method for sampling device for bodily fluids |
US20150233862A1 (en) * | 2010-12-03 | 2015-08-20 | Abbott Point Of Care Inc. | Assay Devices with Integrated Sample Dilution and Dilution Verification and Methods of Using Same |
US20150233950A1 (en) * | 2010-12-03 | 2015-08-20 | Abbott Point Of Care Inc. | Ratiometric Immunoassay Method and Blood Testing Device |
US20150247840A1 (en) * | 2010-12-03 | 2015-09-03 | Abbott Point Of Care Inc. | Sample Metering Device and Assay Device with Integrated Sample Dilution |
US20150258546A1 (en) * | 2010-12-03 | 2015-09-17 | Abbott Point Of Care Inc. | Sample Metering Device and Assay Device with Integrated Sample Dilution |
US9434977B2 (en) | 2013-02-27 | 2016-09-06 | Avent, Inc. | Rapid identification of organisms in bodily fluids |
CN106796212A (en) * | 2014-08-12 | 2017-05-31 | 新生代吉恩公司 | System and method for monitoring health based on the body fluid collected |
US9877672B2 (en) | 2010-01-28 | 2018-01-30 | Ellume Pty Ltd | Sampling and testing device for the human or animal body |
US10675623B2 (en) * | 2016-06-29 | 2020-06-09 | Visby Medical, Inc. | Devices and methods for the detection of molecules using a flow cell |
US10786229B2 (en) | 2015-01-22 | 2020-09-29 | Ellume Limited | Diagnostic devices and methods for mitigating hook effect and use thereof |
US10890590B2 (en) | 2012-09-27 | 2021-01-12 | Ellume Limited | Diagnostic devices and methods |
US10960399B2 (en) | 2014-03-10 | 2021-03-30 | Visby Medical, Inc. | Cartridge-based thermocycler |
US10987674B2 (en) | 2016-04-22 | 2021-04-27 | Visby Medical, Inc. | Printed circuit board heater for an amplification module |
US11162130B2 (en) | 2017-11-09 | 2021-11-02 | Visby Medical, Inc. | Portable molecular diagnostic device and methods for the detection of target viruses |
US11167285B2 (en) | 2014-12-31 | 2021-11-09 | Visby Medical, Inc. | Devices and methods for molecular diagnostic testing |
US11193119B2 (en) | 2016-05-11 | 2021-12-07 | Visby Medical, Inc. | Devices and methods for nucleic acid extraction |
US11287421B2 (en) | 2006-03-24 | 2022-03-29 | Labrador Diagnostics Llc | Systems and methods of sample processing and fluid control in a fluidic system |
US11352675B2 (en) | 2020-01-03 | 2022-06-07 | Visby Medical, Inc. | Devices and methods for antibiotic susceptability testing |
US11446011B2 (en) | 2016-04-13 | 2022-09-20 | Nextgen Jane, Inc. | Sample collection and preservation devices, systems and methods |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10721269B1 (en) | 2009-11-06 | 2020-07-21 | F5 Networks, Inc. | Methods and system for returning requests with javascript for clients before passing a request to a server |
US10015286B1 (en) | 2010-06-23 | 2018-07-03 | F5 Networks, Inc. | System and method for proxying HTTP single sign on across network domains |
US10135831B2 (en) | 2011-01-28 | 2018-11-20 | F5 Networks, Inc. | System and method for combining an access control system with a traffic management system |
US9246819B1 (en) | 2011-06-20 | 2016-01-26 | F5 Networks, Inc. | System and method for performing message-based load balancing |
EP2785429A4 (en) | 2011-11-30 | 2015-10-28 | Wellstat Diagnostics Llc | Filtration module |
US9270766B2 (en) | 2011-12-30 | 2016-02-23 | F5 Networks, Inc. | Methods for identifying network traffic characteristics to correlate and manage one or more subsequent flows and devices thereof |
US10230566B1 (en) | 2012-02-17 | 2019-03-12 | F5 Networks, Inc. | Methods for dynamically constructing a service principal name and devices thereof |
US9231879B1 (en) | 2012-02-20 | 2016-01-05 | F5 Networks, Inc. | Methods for policy-based network traffic queue management and devices thereof |
WO2013163648A2 (en) | 2012-04-27 | 2013-10-31 | F5 Networks, Inc. | Methods for optimizing service of content requests and devices thereof |
US9625465B2 (en) | 2012-05-15 | 2017-04-18 | Defined Diagnostics, Llc | Clinical diagnostic systems |
US9075042B2 (en) | 2012-05-15 | 2015-07-07 | Wellstat Diagnostics, Llc | Diagnostic systems and cartridges |
US9213043B2 (en) | 2012-05-15 | 2015-12-15 | Wellstat Diagnostics, Llc | Clinical diagnostic system including instrument and cartridge |
US10375155B1 (en) | 2013-02-19 | 2019-08-06 | F5 Networks, Inc. | System and method for achieving hardware acceleration for asymmetric flow connections |
CN104769440B (en) | 2013-03-11 | 2017-12-12 | 克忧公司 | For detecting the system and method with analyte quantification |
US9623409B2 (en) | 2013-03-11 | 2017-04-18 | Cue Inc. | Cartridges, kits, and methods for enhanced mixing for detection and quantification of analytes |
US10545161B2 (en) | 2013-03-11 | 2020-01-28 | Cue Health Inc. | Systems and methods for detection and quantification of analytes |
US10187317B1 (en) | 2013-11-15 | 2019-01-22 | F5 Networks, Inc. | Methods for traffic rate control and devices thereof |
USD745423S1 (en) | 2014-05-12 | 2015-12-15 | Cue Inc. | Automated analyzer test cartridge and sample collection device for analyte detection |
US10015143B1 (en) | 2014-06-05 | 2018-07-03 | F5 Networks, Inc. | Methods for securing one or more license entitlement grants and devices thereof |
US10122630B1 (en) | 2014-08-15 | 2018-11-06 | F5 Networks, Inc. | Methods for network traffic presteering and devices thereof |
US10182013B1 (en) | 2014-12-01 | 2019-01-15 | F5 Networks, Inc. | Methods for managing progressive image delivery and devices thereof |
US9835640B2 (en) | 2015-02-13 | 2017-12-05 | Abbott Laboratories | Automated storage modules for diagnostic analyzer liquids and related systems and methods |
US10505818B1 (en) | 2015-05-05 | 2019-12-10 | F5 Networks. Inc. | Methods for analyzing and load balancing based on server health and devices thereof |
US11350254B1 (en) | 2015-05-05 | 2022-05-31 | F5, Inc. | Methods for enforcing compliance policies and devices thereof |
CN111487423A (en) | 2015-07-17 | 2020-08-04 | 克忧健康公司 | Systems and methods for enhanced detection and analyte quantitation |
US11178150B1 (en) | 2016-01-20 | 2021-11-16 | F5 Networks, Inc. | Methods for enforcing access control list based on managed application and devices thereof |
US10791088B1 (en) | 2016-06-17 | 2020-09-29 | F5 Networks, Inc. | Methods for disaggregating subscribers via DHCP address translation and devices thereof |
US10505792B1 (en) | 2016-11-02 | 2019-12-10 | F5 Networks, Inc. | Methods for facilitating network traffic analytics and devices thereof |
WO2018140540A1 (en) | 2017-01-25 | 2018-08-02 | Cue Health Inc. | Systems and methods for enhanced detection and quantification of analytes |
US10812266B1 (en) | 2017-03-17 | 2020-10-20 | F5 Networks, Inc. | Methods for managing security tokens based on security violations and devices thereof |
US10972453B1 (en) | 2017-05-03 | 2021-04-06 | F5 Networks, Inc. | Methods for token refreshment based on single sign-on (SSO) for federated identity environments and devices thereof |
US11343237B1 (en) | 2017-05-12 | 2022-05-24 | F5, Inc. | Methods for managing a federated identity environment using security and access control data and devices thereof |
US11122042B1 (en) | 2017-05-12 | 2021-09-14 | F5 Networks, Inc. | Methods for dynamically managing user access control and devices thereof |
US11122083B1 (en) | 2017-09-08 | 2021-09-14 | F5 Networks, Inc. | Methods for managing network connections based on DNS data and network policies and devices thereof |
CN114599958A (en) * | 2019-10-28 | 2022-06-07 | 君诺贝生物技术公司 | Analyte detection and quantification by discrete counting of particle complexes |
EP4103928A1 (en) * | 2020-02-10 | 2022-12-21 | Emerging Viral Diagnostics (HK) Limited | Point-of-care microfluidic in vitro diagnostic system |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4946795A (en) * | 1987-08-27 | 1990-08-07 | Biotrack, Inc. | Apparatus and method for dilution and mixing of liquid samples |
US5104813A (en) * | 1989-04-13 | 1992-04-14 | Biotrack, Inc. | Dilution and mixing cartridge |
US5162237A (en) * | 1988-04-11 | 1992-11-10 | Miles Inc. | Reaction cassette for preforming sequential analytical assays by noncentrifugal and noncapillary manipulations |
US5472603A (en) * | 1992-04-02 | 1995-12-05 | Abaxis, Inc. | Analytical rotor with dye mixing chamber |
US6204068B1 (en) * | 1995-03-07 | 2001-03-20 | Erkki Soini | Biospecific assay method |
US20010019831A1 (en) * | 1986-08-13 | 2001-09-06 | Roger Phillips | Minimum procedure system for the determination of analytes |
US20010051340A1 (en) * | 1999-04-30 | 2001-12-13 | Sharat Singh | Kits employing generalized target-binding e-tag probes |
US20010053535A1 (en) * | 2000-04-17 | 2001-12-20 | Purdue Research Foundation | Biosensor and related method |
US20020092770A1 (en) * | 2000-12-01 | 2002-07-18 | Hedberg Herbert J. | High throughput capilliary electrophoresis system |
US20020114739A1 (en) * | 2000-12-26 | 2002-08-22 | Weigl Bernard H. | Microfluidic cartridge with integrated electronics |
US20020132226A1 (en) * | 2000-07-24 | 2002-09-19 | Vijay Nair | Ingestible electronic capsule |
US20030210607A1 (en) * | 2002-05-08 | 2003-11-13 | Coventor, Inc. | On chip dilution system |
US20040122486A1 (en) * | 2002-12-18 | 2004-06-24 | Stahmann Jeffrey E. | Advanced patient management for acquiring, trending and displaying health-related parameters |
US20040121305A1 (en) * | 2002-12-18 | 2004-06-24 | Wiegand Roger Charles | Generation of efficacy, toxicity and disease signatures and methods of use thereof |
US20050147559A1 (en) * | 2000-11-08 | 2005-07-07 | Von Alten Thomas W. | Internal drug dispenser capsule medical device |
US20060106316A1 (en) * | 2002-08-13 | 2006-05-18 | Yoram Palti | System for in vivo sampling and analysis |
US7052831B2 (en) * | 2000-09-29 | 2006-05-30 | Becton Dickinson And Company | Detection of multiple analytes from a single sample using a multi-well, multi-analyte flow-through diagnostic test device |
US20060257941A1 (en) * | 2004-02-27 | 2006-11-16 | Mcdevitt John T | Integration of fluids and reagents into self-contained cartridges containing particle and membrane sensor elements |
US7178386B1 (en) * | 2003-04-10 | 2007-02-20 | Nanostream, Inc. | Parallel fluid processing systems and methods |
US7201872B2 (en) * | 2000-01-19 | 2007-04-10 | Given Imaging Ltd. | System and method for determining the presence of a substance in-vivo |
US20070224084A1 (en) * | 2006-03-24 | 2007-09-27 | Holmes Elizabeth A | Systems and Methods of Sample Processing and Fluid Control in a Fluidic System |
US20070264629A1 (en) * | 2006-05-10 | 2007-11-15 | Holmes Elizabeth A | Real-Time Detection of Influenza Virus |
Family Cites Families (157)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4146029A (en) * | 1974-04-23 | 1979-03-27 | Ellinwood Jr Everett H | Self-powered implanted programmable medication system and method |
US4003379A (en) * | 1974-04-23 | 1977-01-18 | Ellinwood Jr Everett H | Apparatus and method for implanted self-powered medication dispensing |
US4347176A (en) * | 1980-04-14 | 1982-08-31 | Burroughs Wellcome Co. | Compounds and methods of making same |
GB8422876D0 (en) | 1984-09-11 | 1984-10-17 | Secr Defence | Silicon implant devices |
US4920213A (en) * | 1985-06-20 | 1990-04-24 | Biotechnology Research Partners, Ltd. | Method and compositions useful in preventing equine influenza |
US4731726A (en) * | 1986-05-19 | 1988-03-15 | Healthware Corporation | Patient-operated glucose monitor and diabetes management system |
US4910131A (en) * | 1987-12-23 | 1990-03-20 | Mellman Ira S | Idiotype and anti-idiotype antibodies useful in virus detection |
US5089229A (en) * | 1989-11-22 | 1992-02-18 | Vettest S.A. | Chemical analyzer |
US6176962B1 (en) * | 1990-02-28 | 2001-01-23 | Aclara Biosciences, Inc. | Methods for fabricating enclosed microchannel structures |
TW279133B (en) | 1990-12-13 | 1996-06-21 | Elan Med Tech | |
DE4041905A1 (en) * | 1990-12-27 | 1992-07-02 | Boehringer Mannheim Gmbh | TEST CARRIER ANALYSIS SYSTEM |
US5279607A (en) * | 1991-05-30 | 1994-01-18 | The State University Of New York | Telemetry capsule and process |
FR2679661B1 (en) | 1991-07-26 | 1994-10-14 | Sfri | APPARATUS FOR AUTOMATIC SAMPLES ANALYSIS. |
US5744366A (en) * | 1992-05-01 | 1998-04-28 | Trustees Of The University Of Pennsylvania | Mesoscale devices and methods for analysis of motile cells |
US5380487A (en) * | 1992-05-05 | 1995-01-10 | Pasteur Sanofi Diagnostics | Device for automatic chemical analysis |
US5318557A (en) | 1992-07-13 | 1994-06-07 | Elan Medical Technologies Limited | Medication administering device |
US5674698A (en) | 1992-09-14 | 1997-10-07 | Sri International | Up-converting reporters for biological and other assays using laser excitation techniques |
US5951300A (en) * | 1997-03-10 | 1999-09-14 | Health Hero Network | Online system and method for providing composite entertainment and health information |
US5578269A (en) | 1993-06-11 | 1996-11-26 | Ortho Diagnostic Systems Inc. | Automated blood analysis system with an integral centrifuge |
JP3504750B2 (en) | 1993-12-22 | 2004-03-08 | オルソ−クリニカル ダイアグノスティクス,インコーポレイティド | Recalibration method of calibration relational expression and quantitative test kit |
JP3584990B2 (en) | 1994-05-09 | 2004-11-04 | タカラバイオ株式会社 | Anti-human influenza virus antibody |
US5976896A (en) | 1994-06-06 | 1999-11-02 | Idexx Laboratories, Inc. | Immunoassays in capillary tubes |
US5624850A (en) * | 1994-06-06 | 1997-04-29 | Idetek, Inc. | Immunoassays in capillaries |
IE72524B1 (en) | 1994-11-04 | 1997-04-23 | Elan Med Tech | Analyte-controlled liquid delivery device and analyte monitor |
US6340588B1 (en) * | 1995-04-25 | 2002-01-22 | Discovery Partners International, Inc. | Matrices with memories |
US5961923A (en) | 1995-04-25 | 1999-10-05 | Irori | Matrices with memories and uses thereof |
US6352854B1 (en) * | 1995-04-25 | 2002-03-05 | Discovery Partners International, Inc. | Remotely programmable matrices with memories |
US5874214A (en) * | 1995-04-25 | 1999-02-23 | Irori | Remotely programmable matrices with memories |
US6319668B1 (en) | 1995-04-25 | 2001-11-20 | Discovery Partners International | Method for tagging and screening molecules |
US5832296A (en) | 1995-04-26 | 1998-11-03 | Interval Research Corp. | Wearable context sensitive user interface for interacting with plurality of electronic devices of interest to the user |
US5716852A (en) * | 1996-03-29 | 1998-02-10 | University Of Washington | Microfabricated diffusion-based chemical sensor |
US6299839B1 (en) | 1995-08-31 | 2001-10-09 | First Medical, Inc. | System and methods for performing rotor assays |
DE19601487C2 (en) | 1996-01-17 | 2001-09-13 | Micronas Gmbh | Device for treating malignant tissue changes |
US5670375A (en) | 1996-02-21 | 1997-09-23 | Biomerieux Vitek, Inc. | Sample card transport method for biological sample testing machine |
JP3753740B2 (en) * | 1996-03-01 | 2006-03-08 | バイオタ、サイアンティフィック、マネージメント、プロプライエタリ、リミテッド | Method for detecting influenza virus and compound used therefor |
JP2988362B2 (en) * | 1996-03-11 | 1999-12-13 | 株式会社日立製作所 | Multi-sample analysis system |
US5801057A (en) | 1996-03-22 | 1998-09-01 | Smart; Wilson H. | Microsampling device and method of construction |
US5885470A (en) | 1997-04-14 | 1999-03-23 | Caliper Technologies Corporation | Controlled fluid transport in microfabricated polymeric substrates |
US5942443A (en) | 1996-06-28 | 1999-08-24 | Caliper Technologies Corporation | High throughput screening assay systems in microscale fluidic devices |
US5980830A (en) | 1996-05-20 | 1999-11-09 | Sendx Medical, Inc. | Portable modular blood analyzer with simplified fluid handling sequence |
JP3788519B2 (en) | 1996-06-28 | 2006-06-21 | カリパー・ライフ・サイエンシズ・インコーポレーテッド | High-throughput screening assay system for microscale fluid devices |
US5797898A (en) | 1996-07-02 | 1998-08-25 | Massachusetts Institute Of Technology | Microchip drug delivery devices |
US7636667B2 (en) | 1996-12-23 | 2009-12-22 | Health Hero Networks, Inc. | Network media access control system for encouraging patient compliance with a treatment plan |
US5961451A (en) | 1997-04-07 | 1999-10-05 | Motorola, Inc. | Noninvasive apparatus having a retaining member to retain a removable biosensor |
DE19717023C2 (en) * | 1997-04-23 | 2003-02-06 | Micronas Gmbh | Device for treating malignant, tumorous tissue areas |
US6406845B1 (en) | 1997-05-05 | 2002-06-18 | Trustees Of Tuft College | Fiber optic biosensor for selectively detecting oligonucleotide species in a mixed fluid sample |
JP2002511965A (en) | 1997-07-14 | 2002-04-16 | アボツト・ラボラトリーズ | Telemedicine |
US7070921B2 (en) * | 2000-04-28 | 2006-07-04 | Molecular Devices Corporation | Molecular modification assays |
WO1999017119A1 (en) * | 1997-09-26 | 1999-04-08 | University Of Washington | Simultaneous particle separation and chemical reaction |
US5842787A (en) | 1997-10-09 | 1998-12-01 | Caliper Technologies Corporation | Microfluidic systems incorporating varied channel dimensions |
US6174675B1 (en) * | 1997-11-25 | 2001-01-16 | Caliper Technologies Corp. | Electrical current for controlling fluid parameters in microchannels |
DE69839709D1 (en) | 1997-12-24 | 2008-08-21 | Cepheid | Apparatus and method for lysis |
US6074616A (en) * | 1998-01-05 | 2000-06-13 | Biosite Diagnostics, Inc. | Media carrier for an assay device |
US6200814B1 (en) * | 1998-01-20 | 2001-03-13 | Biacore Ab | Method and device for laminar flow on a sensing surface |
US6287765B1 (en) * | 1998-05-20 | 2001-09-11 | Molecular Machines, Inc. | Methods for detecting and identifying single molecules |
US6503231B1 (en) * | 1998-06-10 | 2003-01-07 | Georgia Tech Research Corporation | Microneedle device for transport of molecules across tissue |
US7799521B2 (en) * | 1998-06-24 | 2010-09-21 | Chen & Chen, Llc | Thermal cycling |
US6344333B2 (en) * | 1998-09-08 | 2002-02-05 | Synectig Corporation | Reagent-free immunoassay monitoring electrode assembly |
US6602469B1 (en) | 1998-11-09 | 2003-08-05 | Lifestream Technologies, Inc. | Health monitoring and diagnostic device and network-based health assessment and medical records maintenance system |
US6542717B1 (en) * | 1999-01-20 | 2003-04-01 | International Business Machines Corporation | System and method for optimizing personal area network (PAN) electrostatic communication |
US6215894B1 (en) | 1999-02-26 | 2001-04-10 | General Scanning, Incorporated | Automatic imaging and analysis of microarray biochips |
US8636648B2 (en) | 1999-03-01 | 2014-01-28 | West View Research, Llc | Endoscopic smart probe |
US6464687B1 (en) | 1999-03-09 | 2002-10-15 | Ball Semiconductor, Inc. | Implantable drug delivery system |
US20040053290A1 (en) * | 2000-01-11 | 2004-03-18 | Terbrueggen Robert Henry | Devices and methods for biochip multiplexing |
WO2000070350A1 (en) | 1999-05-12 | 2000-11-23 | Cme Telemetrix Inc. | METHOD AND APPARATUS FOR RAPID MEASUREMENT OF HbA¿1c? |
US6544732B1 (en) * | 1999-05-20 | 2003-04-08 | Illumina, Inc. | Encoding and decoding of array sensors utilizing nanocrystals |
WO2000073799A1 (en) | 1999-06-01 | 2000-12-07 | Caliper Technologies Corp. | Microscale assays and microfluidic devices for transporter, gradient induced, and binding activities |
US6256533B1 (en) | 1999-06-09 | 2001-07-03 | The Procter & Gamble Company | Apparatus and method for using an intracutaneous microneedle array |
US7195670B2 (en) * | 2000-06-27 | 2007-03-27 | California Institute Of Technology | High throughput screening of crystallization of materials |
US6514769B2 (en) * | 1999-07-29 | 2003-02-04 | Jin Po Lee | Multiple analyte assay device with sample integrity monitoring system |
EP1210064B1 (en) * | 1999-08-18 | 2005-03-09 | Microchips, Inc. | Thermally-activated microchip chemical delivery devices |
US6368275B1 (en) * | 1999-10-07 | 2002-04-09 | Acuson Corporation | Method and apparatus for diagnostic medical information gathering, hyperthermia treatment, or directed gene therapy |
DE60041825D1 (en) | 1999-11-17 | 2009-04-30 | Boston Scient Ltd | MINIATURIZED DEVICES FOR DISPENSING MOLECULES IN A CARRIER FLUID |
GB9930000D0 (en) | 1999-12-21 | 2000-02-09 | Phaeton Research Ltd | An ingestible device |
JP2004530860A (en) | 2000-01-11 | 2004-10-07 | クリニカル・マイクロ・センサーズ・インコーポレイテッド | Biochip multiplexing device and method |
US6713298B2 (en) * | 2000-01-31 | 2004-03-30 | Board Of Regents, The University Of Texas System | Method and apparatus for the delivery of samples to a chemical sensor array |
US7039453B2 (en) * | 2000-02-08 | 2006-05-02 | Tarun Mullick | Miniature ingestible capsule |
KR100542386B1 (en) * | 2000-02-15 | 2006-01-10 | 주식회사 신한은행 | System and method for managing a payment relation between the enterprises |
CA2399842C (en) * | 2000-03-02 | 2006-11-14 | Microchips, Inc. | Microfabricated devices for the storage and selective exposure of chemicals and devices |
US6927851B2 (en) | 2000-03-31 | 2005-08-09 | Neogen Corporation | Methods and apparatus to improve the sensitivity and reproducibility of bioluminescent analytical methods |
CA2843053C (en) * | 2000-06-01 | 2015-08-25 | Georgetown University | Systems and methods for monitoring health and delivering drugs transdermally |
US8071051B2 (en) | 2004-05-14 | 2011-12-06 | Honeywell International Inc. | Portable sample analyzer cartridge |
US7641856B2 (en) | 2004-05-14 | 2010-01-05 | Honeywell International Inc. | Portable sample analyzer with removable cartridge |
EP1289417A4 (en) | 2000-06-07 | 2005-06-15 | Healthetech Inc | Breath ketone analyzer |
US6540675B2 (en) | 2000-06-27 | 2003-04-01 | Rosedale Medical, Inc. | Analyte monitor |
US20040005582A1 (en) * | 2000-08-10 | 2004-01-08 | Nanobiodynamics, Incorporated | Biospecific desorption microflow systems and methods for studying biospecific interactions and their modulators |
WO2002018936A2 (en) * | 2000-08-28 | 2002-03-07 | Cygnus, Inc. | Methods of monitoring glucose levels in a subject and uses thereof |
WO2002020073A2 (en) * | 2000-09-08 | 2002-03-14 | Insulet Corporation | Devices, systems and methods for patient infusion |
US20050019836A1 (en) * | 2000-12-06 | 2005-01-27 | Horst Vogel | Bioanalytical reagent, method for production thereof, sensor platforms and detection methods based on use of said bioanalytical reagent |
GB0030929D0 (en) * | 2000-12-19 | 2001-01-31 | Inverness Medical Ltd | Analyte measurement |
US6870797B2 (en) | 2001-01-04 | 2005-03-22 | Hewlett-Packard Development Company, L.P. | Media storage system using a transponder for transmitting data signal |
CN1310617C (en) | 2001-01-22 | 2007-04-18 | V-目标技术有限公司 | Ingestible pill |
US6878755B2 (en) * | 2001-01-22 | 2005-04-12 | Microgen Systems, Inc. | Automated microfabrication-based biodetector |
US6855925B2 (en) * | 2001-02-14 | 2005-02-15 | Picoliter Inc. | Methods, devices, and systems using acoustic ejection for depositing fluid droplets on a sample surface for analysis |
US7315784B2 (en) | 2001-02-15 | 2008-01-01 | Siemens Aktiengesellschaft | Network for evaluating data obtained in a biochip measurement device |
US6612985B2 (en) | 2001-02-26 | 2003-09-02 | University Of Rochester | Method and system for monitoring and treating a patient |
US6949377B2 (en) | 2001-03-05 | 2005-09-27 | Ho Winston Z | Chemiluminescence-based microfluidic biochip |
US7010391B2 (en) | 2001-03-28 | 2006-03-07 | Handylab, Inc. | Methods and systems for control of microfluidic devices |
US20050130321A1 (en) * | 2001-04-23 | 2005-06-16 | Nicholson Jeremy K. | Methods for analysis of spectral data and their applications |
WO2002089767A1 (en) * | 2001-05-03 | 2002-11-14 | Massachusetts Eye And Ear Infirmary | Implantable drug delivery device and use thereof |
US20030211618A1 (en) | 2001-05-07 | 2003-11-13 | Patel Gordhandhai Nathalal | Color changing steam sterilization indicator |
US6591124B2 (en) * | 2001-05-11 | 2003-07-08 | The Procter & Gamble Company | Portable interstitial fluid monitoring system |
US20050009101A1 (en) * | 2001-05-17 | 2005-01-13 | Motorola, Inc. | Microfluidic devices comprising biochannels |
WO2002094092A1 (en) * | 2001-05-18 | 2002-11-28 | Polymer Technology Systems, Inc. | Body fluid test apparatus with detachably mounted portable tester |
DE60127821D1 (en) * | 2001-05-25 | 2007-05-24 | Corning Inc | Method for the determination of the reactions and the metabolic activity with fluorescence temperature-sensitive material |
US20030208113A1 (en) | 2001-07-18 | 2003-11-06 | Mault James R | Closed loop glycemic index system |
US20030117491A1 (en) * | 2001-07-26 | 2003-06-26 | Dov Avni | Apparatus and method for controlling illumination in an in-vivo imaging device |
EP2405019A1 (en) * | 2001-09-10 | 2012-01-11 | Meso Scale Technologies LLC | Methods, reagents, kits and apparatus for protein function analysis |
US6966880B2 (en) | 2001-10-16 | 2005-11-22 | Agilent Technologies, Inc. | Universal diagnostic platform |
US7635588B2 (en) * | 2001-11-29 | 2009-12-22 | Applied Biosystems, Llc | Apparatus and method for differentiating multiple fluorescence signals by excitation wavelength |
AU2002357002A1 (en) * | 2001-12-17 | 2003-06-30 | Powderject Research Limited | Diagnostic sensing apparatus |
US20050027182A1 (en) | 2001-12-27 | 2005-02-03 | Uzair Siddiqui | System for monitoring physiological characteristics |
US20030143551A1 (en) * | 2002-01-30 | 2003-07-31 | Cattell Herbert F. | Reading multiple chemical arrays |
US20030148362A1 (en) | 2002-02-07 | 2003-08-07 | Eastern Virginia Medical School Of The Medical College Of Hampton Roads | Diagnostic microarray and method of use thereof |
US20040109793A1 (en) | 2002-02-07 | 2004-06-10 | Mcneely Michael R | Three-dimensional microfluidics incorporating passive fluid control structures |
US7004928B2 (en) | 2002-02-08 | 2006-02-28 | Rosedale Medical, Inc. | Autonomous, ambulatory analyte monitor or drug delivery device |
US6787108B2 (en) | 2002-04-02 | 2004-09-07 | Cmc Daymark Corporation | Plural intrinsic expiration initiation application indicators |
US7797033B2 (en) | 2002-04-08 | 2010-09-14 | Smart Pill Corporation | Method of using, and determining location of, an ingestible capsule |
US6832296B2 (en) | 2002-04-09 | 2004-12-14 | Ip-First, Llc | Microprocessor with repeat prefetch instruction |
US7112444B2 (en) | 2002-04-24 | 2006-09-26 | Wisconsin Alumni Research Foundation | Method of performing gradient-based assays in a microfluidic device |
US20050177398A1 (en) | 2002-04-25 | 2005-08-11 | Motokazu Watanabe | Dosage determination supporting device, injector, and health management supporting system |
US7125510B2 (en) | 2002-05-15 | 2006-10-24 | Zhili Huang | Microstructure fabrication and microsystem integration |
US7303921B2 (en) * | 2002-05-23 | 2007-12-04 | Gian Paolo Littarru | Method to assay coenzyme Q10 in blood plasma or blood serum |
EP1376131A1 (en) * | 2002-06-27 | 2004-01-02 | Inverness Medical Switzerland GmbH | Assay device for liquid sample |
US20040005247A1 (en) * | 2002-07-03 | 2004-01-08 | Nanostream, Inc. | Microfluidic closed-end metering systems and methods |
US7470533B2 (en) * | 2002-12-20 | 2008-12-30 | Acea Biosciences | Impedance based devices and methods for use in assays |
CN2559986Y (en) | 2002-08-23 | 2003-07-09 | 上海博昇微晶科技有限公司 | Integrated microfluid and microchip of microarray probe |
US7807197B2 (en) | 2002-09-28 | 2010-10-05 | Mcneil-Ppc, Inc. | Composite dosage forms having an inlaid portion |
US20040086872A1 (en) * | 2002-10-31 | 2004-05-06 | Childers Winthrop D. | Microfluidic system for analysis of nucleic acids |
US20060094108A1 (en) | 2002-12-20 | 2006-05-04 | Karl Yoder | Thermal cycler for microfluidic array assays |
US20050221281A1 (en) | 2003-01-08 | 2005-10-06 | Ho Winston Z | Self-contained microfluidic biochip and apparatus |
US7415299B2 (en) | 2003-04-18 | 2008-08-19 | The Regents Of The University Of California | Monitoring method and/or apparatus |
US7611480B2 (en) | 2003-04-24 | 2009-11-03 | Levy Mark M | Gastrointestinal bioreactor |
US20040228766A1 (en) | 2003-05-14 | 2004-11-18 | Witty Thomas R. | Point of care diagnostic platform |
US6789510B1 (en) | 2003-05-30 | 2004-09-14 | Ru-Ping Lee | Animal restraining apparatus and animal experiment for using the same |
CA2537796C (en) * | 2003-09-03 | 2013-12-03 | Life Patch International, Inc. | Personal diagnostic devices and related methods |
JPWO2005024437A1 (en) | 2003-09-05 | 2007-11-08 | 日本電気株式会社 | Measuring system |
US7682833B2 (en) * | 2003-09-10 | 2010-03-23 | Abbott Point Of Care Inc. | Immunoassay device with improved sample closure |
US7291497B2 (en) | 2003-09-11 | 2007-11-06 | Theranos, Inc. | Medical device for analyte monitoring and drug delivery |
WO2005031355A1 (en) | 2003-09-22 | 2005-04-07 | Quidel Corporation | Devices for the detection of multiple analytes in a sample |
US7524464B2 (en) * | 2003-09-26 | 2009-04-28 | Ahn Chong H | Smart disposable plastic lab-on-a-chip for point-of-care testing |
JP4441618B2 (en) | 2003-10-06 | 2010-03-31 | 独立行政法人産業技術総合研究所 | How to detect influenza virus |
GB0329288D0 (en) * | 2003-12-18 | 2004-01-21 | Inverness Medical Switzerland | Monitoring method and apparatus |
CA2549367A1 (en) | 2003-12-23 | 2005-07-21 | Fastraq, Inc. | Point of care diagnostic platform |
US7105183B2 (en) | 2004-02-03 | 2006-09-12 | The Regents Of The University Of California | Chlorite in the treatment of neurodegenerative disease |
US7887750B2 (en) | 2004-05-05 | 2011-02-15 | Bayer Healthcare Llc | Analytical systems, devices, and cartridges therefor |
DE602005013957D1 (en) * | 2004-06-03 | 2009-05-28 | Meso Scale Technologies Llc | METHOD FOR PERFORMING FULL BLOOD TESTS |
AU2005252615A1 (en) | 2004-06-10 | 2005-12-22 | Agency For Science, Technology And Research | Diagnostics primers and method for detecting avian influenza virus subtype H5 and H5N1 |
US7857760B2 (en) * | 2004-07-13 | 2010-12-28 | Dexcom, Inc. | Analyte sensor |
US20060018795A1 (en) * | 2004-07-23 | 2006-01-26 | General Electric Company | Fabrication methods and multifunctional substrate materials for chemical and biological analysis in microfluidic systems |
JP2008514955A (en) * | 2004-09-28 | 2008-05-08 | シンギュレックス・インコーポレイテッド | Sample analysis system and method |
US7396689B2 (en) | 2005-02-04 | 2008-07-08 | Decision Biomarkers Incorporated | Method of adjusting the working range of a multi-analyte assay |
CA2610294A1 (en) | 2005-05-09 | 2006-11-16 | Theranos, Inc. | Point-of-care fluidic systems and uses thereof |
WO2007075920A2 (en) * | 2005-12-22 | 2007-07-05 | Honeywell International Inc. | Hematological analyzer system with removable cartridge |
WO2007120904A2 (en) | 2006-04-14 | 2007-10-25 | Fuzzmed, Inc. | System, method, and device for personal medical care, intelligent analysis, and diagnosis |
US20080113391A1 (en) | 2006-11-14 | 2008-05-15 | Ian Gibbons | Detection and quantification of analytes in bodily fluids |
US8158430B1 (en) | 2007-08-06 | 2012-04-17 | Theranos, Inc. | Systems and methods of fluidic sample processing |
-
2007
- 2007-11-13 US US11/939,509 patent/US20080113391A1/en not_active Abandoned
- 2007-11-14 WO PCT/US2007/023904 patent/WO2008085228A2/en active Application Filing
-
2010
- 2010-03-30 US US12/750,518 patent/US8778665B2/en active Active
-
2014
- 2014-05-22 US US14/285,562 patent/US9303286B2/en active Active
-
2016
- 2016-02-26 US US15/054,510 patent/US10156579B2/en active Active
-
2018
- 2018-12-17 US US16/222,845 patent/US20190128902A1/en active Pending
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010019831A1 (en) * | 1986-08-13 | 2001-09-06 | Roger Phillips | Minimum procedure system for the determination of analytes |
US4946795A (en) * | 1987-08-27 | 1990-08-07 | Biotrack, Inc. | Apparatus and method for dilution and mixing of liquid samples |
US5162237A (en) * | 1988-04-11 | 1992-11-10 | Miles Inc. | Reaction cassette for preforming sequential analytical assays by noncentrifugal and noncapillary manipulations |
US5104813A (en) * | 1989-04-13 | 1992-04-14 | Biotrack, Inc. | Dilution and mixing cartridge |
US5472603A (en) * | 1992-04-02 | 1995-12-05 | Abaxis, Inc. | Analytical rotor with dye mixing chamber |
US6204068B1 (en) * | 1995-03-07 | 2001-03-20 | Erkki Soini | Biospecific assay method |
US20010051340A1 (en) * | 1999-04-30 | 2001-12-13 | Sharat Singh | Kits employing generalized target-binding e-tag probes |
US7201872B2 (en) * | 2000-01-19 | 2007-04-10 | Given Imaging Ltd. | System and method for determining the presence of a substance in-vivo |
US20010053535A1 (en) * | 2000-04-17 | 2001-12-20 | Purdue Research Foundation | Biosensor and related method |
US20020132226A1 (en) * | 2000-07-24 | 2002-09-19 | Vijay Nair | Ingestible electronic capsule |
US7052831B2 (en) * | 2000-09-29 | 2006-05-30 | Becton Dickinson And Company | Detection of multiple analytes from a single sample using a multi-well, multi-analyte flow-through diagnostic test device |
US20050147559A1 (en) * | 2000-11-08 | 2005-07-07 | Von Alten Thomas W. | Internal drug dispenser capsule medical device |
US20020092770A1 (en) * | 2000-12-01 | 2002-07-18 | Hedberg Herbert J. | High throughput capilliary electrophoresis system |
US20020114739A1 (en) * | 2000-12-26 | 2002-08-22 | Weigl Bernard H. | Microfluidic cartridge with integrated electronics |
US20030210607A1 (en) * | 2002-05-08 | 2003-11-13 | Coventor, Inc. | On chip dilution system |
US20060106316A1 (en) * | 2002-08-13 | 2006-05-18 | Yoram Palti | System for in vivo sampling and analysis |
US20040122486A1 (en) * | 2002-12-18 | 2004-06-24 | Stahmann Jeffrey E. | Advanced patient management for acquiring, trending and displaying health-related parameters |
US20040121305A1 (en) * | 2002-12-18 | 2004-06-24 | Wiegand Roger Charles | Generation of efficacy, toxicity and disease signatures and methods of use thereof |
US7178386B1 (en) * | 2003-04-10 | 2007-02-20 | Nanostream, Inc. | Parallel fluid processing systems and methods |
US20060257941A1 (en) * | 2004-02-27 | 2006-11-16 | Mcdevitt John T | Integration of fluids and reagents into self-contained cartridges containing particle and membrane sensor elements |
US20070224084A1 (en) * | 2006-03-24 | 2007-09-27 | Holmes Elizabeth A | Systems and Methods of Sample Processing and Fluid Control in a Fluidic System |
US20070264629A1 (en) * | 2006-05-10 | 2007-11-15 | Holmes Elizabeth A | Real-Time Detection of Influenza Virus |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060223776A1 (en) * | 2002-03-29 | 2006-10-05 | The Regents Of The University Of California | Microgel particles for the delivery of bioactive materials |
US9772291B2 (en) | 2005-05-09 | 2017-09-26 | Theranos, Inc. | Fluidic medical devices and uses thereof |
US20100081144A1 (en) * | 2005-05-09 | 2010-04-01 | Theranos, Inc. | Point-of-care fluidic systems and uses thereof |
US7888125B2 (en) | 2005-05-09 | 2011-02-15 | Theranos, Inc. | Calibration of fluidic devices |
US20060264779A1 (en) * | 2005-05-09 | 2006-11-23 | Kemp Timothy M | Fluidic medical devices and uses thereof |
US20060264780A1 (en) * | 2005-05-09 | 2006-11-23 | Holmes Elizabeth A | Systems and methods for conducting animal studies |
US20080009766A1 (en) * | 2005-05-09 | 2008-01-10 | Holmes Elizabeth A | Systems and methods for improving medical treatments |
US20110104826A1 (en) * | 2005-05-09 | 2011-05-05 | Ian Gibbons | Calibration of fluidic devices |
US20060264781A1 (en) * | 2005-05-09 | 2006-11-23 | Ian Gibbons | Calibration of fluidic devices |
US20100074799A1 (en) * | 2005-05-09 | 2010-03-25 | Kemp Timothy M | Fluidic Medical Devices and Uses Thereof |
US20060264782A1 (en) * | 2005-05-09 | 2006-11-23 | Holmes Elizabeth A | Point-of-care fluidic systems and uses thereof |
US9182388B2 (en) | 2005-05-09 | 2015-11-10 | Theranos, Inc. | Calibration of fluidic devices |
US10908093B2 (en) | 2005-05-09 | 2021-02-02 | Labrador Diagnostics, LLC | Calibration of fluidic devices |
US20060264783A1 (en) * | 2005-05-09 | 2006-11-23 | Holmes Elizabeth A | Systems and methods for monitoring pharmacological parameters |
US8841076B2 (en) | 2005-05-09 | 2014-09-23 | Theranos, Inc. | Systems and methods for conducting animal studies |
US8679407B2 (en) | 2005-05-09 | 2014-03-25 | Theranos, Inc. | Systems and methods for improving medical treatments |
US10761030B2 (en) | 2005-05-09 | 2020-09-01 | Labrador Diagnostics Llc | System and methods for analyte detection |
US9075046B2 (en) | 2005-05-09 | 2015-07-07 | Theranos, Inc. | Fluidic medical devices and uses thereof |
US8283155B2 (en) | 2005-05-09 | 2012-10-09 | Theranos, Inc. | Point-of-care fluidic systems and uses thereof |
US11287421B2 (en) | 2006-03-24 | 2022-03-29 | Labrador Diagnostics Llc | Systems and methods of sample processing and fluid control in a fluidic system |
US10533994B2 (en) | 2006-03-24 | 2020-01-14 | Theranos Ip Company, Llc | Systems and methods of sample processing and fluid control in a fluidic system |
US8741230B2 (en) | 2006-03-24 | 2014-06-03 | Theranos, Inc. | Systems and methods of sample processing and fluid control in a fluidic system |
US9176126B2 (en) | 2006-03-24 | 2015-11-03 | Theranos, Inc. | Systems and methods of sample processing and fluid control in a fluidic system |
US9885715B2 (en) | 2006-05-10 | 2018-02-06 | Theranos IP Comany, LLC | Real-time detection of influenza virus |
US8007999B2 (en) | 2006-05-10 | 2011-08-30 | Theranos, Inc. | Real-time detection of influenza virus |
US8669047B2 (en) | 2006-05-10 | 2014-03-11 | Theranos, Inc. | Real-time detection of influenza virus |
US11162947B2 (en) | 2006-05-10 | 2021-11-02 | Labrador Diagnostics Llc | Real-time detection of influenza virus |
US20080101681A1 (en) * | 2006-11-01 | 2008-05-01 | Armin Uwe Schmiegel | Methods for determining a position and shape of a bag placed in a baggage handling container using x-ray image analysis |
US10156579B2 (en) | 2006-11-14 | 2018-12-18 | Theranos Ip Company, Llc | Methods for the detection of analytes in small-volume blood samples |
US20100248277A1 (en) * | 2006-11-14 | 2010-09-30 | Ian Gibbons | Detection and quantification of analytes in bodily fluids |
US9303286B2 (en) * | 2006-11-14 | 2016-04-05 | Theranos, Inc. | Detection and quantification of analytes in bodily fluids |
US8778665B2 (en) | 2006-11-14 | 2014-07-15 | Theranos, Inc. | Detection and quantification of analytes in bodily fluids |
US8480976B2 (en) | 2007-06-21 | 2013-07-09 | Gen-Probe Incorporated | Instruments and methods for mixing the contents of a detection chamber |
US9744506B2 (en) | 2007-06-21 | 2017-08-29 | Gen-Probe Incorporated | Instruments for mixing the contents of a detection chamber |
US8491178B2 (en) | 2007-06-21 | 2013-07-23 | Gen-Probe Incorporated | Instruments and methods for mixing the contents of a detection chamber |
US8784745B2 (en) | 2007-06-21 | 2014-07-22 | Gen-Probe Incorporated | Methods for manipulating liquid substances in multi-chambered receptacles |
US7780336B2 (en) | 2007-06-21 | 2010-08-24 | Gen-Probe Incorporated | Instruments and methods for mixing the contents of a detection chamber |
US20090134046A1 (en) * | 2007-06-21 | 2009-05-28 | Gen-Probe Incorporated | Instruments and methods for mixing the contents of a detection chamber |
US8883518B2 (en) | 2007-08-06 | 2014-11-11 | Theranos, Inc. | Systems and methods of fluidic sample processing |
US9575058B2 (en) | 2007-08-06 | 2017-02-21 | Theranos, Inc. | Systems and methods of fluidic sample processing |
US8158430B1 (en) | 2007-08-06 | 2012-04-17 | Theranos, Inc. | Systems and methods of fluidic sample processing |
US8862448B2 (en) | 2009-10-19 | 2014-10-14 | Theranos, Inc. | Integrated health data capture and analysis system |
US9460263B2 (en) | 2009-10-19 | 2016-10-04 | Theranos, Inc. | Integrated health data capture and analysis system |
US11195624B2 (en) | 2009-10-19 | 2021-12-07 | Labrador Diagnostics Llc | Integrated health data capture and analysis system |
US11139084B2 (en) | 2009-10-19 | 2021-10-05 | Labrador Diagnostics Llc | Integrated health data capture and analysis system |
US11158429B2 (en) | 2009-10-19 | 2021-10-26 | Labrador Diagnostics Llc | Integrated health data capture and analysis system |
US9877672B2 (en) | 2010-01-28 | 2018-01-30 | Ellume Pty Ltd | Sampling and testing device for the human or animal body |
US8974399B2 (en) | 2010-10-15 | 2015-03-10 | Avent, Inc. | System and method for sampling device for bodily fluids |
US20150247842A1 (en) * | 2010-12-03 | 2015-09-03 | Abbott Point Of Care Inc. | Ratiometric Immunoassay Method and Blood Testing Device |
US20150233950A1 (en) * | 2010-12-03 | 2015-08-20 | Abbott Point Of Care Inc. | Ratiometric Immunoassay Method and Blood Testing Device |
US9795962B2 (en) * | 2010-12-03 | 2017-10-24 | Abbott Point Of Care Inc. | Ratiometric immunoassay method and blood testing device |
US9846152B2 (en) | 2010-12-03 | 2017-12-19 | Abbott Point Of Care Inc. | Assay devices with integrated sample dilution and dilution verification and methods of using same |
US20150233862A1 (en) * | 2010-12-03 | 2015-08-20 | Abbott Point Of Care Inc. | Assay Devices with Integrated Sample Dilution and Dilution Verification and Methods of Using Same |
US20150233951A1 (en) * | 2010-12-03 | 2015-08-20 | Abbott Point Of Care Inc. | Ratiometric Immunoassay Method and Blood Testing Device |
US9903875B2 (en) * | 2010-12-03 | 2018-02-27 | Abbott Point Of Care Inc. | Assay devices with integrated sample dilution and dilution verification and methods of using same |
US10058867B2 (en) * | 2010-12-03 | 2018-08-28 | Abbott Point Of Care Inc. | Sample metering device and assay device with integrated sample dilution |
US10126294B2 (en) * | 2010-12-03 | 2018-11-13 | Abbott Point of Car Inc. | Sample metering device and assay device with integrated sample dilution |
US20150247840A1 (en) * | 2010-12-03 | 2015-09-03 | Abbott Point Of Care Inc. | Sample Metering Device and Assay Device with Integrated Sample Dilution |
US9841396B2 (en) * | 2010-12-03 | 2017-12-12 | Abbott Point Of Care Inc. | Assay devices with integrated sample dilution and dilution verification and methods of using same |
US9778251B2 (en) * | 2010-12-03 | 2017-10-03 | Abbott Point Of Care Inc. | Ratiometric immunoassay method and blood testing device |
US20150258546A1 (en) * | 2010-12-03 | 2015-09-17 | Abbott Point Of Care Inc. | Sample Metering Device and Assay Device with Integrated Sample Dilution |
US9778271B2 (en) * | 2010-12-03 | 2017-10-03 | Abbott Point Of Care Inc. | Ratiometric immunoassay method and blood testing device |
US20120214224A1 (en) * | 2011-02-01 | 2012-08-23 | Chan Eugene Y | Flow based clinical analysis |
US20140037516A1 (en) * | 2011-03-15 | 2014-02-06 | Carclo Technical Plastics Limited | Surface preparation |
US10890590B2 (en) | 2012-09-27 | 2021-01-12 | Ellume Limited | Diagnostic devices and methods |
US9434977B2 (en) | 2013-02-27 | 2016-09-06 | Avent, Inc. | Rapid identification of organisms in bodily fluids |
US10960399B2 (en) | 2014-03-10 | 2021-03-30 | Visby Medical, Inc. | Cartridge-based thermocycler |
CN106796212A (en) * | 2014-08-12 | 2017-05-31 | 新生代吉恩公司 | System and method for monitoring health based on the body fluid collected |
US11167285B2 (en) | 2014-12-31 | 2021-11-09 | Visby Medical, Inc. | Devices and methods for molecular diagnostic testing |
US11273443B2 (en) | 2014-12-31 | 2022-03-15 | Visby Medical, Inc. | Devices and methods for molecular diagnostic testing |
US10786229B2 (en) | 2015-01-22 | 2020-09-29 | Ellume Limited | Diagnostic devices and methods for mitigating hook effect and use thereof |
US11446011B2 (en) | 2016-04-13 | 2022-09-20 | Nextgen Jane, Inc. | Sample collection and preservation devices, systems and methods |
US10987674B2 (en) | 2016-04-22 | 2021-04-27 | Visby Medical, Inc. | Printed circuit board heater for an amplification module |
US11529633B2 (en) | 2016-04-22 | 2022-12-20 | Visby Medical, Inc. | Printed circuit board heater for an amplification module |
US11193119B2 (en) | 2016-05-11 | 2021-12-07 | Visby Medical, Inc. | Devices and methods for nucleic acid extraction |
US10675623B2 (en) * | 2016-06-29 | 2020-06-09 | Visby Medical, Inc. | Devices and methods for the detection of molecules using a flow cell |
US11162130B2 (en) | 2017-11-09 | 2021-11-02 | Visby Medical, Inc. | Portable molecular diagnostic device and methods for the detection of target viruses |
US11168354B2 (en) | 2017-11-09 | 2021-11-09 | Visby Medical, Inc. | Portable molecular diagnostic device and methods for the detection of target viruses |
US11352675B2 (en) | 2020-01-03 | 2022-06-07 | Visby Medical, Inc. | Devices and methods for antibiotic susceptability testing |
Also Published As
Publication number | Publication date |
---|---|
US9303286B2 (en) | 2016-04-05 |
WO2008085228A2 (en) | 2008-07-17 |
US20140308689A1 (en) | 2014-10-16 |
US20190128902A1 (en) | 2019-05-02 |
US20160252535A1 (en) | 2016-09-01 |
US8778665B2 (en) | 2014-07-15 |
US10156579B2 (en) | 2018-12-18 |
US20100248277A1 (en) | 2010-09-30 |
WO2008085228A3 (en) | 2008-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10156579B2 (en) | Methods for the detection of analytes in small-volume blood samples | |
US11442061B2 (en) | Reducing optical interference in a fluidic device | |
JP6787850B2 (en) | Reduction of optical interference in fluid systems | |
AU2015221460B2 (en) | Reducing optical interference in a fluidic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THERANOS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GIBBONS, IAN;ROY, SHAUNAK;KU, EDMOND;REEL/FRAME:020116/0689 Effective date: 20071105 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |