CN111646804B - 一种空心管微点阵结构陶瓷材料的制备方法 - Google Patents

一种空心管微点阵结构陶瓷材料的制备方法 Download PDF

Info

Publication number
CN111646804B
CN111646804B CN202010545506.6A CN202010545506A CN111646804B CN 111646804 B CN111646804 B CN 111646804B CN 202010545506 A CN202010545506 A CN 202010545506A CN 111646804 B CN111646804 B CN 111646804B
Authority
CN
China
Prior art keywords
hollow tube
lattice structure
ceramic material
precursor
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010545506.6A
Other languages
English (en)
Other versions
CN111646804A (zh
Inventor
张斗
赵连仲
王小峰
熊慧文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202010545506.6A priority Critical patent/CN111646804B/zh
Publication of CN111646804A publication Critical patent/CN111646804A/zh
Application granted granted Critical
Publication of CN111646804B publication Critical patent/CN111646804B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/379Handling of additively manufactured objects, e.g. using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Robotics (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种空心管微点阵结构陶瓷材料的制备方法,包括如下步骤:将熔融态的改性陶瓷先驱体通过直写成形装置,于保护气氛下打印获得三维点阵结构的粗坯,然后将三维点阵结构的粗坯在交联气氛下进行不完全交联反应,获得不完全交联的坯体,去除坯体中未交联的部分,获得空心管微点阵先驱体支架,再进行热解即得空心管微点阵结构陶瓷材料。本发明借助增材制造技术结合后续热处理得到结构独特的陶瓷材料,克服了以往空心管微点阵材料造价高昂、工艺复杂的弊端,实现了管壁厚度在1~100μm之间的调控。保证材料在具有低密度的同时,保持了陶瓷高强度、高硬度,优异的化学稳定性与热稳定性,同时获得了结构多样,形状复杂的陶瓷样件。

Description

一种空心管微点阵结构陶瓷材料的制备方法
技术领域
本发明属于轻质多孔功能材料技术领域,具体涉及一种空心管微点阵结构陶瓷材料的制备方法。
背景技术
3D打印技术是将三维模型数字化切片为二维横截面,通过逐点、线、面的方式添加制造零件,因而可以实现传统工艺难加工或者无法加工的结构。其中直写成型技术作为一种廉价的3D打印技术,最早是由美国Sandia国家实验室的Joseph Cesarano III等提出。该方法可以实现大的高宽比和尺寸控制范围,并能实现具有无支撑特征结构的三维结构。其打印使用的墨水原料成分设计自由度高,可以实现金属、陶瓷甚至活体细胞的三维成形。
点阵材料是近年来随着航空航天梁宇的发展与加工技术的进步而诞生的一类新型轻质多功能材料。点阵材料中周期性的结构单元可以在保持低密度、高孔隙率的同时实现高比强度,高能量吸收性的特殊性能。陶瓷微点阵结构的制备往往借助模板法制备骨架结构,之后通过薄膜沉积等方法制备陶瓷薄膜覆盖模板,最后去除模板得到微点阵陶瓷材料。如:Bauer J,Hengsbach S,Tesari I,et al. High-strength cellular ceramiccomposites with 3D microarchitecture[J].Proceedings of the National Academyof Sciences,2014,111(7):2453-2458.Jang D,Meza L R, Greer F,et al.Fabricationand deformation of three-dimensional hollow ceramic nanostructures[J].Naturematerials,2013,12(10):893-898.Meza L R,Das S,Greer J R.Strong,lightweight,andrecoverable three-dimensional ceramic nanolattices[J]. Science,2014,345(6202):1322-1326。
使用模板法制备微点阵陶瓷材料,往往需要结合薄膜沉积技术,工艺路线复杂,成本高昂。同时,点阵材料的中空管管壁厚度往往局限于较小的尺寸(≤ 10μm),中空管内径局限于对应的模板直径,这大大限制了结构的可设计性。
发明内容
针对现有技术的不足,本发明的目的在于提供一种陶瓷空心管微点阵结构的制备方法。首先用直写成型技术制备陶瓷先驱体三维微点阵支架;然后对陶瓷先驱体支架进行不完全的交联处理,目的是实现先驱体表层的交联,可以通过控制交联时间与交联气氛来控制最终陶瓷空心管壁的厚度;之后经过化学刻蚀或烧蚀掉未交联的部分,得到空心管微点阵先驱体支架,最后通过高温热解得到空心管微点阵陶瓷材料。本发明的制备方法成本低廉、结构设计性高。
为了实现上述目的,本发明采用如下技术方案:
本发明一种空心管微点阵结构陶瓷材料的制备方法,包括如下步骤:
将熔融态的改性陶瓷先驱体通过直写成形装置,于保护气氛下打印获得三维点阵结构的粗坯,然后将三维点阵结构的粗坯在交联气氛下进行不完全交联反应,获得不完全交联的坯体,去除坯体中未交联的部分,获得空心管微点阵先驱体支架,再进行热解即得空心管微点阵结构陶瓷材料。
现有技术中,采用的直写浆料均是基于溶液体系,往往需要借助有较强挥发性的溶剂,一方面使得直写浆料的黏度的调控变得十分困难,另一方面将会在后续成型过程中由于溶剂在挥发过程中留下的大量的微裂纹与孔洞,而本发明首创的提供了一种熔融态的改性陶瓷先驱体作为直写浆料,这种熔融态浆料的黏度可以通过调节温度实现简单的调控,另一方面更是可以避免溶剂挥发带来的不利影响。
优选的方案,所述熔融态的改性陶瓷先驱体为,采用改性剂对陶瓷先驱体改性,所得改性陶瓷先驱体粉末再加热至250℃~300℃所得熔融态的物质,所述陶瓷先驱体为聚碳硅烷(PCS),所述改性剂选自聚丙烯,超支化液态聚碳硅烷,液态聚乙烯基硅烷,聚二甲基硅氧烷,优选为聚丙烯,聚二甲基硅氧烷中的至少一种。
聚碳硅烷脆性较高,本发明通过选择与聚碳硅烷具有很好相容性,且具有优异成形性的改性剂对聚碳硅烷进行改性,通过添加少量的改性剂,即可以大大改善聚碳硅烷在常温下的脆性,从而减少在打印过程中聚碳硅烷因为热应力而产生的大量裂纹。
优选的方案,所述熔融态的改性陶瓷先驱体在10s-1剪切速率下的粘度为 100Pa.s~1000Pa.s,优选为100~300Pa.s。
进一步的优选,所述聚碳硅烷的分子量为1000~2000g/mol。
进一步的优选,所述改性剂对陶瓷先驱体改性的具体过程为:将聚碳硅烷、改性剂加入有机溶剂中于100℃~140℃反应4~8h,获得混合溶液,将混合溶液干燥后,研磨过筛,取筛下物即得。
在实际操作过程中,在搅拌下进行反应。
进一步的优选,所述改性剂的加入量为陶瓷先驱体质量的1~5wt%。
将改性剂的加入量控制在上述优选范围内,即可以完全改善聚碳硅烷的脆性,又可中以避免由于引入过多的改性剂从而在先驱体降温过程中析出,成为缺陷,留下裂纹。
进一步的优选,所述有机溶剂选自二甲苯,四氢呋喃,甲苯中的至少一种。
进一步的优选,所述干燥的温度为100~140℃,干燥的时间为12~24h,干燥的压力为≤-0.1MPa。
进一步的优选,所述过筛所用筛网的目数为100目。
优选的方案,所述交联气氛选自空气,臭氧,氯气、环己烯,正庚烯,辛炔中的一种。
在交联气氛下,熔融态的改性陶瓷先驱体先由表层开始交联,随着交联温度的提升与时间的增加,逐步由表及里扩大交联范围,因此可以通过控制交联时间与交联气氛来控制最终陶瓷空心管壁的厚度,交联时间越长,温度越高,获得的空心管厚度越大。
优优选的方案,所述不完全交联反应的温度为180℃~220℃,不完全交联反应的时间为1h~23h。
优选的方案,将不完全交联的坯体置于有机溶剂中浸泡12~24h,去除坯体中未交联的部分,所述有机溶剂选自二甲苯,四氢呋喃,甲苯中的一种。
优选的方案,所述热解的程序为,以5~10℃/min升温至1000~1200℃,保温1~2h。
本发明一种空心管微点阵结构陶瓷材料的制备方法,包括如下步骤:
步骤一
将聚碳硅烷、改性剂加入有机溶剂中在搅拌下于100~140℃反应4~8h,获得混合溶液,将混合溶液在≤-0.1MPa下,于100~140℃,保温12~24h获得块体、研磨,过100目筛取筛下物获得改性陶瓷先驱体粉末。
步骤二
将步骤一所得改性陶瓷先驱体粉末置于打印针筒,向针筒中通入氮气,并以 5~10℃/min的速度升温至250℃~300℃,保温30~60min,除去气泡,获得熔融态的改性陶瓷先驱体,所述熔融态的改性陶瓷先驱体在10s-1剪切速率下的粘度为100Pa.s~1000Pa.s,
同时设定直写成形装置的成形平台温度为150~195℃,并通过设计的打印程序,在平台上打印获得三维点阵结构的粗坯;
步骤三
将步骤二所得三维点阵结构的粗坯置于交联气氛下进行不完全交联反应,获得不完全交联的坯体,所述交联气氛的流量为40~60ml/min,所述交联气氛选自空气,臭氧,氯气、环己烯,正庚烯,辛炔中的一种,所述不完全交联反应的温度为180℃~250℃,不完全交联反应的时间为1h~23h,
步骤四
将步骤三所得不完全交联的坯体,端部切开,并置于有机溶剂中浸泡12~24h,去除坯体中未交联的部分获得空心管微点阵先驱体支架,所述有机溶剂选自二甲苯,四氢呋喃,甲苯中的一种,
步骤五
将步骤四所得空心管微点阵先驱体支架于保护气氛下以5~10℃/min升温至1000~1200℃,保温1~2h进行热解即得空心管微点阵结构陶瓷材料。
优选的方案,所述步骤二中,将改性陶瓷先驱体粉末装入针筒,并与针头,活塞和导气管连接,之后将整体安装在Z轴上的夹具上;向针筒中通入氮气,并以5~10℃/min的速度升温至250℃~300℃,保温30~60min,除去气泡,获得熔融态的改性陶瓷先驱体,同时设定直写成形装置的成形平台温度为150~195℃,接着,借助计算机辅助设计所需的三维结构的图案,通过计算机自动控制安装在 Z轴上的针筒的气压,使浆料从针嘴流出,并沉积在按照程序移动的X-Y轴成型平台上,从而获得第一层结构;之后,Z轴精确地向上移动或旋转到结构方案确定的高度,第二层成型将在第一层结构上进行;随后,通过逐层叠加的方式,获得得三维点阵结构的粗坯,;所述气压范围为1~1000PSI,成型平台得移动的速度为0.1~500mm/s。
原理与优势
本发明的突出之处在于采用熔融态的改性陶瓷先驱体作为直写浆料获得三维点阵结构的粗坯,再通过不完全的交联处理与热解得到空心管微点阵陶瓷材料。本发明是一种新颖、简便的陶瓷空心管点阵结构的成型方法本发明所制备空心管微点阵结构陶瓷材料可应用于的航空航天、微电子、催化、热交换等领域。
其优点在于:
一、提出一种通过陶瓷先驱体直写成型,借助先驱体的不完全交联制备空心管微点阵陶瓷材料的方法。
二、得到空心管的成本低廉,方法简便、易行,可通过控制交联时间控制空心管厚度,可实现了管壁厚度在1~100μm之间的调控。
三、本发明是一种增材制造技术,可以实现无模成型,有利于实现个性化的定制,实现传统工艺无法获得的结构。
四、本发明制备的材料尺度范围广,通过调节针头孔径可以实现分米、厘米、毫米、微米级的控制,通过控制交联工艺可以实现微米、纳米级的控制。
附图说明
图1为实施例1中所打印的坯体表面与侧面的光学照片;
图2为实施例1中得到的三维SiC空心管结构电子扫描显微镜图片;
图3为实施例1中200℃下不同交联时间得到的最终管壁厚度曲线。
具体实施方式
下面举例对本发明进行进一步说明,但不限于此:
实施例1:
采用聚碳硅烷/聚丙烯粉末为浆料,空气为交联气体,制备三维空心管微点阵陶瓷结构。
将8g聚碳硅烷和、0.4g聚丙烯、100ml二甲苯放入烧杯中,在120℃的油浴锅中磁力搅拌6h。随后将澄清透明的溶液转移至真空干燥箱中,温度设置为 120℃,压力为-0.1MPa,真空干燥24h,得到均匀共混的聚碳硅烷/聚丙烯颗粒,将粉末研磨并过筛得到直写用浆料。筛网选用100目。
取 4g聚碳硅烷/聚丙烯粉末装入不锈钢针筒中,在针筒顶部装入200μm孔径针头,在针筒外部安装加热套,组装活塞、导气管,向针筒内通入99.999%的高纯氮气,压力设置为50psi,保持10min,除去针筒内空气。之后以5℃/min升温至300℃,保温30min,除去熔融态先驱体内部气泡。打印基板设置温度为195℃,对浆料进行直写成型,得到三维点阵结构粗坯。成型压力为40psi,移动速度为 7mm/s。所得三维点阵结构粗坯表面与侧面的光学照片如图1所示
将打印得到的先驱体支架,置于管式炉中,气氛为空气,温度设定为200℃,保温时间为1h,得到不完全交联的先驱体支架,将支架两端用刀片切开,放在 200ml二甲苯中,浸泡24h,得到中空管状先驱体支架。将所得支架置于管式炉中,在氩气气氛下,以5℃/min升温至1200℃,最终得到三维空心管SiC结构。管壁厚度为16μm。所得三维SiC空心管结构电子扫描显微镜图片如图2所示。
另外,在保持其他条件不变的情况下,在200℃下,于空气气氛中进行不同时间的不完全交联反应,可以得到不同壁厚的管状结构。如图3所示。
对比例1:
其余条件与实施例1相同,不同之处在于交联过程中将管式炉温度设定为 160℃,发现由于交联温度过低,先驱体不能实现交联,浸泡24h后,坯体已经完全溶解。
对比例2:
其余条件与实施例1相同,不同之处在于交联过程中将管式炉温度设定为 260℃,发现由于交联温度过高,坯体表面出现开裂,浸泡24h后,坯体碎裂,无法成形管状结构。
实施例2:
采用聚碳硅烷/聚丙烯粉末为浆料,空气为交联气体,制备三维空心管微点阵陶瓷结构。
将8g聚碳硅烷和、0.24g聚丙烯、100ml二甲苯放入烧杯中,在120℃的油浴锅中磁力搅拌6h。随后将澄清透明的溶液转移至真空干燥箱中,温度设置为 120℃,压力为-0.1MPa,真空干燥24h,得到均匀共混的聚碳硅烷/聚丙烯颗粒,将粉末研磨并过筛得到直写用浆料。筛网选用100目。
取 4g聚碳硅烷/聚丙烯粉末装入不锈钢针筒中,在针筒顶部装入150μm孔径针头,在针筒外部安装加热套,组装活塞、导气管,向针筒内通入99.999%的高纯氮气,压力设置为50psi,保持10min,除去针筒内空气。之后以5℃/min升温至300℃,保温30min,除去熔融态先驱体内部气泡,之后下调温度至290℃保温10min,打印基板设置温度为195℃,对浆料进行直写成型,得到三维点阵结构。成型压力为35psi,移动速度为8mm/s。
将打印得到的先驱体支架,置于管式炉中,气氛为空气,温度设定为200℃,保温时间为8h,得到不完全交联的先驱体支架,将支架两端用刀片切开,放在 200ml二甲苯中,浸泡24h,得到中空管状先驱体支架。将所得支架置于管式炉中,在氩气气氛下,以5℃/min升温至1200℃,最终得到三维空心管SiC结构,管壁厚度为33μm.
对比例4:
其余条件与实施例2相同,不同之处在于加入的聚丙烯量为0.8g(10wt%),发现坯体内部存在大量沿挤出方向的裂纹,在浸泡24h后,坯体碎裂,无法成形管状结构。
对比例5:
其余条件与实施例2相同,不同之处在于加入的聚丙烯量为0.04g(0.05wt%),发现坯体存在大量在打印过程中留下的裂纹,在浸泡24h后,坯体破裂,无法获得三维结构。
实施例3:
采用聚碳硅烷/聚二甲基硅氧烷粉末为浆料,空气为交联气体,制备三维空心管微点阵陶瓷结构。
将8g聚碳硅烷和、0.08g聚二甲基硅氧烷、100ml二甲苯放入烧杯中,在120℃的油浴锅中磁力搅拌6h。随后将澄清透明的溶液转移至真空干燥箱中,温度设置为120℃,压力为-0.1MPa,真空干燥24h,得到均匀共混的聚碳硅烷/聚二甲基硅氧烷颗粒,将粉末研磨并过筛得到直写用浆料。筛网选用100目。
取 4g聚碳硅烷/聚二甲基硅氧烷粉末装入不锈钢针筒中,在针筒顶部装入200μm孔径针头,在针筒外部安装加热套,组装活塞、导气管,向针筒内通入 99.999%的高纯氮气,压力设置为50psi,保持10min,除去针筒内空气。之后以 5℃/min升温至300℃,保温30min,除去熔融态先驱体内部气泡。打印基板设置温度为195℃,对浆料进行直写成型,得到三维点阵结构。成型压力为70psi,移动速度为6mm/s。
将打印得到的先驱体支架,置于管式炉中,气氛为空气,温度设定为200℃,保温时间为12h,得到不完全交联的先驱体支架,将支架两端用刀片切开,放在 200ml二甲苯中,浸泡24h,得到中空管状先驱体支架。将所得支架置于管式炉中,在氩气气氛下,以5℃/min升温至1200℃,最终得到三维空心管SiC结构。管壁厚度为48μm。
实施例4:
采用聚碳硅烷/聚丙烯粉末为浆料,氧气为交联气体,制备三维空心管微点阵陶瓷结构。
将8g聚碳硅烷和、0.24g聚丙烯、100ml二甲苯放入烧杯中,在120℃的油浴锅中磁力搅拌6h。随后将澄清透明的溶液转移至真空干燥箱中,温度设置为 120℃,压力为-0.1MPa,真空干燥24h,得到均匀共混的聚碳硅烷/聚丙烯颗粒,将粉末研磨并过筛得到直写用浆料。筛网选用100目。
取 4g聚碳硅烷/聚丙烯粉末装入不锈钢针筒中,在针筒顶部装入150μm孔径针头,在针筒外部安装加热套,组装活塞、导气管,向针筒内通入99.999%的高纯氮气,压力设置为50psi,保持10min,除去针筒内空气。之后以5℃/min升温至300℃,保温30min,除去熔融态先驱体内部气泡,之后下调温度至290℃保温10min,打印基板设置温度为195℃,对浆料进行直写成型,得到三维点阵结构。成型压力为35psi,移动速度为8mm/s。
将打印得到的先驱体支架,置于管式炉中,气氛为氧气,温度设定为180℃,保温时间为1h,得到不完全交联的先驱体支架,将支架两端用刀片切开,放在 200ml二甲苯中,浸泡24h,得到中空管状先驱体支架。将所得支架置于管式炉中,在氩气气氛下,以5℃/min升温至1200℃,最终得到三维空心管SiC结构,管壁厚度为27μm。

Claims (9)

1.一种空心管微点阵结构陶瓷材料的制备方法,其特征在于:包括如下步骤:
将熔融态的改性陶瓷先驱体通过直写成形装置,于保护气氛下打印获得三维点阵结构的粗坯,然后将三维点阵结构的粗坯在交联气氛下进行不完全交联反应,获得不完全交联的坯体,去除坯体中未交联的部分,获得空心管微点阵先驱体支架,再进行热解即得空心管微点阵结构陶瓷材料;
所述熔融态的改性陶瓷先驱体为,采用改性剂对陶瓷先驱体改性,所得改性陶瓷先驱体粉末再加热至250℃~300℃所得熔融态的物质,所述陶瓷先驱体为聚碳硅烷,
所述改性剂选自聚丙烯,超支化液态聚碳硅烷,液态聚乙烯基硅烷,聚二甲基硅氧烷中的至少一种,
所述不完全交联反应的温度为180℃~220℃,不完全交联反应的时间为1h~23h。
2.根据权利要求1所述的一种空心管微点阵结构陶瓷材料的制备方法,其特征在于:
所述熔融态的改性陶瓷先驱体在10s-1剪切速率下的粘度为100Pa.s~1000Pa.s,所述聚碳硅烷的分子量为1000~2000g/mol。
3.根据权利要求2所述的一种空心管微点阵结构陶瓷材料的制备方法,其特征在于:
所述改性剂对陶瓷先驱体改性的具体过程为:将聚碳硅烷、改性剂加入有机溶剂中于100℃~140℃反应4~8h,获得混合溶液,将混合溶液干燥后,研磨过筛,取筛下物即得。
4.根据权利要求3所述的一种空心管微点阵结构陶瓷材料的制备方法,其特征在于:
所述改性剂的加入量为陶瓷先驱体质量的1~5 wt %;
所述有机溶剂选自二甲苯,四氢呋喃,甲苯中的至少一种;
所述干燥的温度为100~140℃,干燥的时间为12~24h,干燥的压力为≤-0.1MPa;
所述过筛所用筛网的目数为100目。
5.根据权利要求1所述的一种空心管微点阵结构陶瓷材料的制备方法,其特征在于:
所述交联气氛选自空气,臭氧,氯气、环己烯,正庚烯,辛炔中的一种。
6.根据权利要求1所述的一种空心管微点阵结构陶瓷材料的制备方法,其特征在于:
将不完全交联的坯体置于有机溶剂中浸泡12~24h,去除坯体中未交联的部分,所述有机溶剂选自二甲苯,四氢呋喃,甲苯中的一种。
7.根据权利要求1所述的一种空心管微点阵结构陶瓷材料的制备方法,其特征在于:
所述热解的程序为,以5~10℃/min升温至1000~1200℃,保温1~2h。
8.根据权利要求1所述的一种空心管微点阵结构陶瓷材料的制备方法,其特征在于:包括如下步骤:
步骤一
将聚碳硅烷、改性剂加入有机溶剂中在搅拌下于100~140℃反应4~8h,获得混合溶液,将混合溶液在≤-0.1MPa下,于100~140℃,保温12~24h获得块体、研磨,过100目筛取筛下物获得改性陶瓷先驱体粉末;
步骤二
将步骤一所得改性陶瓷先驱体粉末置于打印针筒,向针筒中通入氮气,并以5~10℃/min的速度升温至250℃~300℃,保温30~60min,除去气泡,获得熔融态的改性陶瓷先驱体,所述熔融态的改性陶瓷先驱体在10s-1剪切速率下的粘度为100Pa.s~1000Pa.s,
同时设定直写成形装置的成形平台温度为150~195℃,并通过设计的打印程序,在平台上打印获得三维点阵结构的粗坯;
步骤三
将步骤二所得三维点阵结构的粗坯置于交联气氛下进行不完全交联反应,获得不完全交联的坯体,所述交联气氛的流量为40~60ml/min,所述交联气氛选自空气,臭氧,氯气、环己烯,正庚烯,辛炔中的一种,所述不完全交联反应的温度为180℃~250℃,不完全交联反应的时间为1h~23h;
步骤四
将步骤三所得不完全交联的坯体,端部切开,并置于有机溶剂中浸泡12~24h,去除坯体中未交联的部分获得空心管微点阵先驱体支架,所述有机溶剂选自二甲苯,四氢呋喃,甲苯中的一种;
步骤五
将步骤四所得空心管微点阵先驱体支架于保护气氛下以5~10℃/min升温至1000~1200℃,保温2h进行热解即得空心管微点阵结构陶瓷材料。
9.根据权利要求8所述的一种空心管微点阵结构陶瓷材料的制备方法,其特征在于:
所述步骤二中,将改性陶瓷先驱体粉末装入针筒,并与针头,活塞和导气管连接,之后将整体安装在Z轴上的夹具上;向针筒中通入氮气,并以5~10℃/min的速度升温至250℃~300℃,保温30~60min,除去气泡,获得熔融态的改性陶瓷先驱体,同时设定直写成形装置的成形平台温度为150~195℃,接着,借助计算机辅助设计所需的三维结构的图案,通过计算机自动控制安装在Z轴上的针筒的气压,使浆料从针嘴流出,并沉积在按照程序移动的X-Y轴成型平台上,从而获得第一层结构;之后, Z轴精确地向上移动或旋转到结构方案确定的高度,第二层成型将在第一层结构上进行;随后,通过逐层叠加的方式,获得得三维点阵结构的粗坯,所述气压范围为1~1000PSI,成型平台得移动的速度为0.1~500mm/s。
CN202010545506.6A 2020-06-16 2020-06-16 一种空心管微点阵结构陶瓷材料的制备方法 Active CN111646804B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010545506.6A CN111646804B (zh) 2020-06-16 2020-06-16 一种空心管微点阵结构陶瓷材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010545506.6A CN111646804B (zh) 2020-06-16 2020-06-16 一种空心管微点阵结构陶瓷材料的制备方法

Publications (2)

Publication Number Publication Date
CN111646804A CN111646804A (zh) 2020-09-11
CN111646804B true CN111646804B (zh) 2021-03-26

Family

ID=72345239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010545506.6A Active CN111646804B (zh) 2020-06-16 2020-06-16 一种空心管微点阵结构陶瓷材料的制备方法

Country Status (1)

Country Link
CN (1) CN111646804B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754412A (zh) * 2021-09-15 2021-12-07 北京理工大学 一种高强吸能陶瓷-聚合物复合结构的制备方法及其产品

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228437B1 (en) * 1998-12-24 2001-05-08 United Technologies Corporation Method for modifying the properties of a freeform fabricated part
CN101205634A (zh) * 2007-09-29 2008-06-25 中国科学院山西煤炭化学研究所 一种调控中空酚醛纤维中空度的方法
CN101372614A (zh) * 2007-08-24 2009-02-25 清华大学 碳纳米管阵列复合导热片及其制备方法
CN103724015A (zh) * 2013-12-17 2014-04-16 中国科学技术大学 一种非对称氮化硅陶瓷中空纤维管膜的制备方法
CN104725802A (zh) * 2015-03-27 2015-06-24 北京石油化工学院 一种用于热熔型3d打印的聚乳酸复合材料的制备方法
CN104947076A (zh) * 2015-05-25 2015-09-30 哈尔滨工业大学 一种基于dlp技术和化学气相沉积的微点阵结构制备方法
CN105500493A (zh) * 2015-11-25 2016-04-20 山东理工大学 三维打印具有立体通道的蜂窝型电催化膜反应器的方法
CN106866164A (zh) * 2017-02-27 2017-06-20 西安交通大学 一种基于纤维增强陶瓷先驱体3d打印技术的陶瓷复合材料成形方法
CN107405829A (zh) * 2014-11-27 2017-11-28 佐治亚-太平洋化工品有限公司 用于添加制造中的材料挤出工艺中的触变性热固性树脂
CN107422420A (zh) * 2017-08-29 2017-12-01 中国科学院宁波材料技术与工程研究所 一种基于熔融直写的三维光子器件互连方法
CN107651963A (zh) * 2017-09-08 2018-02-02 中南大学 先驱体转化陶瓷的直写成型方法
KR20190074437A (ko) * 2017-12-20 2019-06-28 대구가톨릭대학교산학협력단 항염증 활성형 이성분 인산칼슘계 다공성 골 이식재의 제조방법
US10597545B2 (en) * 2015-05-18 2020-03-24 President And Fellows Of Harvard College Foam ink composition and 3D printed hierarchical porous structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2044145A1 (en) * 2006-07-05 2009-04-08 Agency for Science, Technology and Research Porous polymeric articles
EP2529769B1 (en) * 2010-01-25 2017-01-18 Asahi Kasei Medical Co., Ltd. Hollow fiber membrane-based blood purification apparatus
CN102417363B (zh) * 2011-08-02 2013-05-01 中国科学院化学研究所 一种微纳米多孔复合材料及其制备方法
DE102017110361A1 (de) * 2017-05-12 2018-11-15 Psc Technologies Gmbh Verfahren zur Herstellung von siliciumcarbidhaltigen Strukturen

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228437B1 (en) * 1998-12-24 2001-05-08 United Technologies Corporation Method for modifying the properties of a freeform fabricated part
CN101372614A (zh) * 2007-08-24 2009-02-25 清华大学 碳纳米管阵列复合导热片及其制备方法
CN101205634A (zh) * 2007-09-29 2008-06-25 中国科学院山西煤炭化学研究所 一种调控中空酚醛纤维中空度的方法
CN103724015A (zh) * 2013-12-17 2014-04-16 中国科学技术大学 一种非对称氮化硅陶瓷中空纤维管膜的制备方法
CN107405829A (zh) * 2014-11-27 2017-11-28 佐治亚-太平洋化工品有限公司 用于添加制造中的材料挤出工艺中的触变性热固性树脂
CN104725802A (zh) * 2015-03-27 2015-06-24 北京石油化工学院 一种用于热熔型3d打印的聚乳酸复合材料的制备方法
US10597545B2 (en) * 2015-05-18 2020-03-24 President And Fellows Of Harvard College Foam ink composition and 3D printed hierarchical porous structure
CN104947076A (zh) * 2015-05-25 2015-09-30 哈尔滨工业大学 一种基于dlp技术和化学气相沉积的微点阵结构制备方法
CN105500493A (zh) * 2015-11-25 2016-04-20 山东理工大学 三维打印具有立体通道的蜂窝型电催化膜反应器的方法
CN106866164A (zh) * 2017-02-27 2017-06-20 西安交通大学 一种基于纤维增强陶瓷先驱体3d打印技术的陶瓷复合材料成形方法
CN107422420A (zh) * 2017-08-29 2017-12-01 中国科学院宁波材料技术与工程研究所 一种基于熔融直写的三维光子器件互连方法
CN107651963A (zh) * 2017-09-08 2018-02-02 中南大学 先驱体转化陶瓷的直写成型方法
KR20190074437A (ko) * 2017-12-20 2019-06-28 대구가톨릭대학교산학협력단 항염증 활성형 이성분 인산칼슘계 다공성 골 이식재의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Inorganic polymer-derived hollow SiC and filled SiCN sphere assemblies from a 3DOM carbon template;Hao Wang 等;《Chemical Communications》;20041021(第20期);2352-2353 *
SiC/SiC陶瓷基点阵复合材料制备与力学性能研究;周义凯;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20190815;B020-137 *

Also Published As

Publication number Publication date
CN111646804A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
CN109485430B (zh) 一种制备具有仿生多孔的复杂三维结构陶瓷的方法
CN107226693B (zh) 增材制造支架结合凝胶浇注制备多孔磷酸钙陶瓷的方法
JP7099739B2 (ja) 多孔質炭化ケイ素セラミック担体の製造方法
CN112521130B (zh) 一种基于3d打印技术的陶瓷零件的制备方法
CN112047727B (zh) 一种3d打印氧化铝陶瓷材料的制备方法
Xiong et al. 3D-SiC decorated with SiC whiskers: Chemical vapor infiltration on the porous 3D-SiC lattices derived from polycarbosilane-based suspensions
Sun et al. 3D printing of porous SiC ceramics added with SiO2 hollow microspheres
CN111646804B (zh) 一种空心管微点阵结构陶瓷材料的制备方法
CN111807843B (zh) 一种轻质高强碳化硅泡沫陶瓷及其制备方法
CN111468714B (zh) 金属微点阵结构材料及其制备方法
CN111205100B (zh) 无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法
Yang et al. Layered extrusion forming of complex ceramic structures using starch as removable support
CN114671674B (zh) 一种二氧化硅泡沫陶瓷及其制备方法
CN113716975B (zh) 3d打印制备木材生物质多孔碳化硅的方法及多孔碳化硅
Nachum et al. Additive manufacturing of ceramics: Stereolithography versus binder jetting
CN112500141A (zh) 光固化成型制备多孔石英陶瓷的方法
CN111548183B (zh) 通过凝胶注模和碳热还原制备分级多孔碳化硅陶瓷的方法
CN111253172B (zh) 一种制备多孔陶瓷材料的方法
CN113210627A (zh) 一种碳化物增强TiAl基纳米复合材料的制备方法
CN110078376B (zh) 多孔玻璃材料的制备方法、由该方法制备的多孔玻璃材料及其应用
CN115872771A (zh) 一种激光3D打印结合浸渍裂解工艺制备多孔SiOC基陶瓷膜支撑体的方法
CN111792944B (zh) 以发泡硅胶和无机粉体复合物为前驱体制备泡沫陶瓷材料的方法
Lu et al. Novel methods to fabricate macroporous 3D carbon scaffolds and ordered surface mesopores on carbon filaments
CN110923493B (zh) 一种孔结构SiC/Al复合材料的制备工艺
CN110903103A (zh) 一种轻质高强SiC多孔材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant