CN107405829A - 用于添加制造中的材料挤出工艺中的触变性热固性树脂 - Google Patents
用于添加制造中的材料挤出工艺中的触变性热固性树脂 Download PDFInfo
- Publication number
- CN107405829A CN107405829A CN201580071404.2A CN201580071404A CN107405829A CN 107405829 A CN107405829 A CN 107405829A CN 201580071404 A CN201580071404 A CN 201580071404A CN 107405829 A CN107405829 A CN 107405829A
- Authority
- CN
- China
- Prior art keywords
- resin
- thixotropy
- thermosets
- pearl
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
- B29C67/24—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2101/00—Use of unspecified macromolecular compounds as moulding material
- B29K2101/10—Thermosetting resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0094—Condition, form or state of moulded material or of the material to be shaped having particular viscosity
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Thermal Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明提供了制备三维结构的方法。一种方法包括以下步骤:挤出触变性热固性材料的珠,使所述珠经受固化条件,使得触变性热固性材料至少部分固化以形成固化的聚合物层。在一些情况下,不施加固化条件,直到多个珠被挤出并彼此接触。可以根据需要重复进行这些方法的步骤,以通过添加制造工艺来制备几乎无限制形状的三维结构。本发明还提供了触变性热固性材料,以及由其形成的三维物体。
Description
相关申请的交叉引用
本申请要求2014年11月27日提交的美国临时申请号62/085,316的优先权,其全部公开内容通过引用由此并入本文。
发明领域
本发明涉及添加制造以及热固性树脂在添加制造工艺中的用途。
发明背景
添加制造已使用多年。已经使用各种打印技术(例如,三维或3D打印技术)生产成品部件。例如,片材焊接、焊丝焊接、通过激光和电子束熔融在粉末床中熔融或粉末沉积、使用粉末,液体紫外线可固化树脂和可熔的热塑性长丝注射已经全部被使用。这些技术具有不同程度的几何复杂性,但与常规加工相比通常几乎没有限制。每种类型的技术具有与其相关的优势和缺点,特别是在固态加工、细晶粒结构和机械性能方面。
选择性激光烧结(SLS)是基于粉末的层添加制造工艺,其中使用连续或脉冲模式的激光束用作通过聚合物粘合剂以预定的层的尺寸和形状扫描和接合粉末的热源。扫描层的几何结构对应于计算机辅助设计(CAD)模型的各种截面。SLS的缺点是在边界处的额外的粉末经常硬化并残留附着于部件上,因此需要额外的精加工步骤以除去不需要的材料。此外,经常需要惰性气氛,这增加了设备的成本。
其它已知的添加制造工艺基于流体或液体树脂层,其选择性地逐层凝固以构造部件。一种这样的工艺被称为立体平印(SLA)。SLA使用一桶液体紫外线可固化光聚合物“树脂”和紫外线激光器一次一层地构建部件层。激光束追踪液体树脂表面上部件式样的截面。UV暴露固化并凝固树脂上追踪的式样,并将其连接到下面的层。在已经追踪式样之后,支撑包含树脂的桶的升降平台下降与单层厚度相等的距离。然后新的液体树脂层在所述部件上方形成以形成新的液体表面。然后追踪后续层式样,连接之前的层。重复该过程以形成3维部件。将完成的部件在化学浴中洗涤以除去过量的树脂。然后将该部件在紫外线烘箱中光固化。尽管可以使用SLA来制备具有各种不同形状的部件,但是紫外线可固化光聚合物树脂可能相当昂贵,并且由于SLA设备的复杂性,机器成本可能是非常昂贵的。此外,由于必须发生辐射的吸收以实现固化而引起的平行于辐射源方向的光子梯度,光固化在可固化的部件的厚度方面受到限制。
材料挤出是另一种添加制造工艺,其利用流体树脂逐层地构建部件。在这种工艺中,通过将彼此融合以形成部件层的熔融的热塑性材料的小珠的挤出形成部件。熔融的热塑性材料在从移动喷嘴挤出之后通过冷却至低于其熔融温度或玻璃化转变温度硬化。通常,喷嘴加热热塑性材料到其玻璃化转变温度之上,而对于结晶性或半结晶性材料而言,喷嘴加热到其熔点之上。然后通过挤出头沉积熔融的材料。用于材料挤出的热塑性材料的实例包括丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚乳酸、聚碳酸酯、聚酰胺、聚苯乙烯和木质素。Stratays,Inc.首先开发了材料挤出,其也以商标FUSED DEPOSITION MODELINGTM而被熟知。
虽然材料挤出通常提供了构建部件的有效方法,但其确实存在一些缺点。首先,在添加相继的层之前,先前构建的层需要充分冷却和凝固。第二,由于在相继的层之间的聚合物链的不良缠结,部件在Z-方向(例如,相继的层之间)可能具有较低的强度。此外,对于许多热塑性塑料(例如ABS)而言,在挤出之前必须首先干燥树脂。
因此,在添加制造中仍然需要使用新的树脂和方法。
发明概述
在实施方案中,本文公开的主题涉及制备三维结构的方法。更具体地,本发明的实施方案涉及制造部件的方法,其中触变性热固性材料的相继的层相继地沉积在彼此上以形成部件。
触变性热固性材料包含其中已经加入流变控制剂的热固性树脂。流变控制剂赋予热固性树脂触变性,使得材料能够通过喷嘴挤出以在表面上形成珠,珠在沉积时保持其形状,并且在沉积在表面上之后在机械剪切应力去除的点不流动。
因此,触变性热固性材料的相继的层可以在几何结构上基本上没有任何变化地沉积。当已经沉积相继的层之后施加固化条件时,相邻接触层的聚合物链在固化步骤中彼此交联以形成具有在部件的z方向上改进的强度的部件。
相反地,许多添加制造的现有技术方法,例如使用热塑性塑料的那些方法,需要在沉积后续层之前充分冷却和硬化先前层。因此,相邻层之间的聚合物链的缠结不存在或充其量是有限的,这转而导致制造部件的z方向上的较低的强度。
一种方法包括i.将第一触变性热固性材料的第一珠挤出到载体上,其中第一触变性热固性材料包含第一热固性树脂和第一流变控制剂;ii.使第一珠经受固化条件,使得触变性热固性材料至少部分固化以形成固化的第一聚合物层;iii.挤出与所述固化的第一聚合物层接触的第二触变性热固性材料的第二珠,其中所述第二触变性热固性材料包含第二热固性树脂和第二流变控制剂;以及iv.使触变性热固性材料的第二珠经受固化条件,其中触变性热固性材料的第二珠至少部分固化以形成固化的第二聚合物层,并且其中制备三维结构。
可以根据需要重复进行该方法的步骤以制备几乎无限制形状的三维结构。
在这样方法的一个实施方案中,第一和/或第二触变性热固性材料具有大于5的触变指数。具体地,第一和/或第二触变性热固性材料可以具有10或更高的触变指数。更具体地,第一和/或第二触变性热固性材料可以具有15或更高的触变指数。甚至更具体地,第一和/或第二触变性热固性材料可以具有20或更高的触变指数。又更具体地,第一和/或第二触变性热固性材料可以具有25或更高的触变指数。
在这样的方法的相同或另一个实施方案中,第一和/或第二热固性树脂选自酚醛树脂;木质素树脂;单宁树脂(tannin resin);氨基树脂;聚酰亚胺树脂;异氰酸酯树脂;(甲基)丙烯酸酯树脂;乙烯基系树脂;苯乙烯系树脂;聚酯树脂;三聚氰胺树脂;乙烯基酯树脂;马来酰亚胺树脂;环氧树脂;聚酰氨基胺树脂;及其混合物。更具体地,第一和/或第二热固性树脂可以选自酚醛树脂、氨基树脂、环氧树脂、异氰酸酯树脂、和丙烯酸酯树脂。
在这样的方法的相同或另一个实施方案中,酚醛树脂可以具有约2:1-约3:1的甲醛与苯酚的摩尔比。
在这样的方法的相同或另一个实施方案中,酚醛树脂可具有交联剂和0.6-0.9的甲醛与苯酚的比。
在这样的方法的相同或另一个实施方案中,氨基树脂可以是具有约2.2:1-约3.8:1的甲醛与脲的摩尔比的树脂。
在这样的方法的相同或另一个实施方案中,第一固化的聚合物层与第二固化的聚合物层交联。
在这样的方法的相同或另一个实施方案中,第一和/或第二触变性热固性材料当经受外部剪切应力时能够流动,并且在零剪切速率下具有屈服强度或屈服点使得第一和/或第二触变性热固性材料不流动。
在这样的方法的相同或另一个实施方案中,使第一或第二珠经受固化条件的步骤包括用热能照射第一或第二珠。
在这样的方法的相同或另一个实施方案中,使第一或第二珠经受固化条件的步骤包括使第一或第二珠经受可见光或不可见光、UV辐射、IR辐射、电子束辐射、X-射线辐射或激光辐射。
在这样的方法的相同或另一个实施方案中,第一和/或第二流变控制剂包括气相法二氧化硅、有机粘土、多糖、纤维素及其衍生物。
在这样的方法的相同或另一个实施方案中,挤出第一或第二触变性热固性材料的第一或第二珠的步骤包括使第一或第二触变性热固性材料经受外部剪切应力以引起第一或第二触变性热固性材料通过挤出喷嘴挤出。
在这样的方法的相同或另一个实施方案中,第一触变性热固性材料具有与第二触变性热固性材料相同的组成。
在这样的方法的相同或另一个实施方案中,第一和/或第二触变性热固性材料通过加热的喷嘴挤出,引发第一和/或第二触变性热固性材料的固化。
在这样的方法的相同或另一个实施方案中,步骤ii.和iv.导致固化的第一聚合物层和固化的第二聚合物层分别仅部分固化以允许第一和第二层之间随后交联。
另一种方法包括:i.将第一触变性热固性材料的第一珠挤出到载体上,其中第一触变性热固性材料包含第一热固性树脂和第一流变控制剂,并且其中第一触变性热固性材料具有大于5的触变指数;ii.挤出第二触变性热固性材料的第二珠,其中第二珠与第一珠接触,其中第二触变性热固性材料包含第二热固性树脂和第二流变控制剂,以及其中第二触变性热固性材料具有大于5的触变指数;以及iii.使第一和第二珠经受固化条件以分别形成固化的第一和第二聚合物层,其中固化的第一聚合物层与固化的第二聚合物层交联,并且其中制备三维结构。
在这样的方法的一个实施方案中,该方法还包括在步骤iii之前相继地重复步骤i.和ii,以形成包含多个固化的聚合物层的三维结构,其中相邻的固化的聚合物层彼此交联。
在这样的方法的相同或另一个实施方案中,使第一和第二珠经受固化条件的步骤包括将第一和第二珠加热至从约25至约125℃的温度。
在这样的方法的相同或另一个实施方案中,第一和/或第二热固性树脂选自酚醛树脂;木质素树脂;单宁树脂;氨基树脂;聚酰亚胺树脂;异氰酸酯树脂;(甲基)丙烯酸酯树脂;乙烯基系树脂;苯乙烯系树脂;聚酯树脂;三聚氰胺树脂;乙烯基酯树脂;马来酰亚胺树脂;环氧树脂;聚酰氨基胺树脂;及其混合物。更具体地,第一和/或第二热固性树脂可以选自酚醛树脂、氨基树脂、环氧树脂、异氰酸酯树脂、和丙烯酸酯树脂。
在这样的方法的相同或另一个实施方案中,酚醛树脂可以具有约2:1-约3:1的甲醛与苯酚的摩尔比。
在这样的方法的相同或另一个实施方案中,酚醛树脂可具有交联剂和0.6-0.9的甲醛与苯酚的比。
在这样的方法的相同或另一个实施方案中,氨基树脂可以是具有约2.2:1-约3.8:1的甲醛与脲的摩尔比的树脂。
在这样的方法的相同或另一个实施方案中,第一和/或第二触变性热固性材料当经受外部剪切应力时能够流动,并且在零剪切速率下具有屈服强度或屈服点使得第一和/或第二触变性热固性材料不流动。
在这样的方法的相同或另一个实施方案中,使第一或第二珠经受固化条件的步骤包括用热能照射第一或第二珠。
在这样的方法的相同或另一个实施方案中,使第一或第二珠经受固化条件的步骤包括使第一或第二珠经受可见光或不可见光、UV辐射、IR辐射、电子束辐射、X-射线辐射或激光辐射。
在这样的方法的相同或另一个实施方案中,第一和/或第二流变控制剂包括气相法二氧化硅、有机粘土、多糖、纤维素及其衍生物。
在这样的方法的相同或另一个实施方案中,挤出第一或第二触变性热固性材料的第一或第二珠的步骤包括使第一或第二触变性热固性材料经受外部剪切应力以导致第一或第二触变性热固性材料通过挤出喷嘴挤出。
在这样的方法的相同或另一个实施方案中,第一触变性热固性材料具有与第二触变性热固性材料相同的组成。
在这样的方法的相同或另一个实施方案中,第一和/或第二触变性热固性材料通过加热的喷嘴挤出,引发第一和/或第二触变性热固性材料的固化。
一种触变性热固性材料包含热固性树脂和流变控制剂,其中触变性热固性材料当经受外部剪切应力时能够流动,并且当处于静态时表现出很少至没有横向流动,并且其中触变性热固性材料具有大于5的触变指数。
在这样的材料的一个实施方案中,热固性树脂选自酚醛树脂;木质素树脂;单宁树脂;氨基树脂;聚酰亚胺树脂;异氰酸酯树脂;(甲基)丙烯酸酯树脂;乙烯基系树脂;苯乙烯系树脂;聚酯树脂;三聚氰胺树脂;乙烯基酯树脂;马来酰亚胺树脂;环氧树脂;聚酰氨基胺树脂;及其混合物。更具体地,热固性树脂可以选自酚醛树脂、氨基树脂、环氧树脂、异氰酸酯树脂、和丙烯酸酯树脂。
在这样的方法的相同或另一个实施方案中,酚醛树脂可以具有约2:1-约3:1的甲醛与苯酚的摩尔比。
在这样的方法的相同或另一个实施方案中,酚醛树脂可具有交联剂和0.6-0.9的甲醛与苯酚的比。
在这样的方法的相同或另一个实施方案中,氨基树脂可以是具有约2.2:1-约3.8:1的甲醛与脲的摩尔比的树脂。
在这样的材料的相同或另一个实施方案中,流变控制剂包括气相法二氧化硅、有机粘土、多糖、纤维素及其衍生物。
该材料可用于形成三维物体。
一种三维物体包括多个层,每个层至少部分地构建在另一个之上,并且其中每个层限定三维物体的截面,并且其中每个层包含固化的聚合物材料,其中给定层的聚合物链与邻接层的聚合物链交联。
在这样的物体的一个实施方案中,固化的聚合物材料衍生自触变性热固性材料。如上所限定的,触变性热固性材料可以包含热固性树脂和流变控制剂。触变性热固性材料可以当经受外部剪切应力时能够流动,并且当处于静态时表现出很少至没有横向流动,并且触变性热固性材料具有大于5的触变指数。
在这样的物体的相同或另一个实施方案中,三维物体可以包括四个或更个层。具体地,三维物体可以包括2-10,000个层。更具体地,三维物体可以包括100-500个层。
在下面给出的本发明的描述中更详细地公开了主题的这些和其它方面。
发明详述
现在将在下文更全面地描述本发明公开的主题。然而,受益于前文描述中提出的教义的本发明公开的主题所属领域的技术人员将想到本文说明的本发明公开的主题的许多修改和其它实施方案。因此,应当理解,本发明公开的主题不限于所公开的具体实施方案,并且修改和其它实施方案意在包括在所附权利要求书的范围内。
本文公开了用于添加制造工艺中的有利的方法和材料,其中包含热固性树脂和至少一种流变控制剂的触变性热固性材料作为多个珠沉积在表面上以形成一个或多个三维结构层。固化热固性材料以提供三维结构。
如下面更详细讨论的,热固性材料包含流变控制剂以提供具有触变性质的热固性材料。因此,触变性热固性材料能够通过喷嘴挤出以在表面上形成珠,珠在沉积时保持其形状并且在沉积在表面上之后不流动。
与使用熔融的热塑性材料相比,使用热固性树脂提供了优势。特别地,诸如用于常规材料挤出中的熔融的热塑性材料在材料冷却时获得强度。因此,所得的固化制品在整个其结构中可能不具有均匀的强度。相比之下,本发明提供了这样的方法,其中触变性热固性材料可以在一个或多个珠,或者一个或个层已经相互接触地沉积之后固化。这样的延迟的固化可以允许相邻珠和相邻层之间交联,从而产生具有改进的强度的三维结构。
定义
如本文所用的术语“添加制造”是指通过在沉积的层上沉积层来接合材料以制造物体的任何方法。每个层将具有期望的尺寸和形状,使得这些层一起形成三维的工程化结构。
如本文所用的,术语“热固性”或“热固性的”是指聚合物前体或由这样的前体制备的聚合物的性质,其中聚合物一旦交联便不可逆地固化,使得在热固化已经发生后树脂不能在不首先发生某种化学分解的情况下熔融或溶解。通过导致在固化之前不存在的共价键的形成的化学反应,可以通过高于设定温度的热诱导固化。除了热之外,一些热固性聚合物可以通过化学反应固化,其中两种组分发生化学反应以固化聚合物。其它固化方法可以包括暴露于潮湿的环境中,例如具有较高湿度的腔室。
如本文所用的,术语“热固性树脂”或“热固性的树脂”是指当如本文所述诱导聚合和交联时将形成热固性聚合物的前体材料。热固性树脂与热塑性材料和树脂是有区别的,这在本领域中是已知的。热固性树脂与热塑性树脂在化学上是不同的,并且可与热塑性聚合物形成对比,热塑性聚合物通常被制成粒料并通过熔融和压制或注塑成型为其最终产品形式。
如本文所用的,术语“触变性热固性材料”、“触变性热固性树脂”或“触变性热固性的树脂”是指已经通过添加一种或多种流变控制剂配制成具有触变性质的热固性树脂。根据本发明的实施方案的触变性热固性材料当经受剪切应力时表现出剪切变稀的行为,并且在去除剪切应力时粘度至少部分恢复(增加)。因此,触变性热固性材料当经受剪切应力时能够流动,并且在没有剪切应力的情况下表现出没有或最低限度的流动。更具体地,根据本发明的触变性热固性材料当在零剪切速率下时具有大于重力的屈服强度或宾汉屈服点,使得触变性材料是静态的,并且在没有施加大于重力的外部剪切应力的情况下不流动。如前所述,触变性热固性材料在去除剪切应力时表现出粘度的恢复或部分恢复。通过部分恢复意味着材料的粘度在去除剪切应力之后充分地增加,使得沉积到材料的先前沉积的珠上的触变性热固性材料的第二珠将保持其形状而不流入先前施加的珠。换言之,触变性热固性材料在施加剪切应力之前具有初始粘度(本文也称为其静态粘度),以及当施加剪切应力时具有低于初始粘度的第二粘度。在去除剪切应力时,材料表现出初始粘度的至少部分恢复。理想地,根据本发明的实施方案的触变性热固性材料能够作为珠沉积,所述珠表现出很少至没有流动,并且在沉积到表面上后保持其形状。
如本文所用的,术语“流变学控制剂”、“流变学控制添加剂”、“流变控制剂”和“流变控制添加剂”可互换使用,是指与热固性树脂组合以提供触变性热固性材料的添加剂。
如本文所用的,术语“固化”是指在树脂内和树脂的不同层之间的化学交联。在发生交联的同时可以发生其它化学变化。术语“交联”是指热固性树脂单体、低聚物或聚合物和由其形成的聚合物之间共价键的形成。这样的化学变化不同于物理变化,例如熔融。与热塑性聚合物不同,在热固性聚合物中,固化被认为是不可逆的。固化(curing)和术语“固化(cure)”是指“部分”或“完全”固化。如本文所用的,术语“部分”或“部分地”固化、固化的或固化是指在树脂内和树脂的不同层之间的一定量的化学交联以在树脂分子和层之间形成共价键。如本文所用的,术语“完全”或“完全地”固化、固化的或固化是指树脂内和树脂的不同层之间的一定量的化学交联以在树脂分子和层之间形成共价键,使得树脂经受额外的固化条件不提供明显更多的相同类型的共价键合。因此,术语“完全”并不意味着所有的交联部分必须是共价键合的。
“固化的”聚合物层是指这样的聚合物层,其中聚合物内的可用的反应位点的至少一部分已经反应以在层中的聚合物链之间或相邻层的聚合物链之间形成交联(即,如上定义的部分或完全固化)。因此,如本文所用的,“固化的”聚合物包括至少部分固化的那些材料。
如本文所用的术语“结构”或“三维结构”等通常是指制造并预期用于特定目的的预期或实际上制造的三维构造、物体或部件。这样的结构等可以例如借助于三维CAD系统来设计。这些形状是工程化的,意味着它们是根据所需的形状的规格设计和制造的特定形状,其与随机形状相反。该结构将包括如本文所述的层。相反地,由其它诸如模塑之类的方法形成的结构将不包括这样的层。“多个”结构是指基本上相同的两个或更多个这样的结构。如本文所用的,术语“基本上”意味着结构在所有的方面是相同的,但是允许具有较小的拓扑缺陷。因此,术语“三维模型”和“3D模型”是指使用基于层的添加制造技术构建的物体,部件等,并且不意在限制于任何特定的用途。
由于本领域技术人员已知的预期偏差(例如,测量中的限制和变化性),本文中在可测量的值和范围方面使用术语“约”和“基本上”。
如本文所用的,术语“珠”是指通过至少一个挤出喷嘴沉积在表面上的树脂的连续流或线。珠可以是线性的或非线性的,并且可以具有各种截面包括圆形、椭圆形、直线形、梯形或其它形状。
如本文所用的树脂的“单个层”可以是在邻接先前已经沉积的材料层处添加任何新材料(下一层)之前以任何方式施加的任意量的材料。通常,单个材料层被提供邻接基底或先前沉积的材料层。单个层可以包含已经固化的或部分固化的单一挤出的树脂珠或多个挤出的树脂珠。优选地,在两个或更多个层已经沉积后发生层的固化,使得邻接层(例如,在彼此之上构建的层)的聚合物链彼此交联,并由此改进得到的部件在Z方向的强度。
如本文所用的,术语“接触”包括挤出、施加、铺展、填充排出(filling dumping)、滴下等,使得热固性树脂的珠处于适合于待进行本文所述方法的位置。
如本文所用的,术语“固化条件”是指树脂固化的条件。固化条件的类型包括热能(例如辐射加热)、湿度、和多组分体系之间的化学反应。
如本文所用的,术语“辐射”是指树脂经受以使得树脂通过辐射加热而加热的热能。如本文其它地方所讨论的,辐射可以通过激光源、烘箱等实现。辐射的速率和量可以取决于使用的添加制造工艺和设备的参数而变化。在一个实施方案中,辐射不包括树脂的光固化。
触变性热固性材料
根据本发明实施方案的触变性热固性材料包含热固性树脂和流变控制剂。如上述讨论的,加入流变控制剂有助于改变热固性树脂的流变性质并由此赋予其触变性。然后可以将触变性热固性材料从挤出喷嘴作为珠分配,之后保持其形状直到固化同时具有最小的横向流动或无横向流动。沉积后,触变性热固性树脂可以使用本领域已知的固化方法固化。
根据本发明实施方案的触变性热固性材料可以具有大于5的触变指数。触变指数是在两种剪切速率下材料粘度的比。触变性材料的粘度将随通过搅拌的剪切速率增加而降低。该指数表示本发明的触变性热固性材料的触变性。在本发明中,触变指数是均在25℃下测定的树脂在0.1秒-1下的粘度与树脂在1秒-1下的粘度之比。
通常,触变性热固性树脂的触变指数的唯一实际上限是设备(例如,泵)在剪切应力下使材料流动的能力。优选地,触变性热固性材料的触变指数大于6,更优选大于10,甚至更优选大于25。
用于本文公开的实施方案中的有用的热固性树脂是任何已知的液体形式的热固性树脂,并且其与流变控制剂相容以形成触变性热固性树脂。
合适类型的热固性树脂的实例可包括:酚醛树脂、氨基树脂、氧化还原固化的单体丙烯酸酯、异氰酸基氨基甲酸酯(isocyanatoururethane)、多异氰酸酯、环氧化物、含烯烃树脂和聚酰氨基胺-环氧氯丙烷加合物。特别地,有用的热固性树脂可以选自热固性酚醛树脂;热固性氰基丙烯酸酯树脂,热固性木质素树脂;热固性单宁树脂;热固性氨基树脂;热固性聚酰亚胺树脂;热固性异氰酸酯树脂;热固性(甲基)丙烯酸树脂;热固性美拉德(Maillard)反应物,热固性乙烯基系树脂;热固性苯乙烯系树脂;热固性聚酯树脂;热固性三聚氰胺树脂;热固性乙烯基酯树脂;热固性马来酰亚胺树脂,例如双马来酰亚胺树脂;热固性氰酸酯树脂;环氧树脂;聚酰氨基胺树脂;及其混合物。
一种有用的酚醛热固性树脂是Georgia-Pacific Chemicals出售的6773。酚醛,可固化前体树脂的甲醛与苯酚的摩尔比可以在2:1-2.95:1的范围内。更优选的范围是2:1-2.65:1。酚醛,可固化前体树脂的pH值可以在7.1-13.9的范围。更优选的范围是8.5-12.9。酚醛,可固化前体树脂在水性介质中在50重量%固含量下在室温下的粘度范围为60-60,000cps。酚醛,可固化前体树脂在水性介质中在50重量%固含量下在室温下的更优选粘度范围为100cps-2000cps。
另一类热固性树脂包括聚酰氨基胺和聚酰氨基胺-环氧氯丙烷加合物。适合的聚酰氨基胺-环氧氯丙烷加合物树脂的实例是可得自Georgia-Pacific Chemicals的1110-E。可用于本发明的一些实施方案中的聚酰氨基胺和聚酰氨基胺-环氧氯丙烷加合物树脂的实例描述于美国专利号2,926,154、3,086,961、3,700,623、3,772,076、4,233,417、4,298,639、4,298,715、4,341,887、4,853,431、5,019,606、5,510,004、5,644,021、6,429,267、7,189,307和8,785,593中。
氨基树脂的一个实例是由Georgia-Pacific Chemicals以商品名600D16出售的脲醛树脂。
在一个实施方案中,热固性树脂可以是非水性的。非水性热固性树脂的实例包括丙烯酸酯树脂,如甲基丙烯酸甲酯树脂和丙烯酸丁酯树脂,异氰酸酯树脂,和热固性环氧树脂。
热固性树脂也可以选自本领域已知的热固性树脂,包括至少一种选自聚酰亚胺树脂;异氰酸酯树脂;(甲基)丙烯酸类树脂;酚醛树脂;乙烯基系树脂;苯乙烯系树脂;聚酯树脂;三聚氰胺树脂;乙烯基酯树脂;马来酰亚胺树脂;及其混合物的树脂。
已经提及的树脂意在作为类别的实例,而不限制可以使用的材料的范围。
本文描述的树脂,包括本领域已知的那些树脂,可以包含催化剂。催化剂的类型将基于热固性树脂上的交联部分选择,并且正处于本领域人员的技术范围内。非限制性实例包括以下。例如,异氰酸酯部分的交联可以用二甲基氨基吡啶或二丁基氧化锡催化。甲阶段酚醛树脂的交联可用氢氧化钠、氢氧化钾或亚乙基二胺-磺酸的盐催化。甲基丙烯酸酯树脂的交联通过由例如氢过氧化枯烯和二甲基苯胺组成的氧化还原引发剂引发。
与热固性树脂共混的流变控制添加剂的量通常取决于所制备的触变性热固性树脂所需的固化和流动性能。通常,选择流变控制添加剂的量以提供如前所定义的触变性热固性材料,并且所述触变性热固性材料当在零外部施加的剪切应力时,表现出很少至没有横向流动或运动。但是,当经受足够的外部施加的剪切应力时,触变性热固性材料将经历剪切变稀使得树脂将流动,并且能够从挤出喷嘴中作为珠沉积。如前所述,当去除剪切应力时,触变性热固性材料还表现出其初始粘度的恢复或部分恢复。
在一个实施方案中,配制触变性热固性树脂使其具有以下变化,当处于静态或非剪切应力状态时具有约1000cps或更大的初始粘度,而当经受剪切应力时具有小于100cps的粘度。优选地,通过在构建工艺中作为珠沉积,触变性热固性树脂在去除外部施加的剪切应力时恢复或至少部分恢复其静态粘度。包含在配制物中的流变控制剂的量的选择正处于本领域人员的技术范围内。
适合的流变控制添加剂的实例可以包括气相法二氧化硅,有机粘土例如膨润土粘土,多糖,纤维素类化合物,例如微晶纤维素,纤维素乙酸酯和纤维素醚,及其衍生物,煤焦油、炭黑、织物纤维、玻璃颗粒或纤维、芳纶浆、硼纤维、碳纤维、矿物硅酸盐、云母、粉末状石英、水合氧化铝、钙硅石、高岭土、二氧化硅气凝胶或金属粉末,例如铝粉或铁粉。其中优选气相法二氧化硅。
可用于本发明的实施方案中的气相法二氧化硅的可商购得到的实例是可从Wacker得到的 T-30和可从Evonik Degussa得到的200。
在一些实施方案中,流变控制添加剂可以是疏水性的。
通常,触变性热固性材料中的流变控制添加剂的量基于所述材料的总重量为约1-35重量%,更优选为约2-25重量%,甚至更优选为约4-25重量%,最优选为基于所述材料的总重量的约5-15重量%。
在包含基于无机物质的流变控制添加剂的实施方案中,基于所述材料的总重量,无机物质的量通常小于50重量%,更优选小于35重量%,甚至更优选小于25重量%。
除了热固性树脂和流变控制添加剂之外,触变性热固性材料还可以包含其它添加剂。可以使用的添加剂的实例包括固化促进剂、稳定剂如光稳定剂、稀释剂、填料、抗氧化剂、粘度调节剂、颜料和染料、阻燃剂、润滑剂、分散剂、抗冲改性剂、粘合促进剂及其组合。
这些添加剂可从各种来源商购获得并且是本领域技术人员所熟知的。本领域技术人员将容易地根据部件的预期应用和最终用途来确定哪种添加剂是期望的。
例如,可以使用各种不同的抗冲改性剂,包括环新戊基、环(二甲基氨基乙基)焦磷酸锆酸酯、二甲磺酰基盐,丙烯腈/甲基丙烯腈共聚物、丁二烯/丙烯腈共聚物、硅树脂和异丙基三十二烷基苯磺酰基钛酸酯。
如本文其它地方所公开的,使用可固化热固性树脂具有许多优势。本文描述的实施方案的非常有用的方面是在添加制造工艺中使用热固性树脂以形成包含固化的热固性树脂或基本上由固化的热固性树脂组成的几乎任何形状或几何结构的3D物体的能力。
此外,与用于SLA添加制造中的树脂相比,不需要配制树脂以包含光可固化聚合物和光引发剂,从而可以避免这样的配制物的成本和复杂性。
在一个实施方案中,本文所述的主题涉及制备三维结构的方法,所述方法包括:
i.将触变性热固性树脂的珠挤出到构建平台上;
ii.使触变性热固性树脂的珠经受固化条件,其中触变性热固性树脂至少部分固化以形成固化的第一聚合物层;
iii.挤出与固化的第一聚合物层(接触的)触变性热固性树脂的第二层;以及
iv.使触变性热固性树脂的第二层经受固化条件,其中触变性热固性树脂的第二层至少部分固化以形成固化的第二聚合物层,并且其中制备三维结构。
在一些实施方案中,固化的第一聚合物层可与固化的第二聚合物层交联。
如将在下面详细讨论的,该方法还可以包括用有机的或无机的渗透材料注入结构中的任何孔中。
在另外的实施方案中,本文所述的主题涉及制备三维结构的方法,该方法包括:
i.在构建平台挤出触变性热固性树脂的珠;
ii.挤出与触变性热固性树脂的第一珠接触的触变性热固性树脂的一个或多个另外的相继的珠;
iii.使由此挤出的触变性热固性树脂的珠经受固化条件以形成多个固化的聚合物层,其中固化的聚合物层与相邻的层交联,并且其中所述层中的至少一个包含热固性树脂;其中制备三维结构。
因此,制备的结构将包括具有所需尺寸和形状的工程化式样的固化的热固性树脂层。
所述步骤可以根据需要多次相继地重复以在添加制造技术中生产工程化的三维结构。因此如本文所述的,该方法可以包括在任何相继的步骤中独立地选择任何类型的触变性热固性树脂以制备具有期望组成的结构。
在某些实施方案中,使触变性热固性树脂经受固化条件可包括使热固性树脂经受热辐射,包括暴露于光化辐射、可见光或不可见光、UV辐射、IR辐射、电子束辐射、X射线辐射或激光辐射,以加热和固化树脂。在一个实施方案中,使触变性热固性树脂经受固化条件可包括将结构暴露于来自加热元件的热能,如在烘箱中。在其它实施方案中,使触变性热固性树脂经受固化条件的步骤可包括将结构暴露于高的相对湿度。例如,具有异氰酸酯部分的某些热固性树脂可以通过暴露于水分而经历固化。在其它实施方案中,使树脂经受固化条件可包括混合两种化学组分以实现导致树脂固化的化学反应。例如,氧化剂(例如氢过氧化枯烯)与还原剂(例如二甲基苯胺)的反应形成氧化还原引发剂以实现甲基丙烯酸甲酯的固化。
在实施所公开的方法中,触变性热固性树脂的第一层可以是与热固性树脂的第二层相同类型的树脂。作为非限制性实例,两个层可以是相同种类的热固性酚醛树脂。供选择地,触变性热固性树脂的第一层可以是与热固性树脂第二层不同类型的树脂。作为非限制性实例,一个层可以是热固性酚醛树脂,第二层可以是热固性氨基树脂;或一个层可以是酚醛树脂,另一层是不同种类的酚醛树脂。因此,结构中的相继的层可以包含相同或不同的材料。
在实施方案中,本发明的主题涉及包括具有工程化三维形状的固化的热固性树脂的结构。结构将包括一个或多个固化的热固性树脂层。因此,在实施方案中,结构可以包括2到无限个工程化层;2-约10,000个层;2-约5,000个层;2-约1,000个层;2-约500个层;2-约250个层;2-约100个层;10-约500个层;50-约500个层;100-约500个层;或250-约500个层。每个层可以是相同或不同类型的树脂。每个层可以是相同或不同的尺寸。对于可以通过添加制造制备的形状几乎没有限制。这些形状将根据规格进行设计和工程化。本文描述的方法可以根据规格制备结构。在实施方案中,结构是使用计算机辅助设计来设计的工程化三维形状。通过该方法可以制备几乎无限制的基本相同的结构复制品。在该实施方案的方面,本发明的主题涉及包括两个或更多个离散结构的多个单分散三维结构,每个离散结构各自包含具有工程化三维形状的固化的热固性树脂或基本上由其组成,其中多个结构中的每个结构基本相同。在该实施方案中,材料的区别在于基本上仅仅使用触变性热固性树脂制造结构。
然而,结构可能包含其它组分。另一方面,通过固化触变性热固性树脂形成的结构中的任何孔可以用有机材料或无机材料注入。因此,制备如上所述的结构的方法可以进一步包括使形成的结构与有机或无机材料接触,以用有机或无机材料注入结构中的任何孔。在该实施方案中,接触的步骤可以包括进行浸渍、浸泡等持续足以注入的时间量。注入步骤可以在加压下进行以有利于注入。
本领域普通技术人员将立即识别用于注入的彼此相容的材料。换句话说,应当选择与结构的固化材料相容的渗透材料。
可用于注入结构的一种有机材料是环氧树脂,例如828。可以使用的其它树脂包括聚合MDI、聚氨酯和丙烯酸类树脂。
可以用于注入结构的无机材料是熔融的Belmont合金。可以考虑的其它熔融金属是铜、青铜、银、锡、锡铅合金、铅和铝。
此外,在触变性热固性树脂已经固化后,可以使用辐射能量以碳化结构。碳化步骤可以作为固化工艺的一部分进行或作为单独的步骤进行,使用相同的激光器或第二激光器。碳化步骤可以在环境气氛中进行,或者在富氧气氛或惰性气氛中进行。
来自这样的工艺的结构的碳含量范围为约65重量%碳-约99.5重量%碳;约70重量%碳-约95重量%碳;约75重量%碳-约90重量%碳;或约80重量%碳-约85重量%碳。此外,碳化材料可以添加有一种或多种不同的材料,例如金属,以赋予功能性,例如在多孔碳上嵌入的催化剂。该类型的多材料结构可以通过以下方式实现:1)在目前形成的碳化层的所有计算的截取点选择性地放置金属粉末(或其它材料粉末),以及2)烧结或熔化粉末以将其注入碳层上。可以通过用不同的粉末重复上述程序来添加更多的金属或其它材料。
添加制造工艺和装置
添加制造被美国测试与材料学会(ASTM)定义为“由3D模型数据接合材料以制造物体的工艺,通常在沉积层上沉积层,这与削减制造技术(例如传统加工和铸造)相反”。如本文提及的“添加制造”,存在用于创建数字模型并从该模型生成几乎任何形状的三维实体的多种工艺。这些工艺通俗地称为3D打印、快速成型、添加制造等。
如本文所公开的,添加制造技术用于提供低成本产品组装和构建具有工程化复杂形状/几何结构、复杂材料组成和设计性能梯度的任何数量的产品的有用性已经扩展至触变性热固性树脂,其作为特别是材料挤出工艺中所用的构建材料。
在添加制造工艺中,可以以任何合适的方式定义组件的模型,例如设计模型。例如,可以使用计算机辅助设计(CAD)软件设计模型。模型可以包括组件的整个构造(包括外表面和内表面)的3D数字坐标。模型可以包括共同形成3D组件的多个相继的2D截面切片。
操作成本通常相对较高,并且操作3D打印机需要专门技能。可以使用CAD软件(例如SolidWorksTM)创建3D设计文件,以生成3D物体的数字表示。STL(标准镶嵌语言)文件格式是用于存储这样的CAD文件的常用格式。该CAD文件,换言之3D物体的数字表示,随后被转换为一系列相接的2D截面,表示3D物体的顺序截面切片。这些2D截面通常被称为2D轮廓数据。2D轮廓数据可以直接输入到3D打印机中,以便打印机打印3D物体。通常由专用软件进行将3D设计文件转换为2D截面数据。
因此,添加制造系统用于使用一种或多种添加制造技术从3D部件的数字表示(例如,AMF和STL格式文件)打印或以其它方式构建三维3D部件。在本发明中,本文所述的添加制造技术涉及基于挤出的工艺,其中将触变性热固性树脂沉积并固化成相继的层以形成3D部件。
在初始阶段,3D部件的数字表示被切成多个水平层。对于每个切片层而言,然后生成工具路径,其为添加制造系统提供指令以打印给定层。
本发明的三维结构可以使用例如与美国专利号5,121,329和6,658,314中描述的实施方案类似的三维打印系统来构建。
示例性的三维挤出系统通常可以包括一个或多个挤出喷嘴,并且至少分配器,其中布置有触变性热固性树脂。该系统将还可以包括泵、活塞或类似的装置,以将外部剪切应力施加到触变性热固性树脂,从而使树脂从分配器流到关联的挤出喷嘴。触变性热固性树脂可以作为单一组分体系被供应到挤出喷嘴,或者供选择地,可以包含在挤出之前刚刚混合的两种或更多种组分。静态混合管是设计以就在挤出之前紧密混合两种组分的一种装置。
在一个实施方案中,挤出系统可以包括至少两个挤出喷嘴。例如,第一挤出喷嘴可以连接到用于分配第一触变性热固性树脂的第一分配器,并且第二挤出喷嘴可以连接到用于分配第二触变性热固性树脂的第二分配器。
构建平台可以包括工作台,基板等,其可以是可拆卸的基板,三维制品将在其上形成。
三维挤出系统还包括控制器、CAD系统、可选的固化装置、和可选的定位装置。控制器耦合到CAD系统、固化单元、定位装置、挤出喷嘴(一个或多个)和含有触变性热固性树脂的分配器。控制可能受到其它单元的影响,例如一个或多个单独的单元。三维结构是以层的形式构建的,通过选择性地调节每个挤出喷嘴的输出,每个层的厚度通常是可控的。
取决于热固性树脂的性质和所需的固化机理,固化装置可以与三维挤出系统集成一体,或者可以包括单独的和独立的装置。例如,固化装置可以包括用于将热能(例如辐射热)传递到沉积的树脂由此进行热固性树脂的固化的能量源、加热元件、烘箱、高相对湿度腔室等。
在一个实施方案中,可以加热挤出喷嘴以引发触变性热固性树脂在其沉积到构建平台上时的固化。
本文描述的实施方案中采用的系统通常用于从可固化热固性树脂制造三维结构,并用于制造包含固化的热固性树脂的工程化三维结构。该制造可用于快速成型。包括固化能量源的装置(例如CO2激光器、IR灯、烘箱等)可以提供必要的固化条件以实现树脂的固化。
通过由挤出喷嘴相继地铺设的连续形成的层截面的连续沉积和立即或最终交联形成三维结构。用于沉积含有(一个)或多个触变性热固性树脂珠的层的系统可以包括用于布置可流动树脂材料珠的任何已知方法。
该装置使用计算机系统,其根据期望的设计方面执行设计工具和/或拓扑优化。该系统包括存储器。存储器可以存储数据。存储器可以存储用于根据期望的设计来执行拓扑优化的可执行指令。可以以任何方式和任何抽象水平存储或组织可执行指令,例如与一个或多个进程、例程、程序、方法等相关联。
存储在存储器中的指令可以由一个或多个处理器执行。处理器可以耦合到一个或多个输入/输出(I/O)装置。在一些实施方案中,I/O装置(一个或多个)可以包括键盘或小型键盘、触摸屏或触摸面板、显示屏、麦克风、扬声器、鼠标、按钮、遥控器、操纵杆、打印机、电话或移动设备(例如智能电话)、传感器等中的一种或多种。可以配置I/O装置(一个或多个)以提供接口,以允许用户在根据期望的构造的规格的生成中与系统进行交互。
规格被转移到添加制造装置,该装置根据该规格进行添加制造技术,以便创建3D结构。虽然不是在所有方面都需要的,但是添加制造装置可以包括处理器,所述处理器解释规格,并且控制其他元件,所述其他元件使用机器人、喷嘴、激光器等施加材料,以将材料作为层或涂层添加以产生3D结构。
提供以下讨论作为根据本发明的实施方案如何可以构建三维结构的实例。应当理解,可以使用其它系统和工艺来使用本文所述的触变性热固性树脂来构建三维结构。
在起始步骤中,使触变性热固性树脂经受足够的外部剪切应力,以使树脂从分配器流到关联的喷嘴。然后将树脂作为珠沉积到构建平台上。在一个实施方案中,喷嘴可以进行多次通过,每次通过以如由计算机软件指定的受控式样进行以形成单个层。
可以在沉积树脂的同时引发触变性热固性树脂的固化,或者在一个珠、多个珠、单个层、多个层、或其组合的沉积中的一个或多个完成之后引发。在一些实施方案中,触变性热固性树脂可以在已经沉积每层之后或在已经沉积两个或更多个相继的层之后进行固化。
通常,计算机和相关软件程序基于数字计算机模型来决定挤出喷嘴何时开启和关闭。机器控制器通过多个驱动电机控制挤出喷嘴沿着“X”、“Y”和“Z”轴的操作。取决于要形成的结构的形状,这些电机中的每一个可以单独操作、或者它们中的一个或多个可以同时操作。可以通过沿着构建平台的“X”和“Y”轴的受控移动来生成每层的圆形式样。
挤出喷嘴可以最初位于构建平台上方的预定高度以形成三维结构的第一层。然后每个后续层的高度被严格控制。通常,越薄的层导致具有总体越平滑的表面的结构的表面。较厚的层通常提高构建结构的速度。可以形成薄至0.0001英寸的层。可以水平、垂直地、或者以与水平方向成任意360°的方向形成这些层。树脂的沉积可以沿着三个轴中的任何一个进行。树脂的分配可以仅仅沿“X”-“Y”平面进行,直到其在“X”“Z”平面或“Z”“Y”平面沉积是有利的。通常,挤出喷嘴将沿“Z”轴通常垂直于构建平台安装,因此垂直于构建平台的“X”-“Y”平面。
当形成和建立多个层时,沉积触变性热固性树脂的一个或多个珠以形成第一层。第一层可以采用计算机程序所规定的任何形状。然后可以使第一层(或多个层)经受能量源以引发树脂的固化。第二层和每个后续层可以采取略微不同的形状,如按照计算机程序和分层软件的每个层的特定截面所规定的。在每个层的式样情况下,其中每个层仅在水平“X”-“Y”平面中形成。支撑挤出喷嘴的电机可以在形成每层之后被选择性地启动,以沿着“Z”轴递增地移动喷嘴或构建平台一段严格控制的预定的距离,以控制层之间的间隙,从而控制每个层的厚度。
在挤出喷嘴或构建平台由此移动之后,沿着受控的路径分配并形成下一层。在一些情况下,挤出喷嘴可以随着层形成在沿着“Z”轴的方向上移动,例如当形成螺旋式样时,并且软件程序将在每层结束时控制挤出喷嘴或构建平台的位置。因此,当在下一层的起始位置处,挤出喷嘴或构建平台可以已经沿着先前形成的层上的对应点上方的“Z”轴移动一定距离。在这种情况下,挤出喷嘴或构建平台在下一层的开始时可以根本不需要移动,或者其可以递增移动非常小的距离以在层之间形成期望的间隙,和由此预定的层厚度。
多个层可以具有均匀的厚度,或者根据需要并适合于形成特定结构,层的厚度可以变化。此外,层可以各自变化横跨每层的高度的厚度。
添加制造系统一次一层地构建实体部件。通常的层厚度范围为约0.001-10.00mm。然而,取决于构造设计,层可以在可行的情况下更厚或更薄。可以取决于工艺参数调节厚度,所述工艺参数包括层中的珠的平均高度,构成结构的总层数以及构建结构的速度。
装置通常可以根据包括以下步骤的方法进行操作:(i)在构建平台上沉积触变性热固性树脂的一个或多个珠以形成层;(ii)通过使触变性热固性树脂的沉积层经受辐射(例如,热能)来固化该层;(iii)布置一个或多个相继的珠以在先前层之上形成相继的层;(iv)固化相继的层以形成下一个截面层;(v)重复步骤(iii)和(iv),直到构建三维结构。如前所述,在一些实施方案中,期望在引发固化触变性热固性树脂的步骤之前首先沉积多个相继的层。
能量源
取决于热固性树脂,可以以各种不同的方式实现热固性树脂的固化。在一个实施方案中,通过使树脂经受热加热树脂以实现固化的照射来实现固化。在优选的实施方案中,热能用于固化。固化温度通常可以在25℃-125℃的范围内。
电磁辐射可以包括光化辐射、可见光或不可见光、UV辐射、IR辐射、电子束辐射,X射线辐射、激光辐射等。此外,虽然可以一般性地讨论电磁波谱中的每种类型的电磁辐射,但是本公开不限于所提供的具体实例。本领域技术人员知道可以容易地确定电磁辐射类型的变化和产生电磁辐射的方法。
通过说明的方式而不是限制的方式提供以下实施例。
实施例
在以下实施例中,根据其触变性质和在添加制造工艺中的潜在有用性制备和评估了各种触变性热固性材料。
触变性热固性材料中使用的材料如下所示。除非另有说明,所有百分比均为重量百分数。除非另有说明,所有物理性质和组成数值均为近似值。
“THR-1”,是指可以以商标1110-E得自Georgia-Pacific Chemicals的聚酰氨基胺-环氧氯丙烷加合物。
“THR-2”,是指可以以商标6773得自Georgia-Pacific Chemicals的酚醛树脂。
“ITU”:是指可以以商品名 Glue得自Gorilla Glue,Inc.的异氰酸酯封端的聚氨酯。通过凝胶渗透色谱法使用Waters HSPGEL RT色谱柱分析并通过折射率检测,ITU具有约4200的分子量。
“TEAOH”是指可以从Sigma-Aldrich得到作为试剂等级三乙醇胺出售的三乙醇胺。
“MMA”:是指可以从Sigma-Aldrich得到的含有≤30ppm的MEHQ的甲基丙烯酸甲酯。
“BAA”:是指可以以商品名808从R.T.Vanderbilt Co.得到的苯甲醛-苯胺加合物。
“EPOXY”是指液体环氧树脂,其是环氧氯丙烷和双酚A的反应产物的,并且可以以商品名1000从Kemrock Industries and Exports Ltd得到。
“IPD”:是指异氟尔酮二胺,可以从Sigma-Aldrich作为5-氨基-1,3,3-三甲基环己烷甲胺(顺式和反式的混合物)得到。
“CSM”:是指可以以商品名TOSOH 从Tosoh Corp得到的氯磺化聚乙烯的溶液。
“RH-1”:是指可以以商品名 T-30从Wacker得到的气相法二氧化硅流变改性剂。
“RH-2”:是指可以以商品名 H-18从Wacker得到的气相法二氧化硅流变改性剂。
“RH-3”:是指可以以商品名 N-20从Wacker得到的气相法二氧化硅流变改性剂。
“RH-4”:是指可以以商品名 H-13L从Wacker得到的气相法二氧化硅流变改性剂。
“GG”:是指可以从Fisher Scientific得到的瓜尔胶流变改性剂。
“KC”:是指可以从Sigma-Aldrich得到的高岭土粘土流变改性剂。
实施例1:触变性聚酰氨基胺-环氧氯丙烷加合物树脂配制物
将185.5克的聚酰氨基胺-环氧氯丙烷加合物(THR-1)的水溶液称重到杯中。通过滴加加入50重量%的NaOH水溶液将THR-1树脂水溶液的pH调节至6.38。调节pH后,向THR-1树脂中以1克的等分试样加入9.6克的RH-1(来自Wacker的气相法二氧化硅)作为流变控制剂。在加入每个等分试样之后,在室温下手动搅拌配制物,直到RH-1被树脂水溶液完全润湿。
将具有约1cm直径的该触变性材料的圆柱形样品放置在水平的木制压舌器上。当压舌器旋转到垂直位置时,在室温下5分钟内没有目视观察到触变性材料移动。
实施例2:触变性酚醛树脂配制物
将79.5克的THR-2(酚醛树脂)的触变性树脂称量到杯中。该树脂水溶液的pH为12.7,未进行调整。以3.5克的增量加入7.0克的RH-1。在每次增量之后,在室温下手动搅拌配制物,直到RH-1被树脂水溶液完全润湿。
将具有约1cm直径的该触变性配制物的圆柱形样品放置在水平的木制压舌器上。当压舌器旋转到垂直位置时,在室温下5分钟内没有目视观察到触变性材料移动。
实施例3:通过触变性聚酰氨基胺-环氧氯丙烷加合物树脂配制物的材料挤出结合触变性酚醛树脂的材料挤出制备的部件
将来自实施例1的触变性聚酰氨基胺-环氧氯丙烷加合物(tPAE)的配制物载入一次性10ml注射器中。将来自实施例2的触变性酚醛(tPF)树脂的配制物载入第二个一次性10ml注射器中。将tPAE的珠从注射器的喷嘴挤出到硼硅酸盐显微镜载玻片上。珠的直径约为1mm,长为2英寸。在施加第一珠之后,立即将tPF的第二珠挤出到tPAE的珠上。该第二珠具有与第一珠相同的尺寸。在施加第二珠之后立即将第三珠施加至第二珠。该第三珠是tPAE配制物,具有与第一和第二珠相同的尺寸。在施加第三珠之后立即将第四珠施加至第三珠。该第四珠是tPF配制物,并具有与第一、第二和第三珠相同的尺寸。
在施加第四珠后,将显微镜载玻片置于强制通风的烘箱中,在105℃下放置15分钟。将显微镜载玻片从烘箱中取出并冷却至室温。在烘箱中固化后,该部件是刚性的,并且清楚地显示出四个不同的挤出材料层。从其被挤出到显微镜载玻片的时间开始,冷却和固化的部件在任何维度上没有表现出视觉上的变化。
实施例4:触变性热固性异氰酸酯树脂配制物
将69.1克的ITU(异氰酸酯封端的聚氨酯树脂)称重到纸杯中。向该异氰酸酯封端的聚氨酯树脂的等分试样中加入5.23克的RH-1。然后将该配制物在室温下手动搅拌直到RH-1被异氰酸酯封端的聚氨酯树脂完全润湿。将具有约1cm直径的该触变性材料的圆柱形样品放置在水平的木制压舌器上。当压舌器旋转到垂直位置时,在室温下5分钟内没有目视观察到触变性材料移动。
实施例5:通过触变性异氰酸酯树脂配制物的材料挤出制备的部件
将来自实施例4的触变性异氰酸酯树脂配制物置于50ml一次性注射器中。将直径为约5mm的触变性树脂的珠从注射器分配到铝箔的构建平台上。分配的第一珠约4cm长。一旦将第一个珠分配在构建平台上,则立即将第二珠放置在第一珠之上。将该部件在环境条件下在室温下固化16小时。从其被挤出到构建平台上的时间开始,固化的部件在任何维度上都没有视觉上的变化。
实施例6:触变性两部分异氰酸酯封端的聚氨酯树脂配制物
在实施例6中,配制并评价了两部分(A部分和B部分)触变性热固性材料。A部分包含由亚甲基二苯基二异氰酸酯和聚环氧丙烷制备的29.48克的ITU。向其中加入1.45克的RH-1作为流变改性剂。将所得混合物用手持式均化器混合60秒。
通过将11.03克的TEAOH与0.55克的RH-1混合来制备两部分配制物的B部分。将所得混合物用手持式均化器混合60秒。然后用手持式均化器将3.60克的A部分与1.20克的B部分在注射器中混合。
实施例7:通过两部分触变性异氰酸酯封端的聚氨酯树脂配制物的材料挤出制备的部件
如上述实施例6所述制备A部分和B部分。将4.81克的A部分与0.60克的B部分在注射器中结合,如实施例6所述进行混合。然后将触变性树脂材料(结合的A部分与B部分)从注射器的尖端挤出,以在玻璃显微镜载玻片上形成直径为1mm,长为2cm的珠。一旦已经放置前一个珠,立即挤出第二个、第三个和第四个珠到前一个珠上。所得到的四个珠的结构保持直立,并且没有观察到珠的尺寸的变化。
实施例8:触变性甲基丙烯酸甲酯树脂配制物
制备82.5克的甲基丙烯酸甲酯(MMA)和9.1克的苯甲醛-苯胺加合物(BAA)的溶液。向溶液中加入1.5ml的氢过氧化枯烯。然后,以小等分试样加入7.5克的RH-2,并且每次加入后充分搅拌以润湿气相法二氧化硅。最后一次加入后,继续搅拌直至混合物经检验是均匀的。该混合物为A部分.
然后通过形成CSM(氯磺化聚乙烯)和甲基丙烯酸甲酯的溶液制备B部分。将46.6克的40重量%的CSM在甲基丙烯酸甲酯中的溶液与46.5克的MMA结合。然后按照上述程序向该溶液中加入6.6克的RH-2。该第二溶液是B部分。
将A部分和B部分在室温下不搅拌静置24小时。
实施例9:通过两部分触变性甲基丙烯酸甲酯配制物的材料挤出制备的部件
将10克的来自实施例8的B部分放置于2:1双组分聚丙烯施用盒大的一侧,并将5克的来自实施例8的A部分放置于同一盒小的一侧。将两个组分通过5.9英寸长的,包含20个混合元件,并且具有1mm的尖端直径的静态混合器(由Nordson EFD出售)混合。将来自静态混合器的挤出物以直径为1mm的珠施加到支撑表面。1分钟后,将第二珠直接置于第一珠上。重复该过程直到4个珠挤出在彼此之上。在处于室温和环境气氛下90分钟后,该部件充分固化以被处理和从支撑表面移除。四层构造的最终厚度约为3.9mm。
对比实施例1:通过不含流变控制剂的两部分甲基丙烯酸甲酯配制物的材料挤出制备的部件
如实施例8所述制备由20克的MMA和2.2克的BAA组成的不含任何流变控制剂气相法二氧化硅的A部分溶液。如实施例8所述制备由8克的40重量%CSM的溶液,8克的MMA和240μl的氢过氧化枯烯组成的不含任何气相法二氧化硅的B部分溶液。如实施例9所述,将这两部分树脂体系用于填充盒并通过静态混合器挤出。如实施例9所述,将该两部分配制物的四个珠挤出在彼此之上。四层构造的最终厚度约为0.9mm。该测量的厚度表明珠在没有施加剪切应力的情况下发生流动,从而导致结合的四个珠层的厚度小于静态混合器的尖端。
实施例10:触变性两部分环氧树脂配制物
将71克的环氧树脂(EPOXY)与2.1克的RH-2在塑料瓶中结合。将四个不锈钢球放置在瓶中,以16rpm滚动溶液直到RH-2均匀分散。使用异佛尔酮二胺(IPD)制备该两部分树脂配制物的B部分。在第二个塑料瓶中,将100克的IPD与12克的RH-2结合。将四个不锈钢球放置在该第二瓶中并以16rpm滚动直到RH-2均匀分散。
实施例11:通过两部分触变性环氧树脂配制物的材料挤出制备的部件
将10克的来自实施例10的A部分置于2:1双组分聚丙烯施用盒的大的一侧,并将5克的来自实施例10的B部分置于同一盒的小的一侧。如实施例9所述,将两个组分通过5.9英寸长并包含20个混合元件的静态混合器混合。将来自静态混合器的挤出物以直径为1mm的珠施加到支撑表面上。一旦已经放置前一个珠,立即挤出第二个、第三个和第四个珠到前一个珠上。四个珠的结构保持直立,并且没有观察到珠的尺寸的变化。
实施例1-11表明,可以挤出触变性热固性树脂配制物以形成具有规定形状的结构。对比实施例表明,如果配制物不是触变性的,则该配制物不能挤出以形成具有规定形状的结构。
实施例12-26
在以下实施例中,制备了各种触变性热固性材料,并评估其用于添加制造工艺的适用性。使用与实施例1中所述程序相似的方法,用不同的流变控制剂配制四种不同的树脂体系。
树脂体系和流变控制剂的不同组合如下表1所示。
需要pH调节的唯一树脂体系是如实施例1(实施例25和26)中制备的聚酰氨基胺-环氧氯丙烷加合物。其余的树脂体系如所供应的使用。
实施例12-26的树脂体系基于上述实施例1-11中使用的树脂组分。更具体地,甲基丙烯酸甲酯树脂体系(实施例12-14的MMA)是与实施例8中所述的相同的树脂组分;NCO封端的聚氨酯(实施例15-21的NCO-TU)是与实施例6中所述的相同的树脂组分;环氧树脂体系(实施例22-24的环氧树脂)基于与实施例10中所述的相同的树脂组分,以及聚酰氨基胺-环氧氯丙烷加合物体系(实施例25和26的PEA)基于与实施例1中所述的相同的树脂组分。
将不同的流变控制剂与各种树脂体系以不同的重量百分比混合以评价对触变性热固性材料的触变性能的影响。每个树脂体系在室温下从具有1mm孔的25ml注射器中挤出。施加四个相继的层,使得第二,第三和第四个层置于其各自的前一个层上。当四个层可以相继地施加而第一个施加的珠不流动时,判定该配制物通过。
此外,测定每个树脂体系的触变指数,其中使用TA Instruments出售的AR-2000ex流变仪评价每个树脂体系的流变性。如前所述,触变指数定义为在25℃下测量的在0.1秒-1下的粘度与1秒-1下的粘度之比。
表1:树脂体系的触变性能的评价
1甲基丙烯酸甲酯(实施例8的树脂材料)。
2NCO-封端的聚氨酯(实施例6的树脂材料)。
3实施例6的两部分环氧树脂体系。
4实施例1的聚酰氨基胺-环氧氯丙烷加合物树脂体系。
从上述表1可以见,触变指数为5或更低的触变性树脂体系失败,由此被确定为不适合用于本发明的添加制造工艺。具有大于5,特别是至少6或以上的触变指数的触变性材料都通过了评价。
酚醛树脂可以具有约2:1-约3:1的甲醛与苯酚的摩尔比。
在根据前述段落中任何一个或多个的方法中,热固性酚醛树脂可含有交联剂并且具有0.6-0.9的甲醛与苯酚的比。
在根据前述段落中任何一个或多个的方法中,热固性氨基树脂可以是具有约2.2:1-约3.8:1的甲醛与脲的摩尔比的树脂。
Claims (22)
1.制备三维结构的方法,所述方法包括:
i.将第一触变性热固性材料的第一珠挤出到载体上,其中第一触变性热固性材料包含第一热固性树脂和第一流变控制剂;
ii.使所述第一珠经受固化条件,使得所述触变性热固性材料至少部分固化以形成固化的第一聚合物层;
iii.挤出与所述固化的第一聚合物层接触的第二触变性热固性材料的第二珠,其中所述第二触变性热固性材料包含第二热固性树脂和第二流变控制剂;以及
iv.使触变性热固性材料的第二珠经受固化条件,其中触变性热固性材料的第二珠至少部分固化以形成固化的第二聚合物层,并且其中制备所述三维结构。
2.根据权利要求1所述的方法,其中所述第一和/或第二触变性热固性材料具有大于5的触变指数。
3.根据权利要求1所述的方法,其中所述第一和/或第二热固性树脂选自酚醛树脂;木质素树脂;单宁树脂;氨基树脂;聚酰亚胺树脂;异氰酸酯树脂;(甲基)丙烯酸酯树脂;乙烯基系树脂;苯乙烯系树脂;聚酯树脂;三聚氰胺树脂;乙烯基酯树脂;马来酰亚胺树脂;环氧树脂;聚酰氨基胺树脂;及其混合物。
4.根据权利要求1所述的方法,其中所述第一和/或第二热固性树脂选自酚醛树脂、氨基树脂、环氧树脂、异氰酸酯树脂、和丙烯酸酯树脂。
5.根据权利要求1所述的方法,其中所述第一固化的聚合物层与所述第二固化的聚合物层交联。
6.根据权利要求1所述的方法,其中所述第一和/或第二触变性热固性材料当经受外部剪切应力时能够流动,并且在零剪切速率下具有屈服强度或屈服点使得第一和/或第二触变性热固性材料不流动。
7.根据权利要求1所述的方法,其中使所述第一或第二珠经受固化条件的步骤包括使用热能照射所述第一或第二珠。
8.根据权利要求1所述的方法,其中使所述第一或第二珠经受固化条件的步骤包括使所述第一或第二珠经受可见光或不可见光、UV辐射、IR辐射、电子束辐射、X-射线辐射或激光辐射。
9.根据权利要求1所述的方法,其中所述第一和/或第二流变控制剂包括气相法二氧化硅、有机粘土、多糖、纤维素及其衍生物。
10.根据权利要求1所述的方法,其中挤出所述第一或第二触变性热固性材料的第一或第二珠的步骤包括使所述第一或第二触变性热固性材料经受外部剪切应力以导致所述第一或第二触变性热固性材料通过挤出喷嘴挤出。
11.根据权利要求1所述的方法,其中所述第一触变性热固性材料具有与所述第二触变性热固性材料相同的组成。
12.根据权利要求1所述的方法,其中所述第一和/或第二触变性热固性材料通过加热的喷嘴挤出,引发所述第一和/或第二触变性热固性材料的固化。
13.制备三维结构的方法,所述方法包括:
i.将第一触变性热固性材料的第一珠挤出到载体上,其中所述第一触变性热固性材料包含第一热固性树脂和第一流变控制剂,并且其中所述第一触变性热固性材料具有大于5的触变指数;
ii.挤出第二触变性热固性材料的第二珠,其中所述第二珠与所述第一珠接触,其中所述第二触变性热固性材料包含第二热固性树脂和第二流变控制剂,以及其中所述第二触变性热固性材料具有大于5的触变指数;以及
iii.分别使所述第一和第二珠经受固化条件以形成固化的第一和第二聚合物层,
其中所述固化的第一聚合物层与固化的第二聚合物层交联,并且其中制备所述三维结构。
14.根据权利要求13所述的方法,还包括在步骤iii之前相继地重复步骤i和ii,以形成包含多个固化的聚合物层的三维结构,其中相邻的固化的聚合物层彼此交联。
15.根据权利要求13所述的方法,其中使所述第一和第二珠经受固化条件的步骤包括将所述第一和第二珠加热至从约25至约125℃的温度。
16.根据权利要求13所述的方法,所述第一触变性热固性材料具有与所述第二触变性热固性材料相同的组成。
17.根据权利要求13所述的方法,其中所述第一和/或第二热固性树脂选自酚醛树脂;木质素树脂;单宁树脂;氨基树脂;聚酰亚胺树脂;异氰酸酯树脂;(甲基)丙烯酸酯树脂;乙烯基系树脂;苯乙烯系树脂;聚酯树脂;三聚氰胺树脂;乙烯基酯树脂;马来酰亚胺树脂;环氧树脂;聚酰氨基胺树脂;及其混合物;并且其中所述第一和/或第二流变控制剂包括气相法二氧化硅、有机粘土、多糖、纤维素及其衍生物。
18.包含热固性树脂和流变控制剂的触变性热固性材料,其中所述触变性热固性材料当经受外部剪切应力时能够流动,并且当处于静态时表现出很少至没有横向流动,并且其中所述触变性热固性材料具有大于5的触变指数。
19.根据权利要求18所述的触变性热固性材料,其中所述热固性树脂选自酚醛树脂;木质素树脂;单宁树脂;氨基树脂;聚酰亚胺树脂;异氰酸酯树脂;(甲基)丙烯酸酯树脂;乙烯基系树脂;苯乙烯系树脂;聚酯树脂;三聚氰胺树脂;乙烯基酯树脂;马来酰亚胺树脂;环氧树脂;聚酰氨基胺树脂;及其混合物;并且其中所述第一和/或第二流变控制剂包括气相法二氧化硅、有机粘土、多糖、纤维素及其衍生物。
20.结构,其包括一个或多个固化的根据权利要求18所述触变性热固性材料层。
21.包括多个层的三维物体,所述层每个至少部分地构建在另一个之上,并且其中每个层限定所述三维物体的截面,并且其中每个层包含固化的聚合物材料,其中给定层的聚合物链与邻接层的聚合物链交联。
22.根据权利要求21所述的物体,其中所述固化的聚合物材料源自于触变性热固性材料。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462085316P | 2014-11-27 | 2014-11-27 | |
US62/085,316 | 2014-11-27 | ||
PCT/US2015/062820 WO2016086216A1 (en) | 2014-11-27 | 2015-11-26 | Thixotropic, thermosetting resins for use in a material extrusion process in additive manufacturing |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107405829A true CN107405829A (zh) | 2017-11-28 |
Family
ID=56075069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580071404.2A Withdrawn CN107405829A (zh) | 2014-11-27 | 2015-11-26 | 用于添加制造中的材料挤出工艺中的触变性热固性树脂 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10406726B2 (zh) |
EP (1) | EP3224028A4 (zh) |
JP (1) | JP2017535459A (zh) |
KR (1) | KR20170091650A (zh) |
CN (1) | CN107405829A (zh) |
IL (1) | IL252371A0 (zh) |
WO (1) | WO2016086216A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111556886A (zh) * | 2017-12-22 | 2020-08-18 | Ppg工业俄亥俄公司 | 在外观和流挂控制性能方面提供益处的可热固化的成膜组合物 |
CN111646804A (zh) * | 2020-06-16 | 2020-09-11 | 中南大学 | 一种空心管微点阵结构陶瓷材料的制备方法 |
CN111655452A (zh) * | 2017-12-06 | 2020-09-11 | 赛峰航空器发动机 | 用耐磨材料制造声学通道的有序网络的方法 |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2685216C2 (ru) | 2014-11-24 | 2019-04-16 | Ют-Баттелле, Ллк | Способы реактивной трехмерной печати путем экструзии |
NL2014678B1 (en) * | 2015-04-20 | 2017-01-20 | Bond High Performance 3D Tech B V | Fused deposition modeling. |
US10302163B2 (en) | 2015-05-13 | 2019-05-28 | Honeywell International Inc. | Carbon-carbon composite component with antioxidant coating |
US9944526B2 (en) | 2015-05-13 | 2018-04-17 | Honeywell International Inc. | Carbon fiber preforms |
US10131113B2 (en) * | 2015-05-13 | 2018-11-20 | Honeywell International Inc. | Multilayered carbon-carbon composite |
US20180147773A1 (en) * | 2015-06-03 | 2018-05-31 | Sabic Global Technologies B.V. | Material extrusion additive manufacturing of polyimide precursor |
US10035305B2 (en) | 2015-06-30 | 2018-07-31 | Honeywell International Inc. | Method of making carbon fiber preforms |
US10022890B2 (en) * | 2015-09-15 | 2018-07-17 | Honeywell International Inc. | In situ carbonization of a resin to form a carbon-carbon composite |
US10300631B2 (en) | 2015-11-30 | 2019-05-28 | Honeywell International Inc. | Carbon fiber preforms |
US9987799B2 (en) * | 2016-02-29 | 2018-06-05 | Palo Alto Research Center Incorporated | Curing device for additive manufacturing systems deposited in 3D space |
WO2018005349A1 (en) * | 2016-06-28 | 2018-01-04 | Dow Global Technologies Llc | Thermoset additive manufactured articles incorporating a phase change material and method to make them |
CN106189035A (zh) * | 2016-07-08 | 2016-12-07 | 广安奥海通讯电子科技有限公司 | 一种木质3d打印耗材及其制备方法 |
US10625470B2 (en) * | 2016-09-28 | 2020-04-21 | Ada Foundation | 3D printing of composition-controlled copolymers |
EP3532267B1 (en) | 2016-10-27 | 2023-03-01 | Bridgestone Americas Tire Operations, LLC | Processes for producing cured polymeric products by additive manufacturing |
US10639842B2 (en) | 2017-12-06 | 2020-05-05 | Chromatic 3D Materials, Inc. | Three-dimensional printing control |
EP4000866A1 (en) * | 2016-12-06 | 2022-05-25 | Chromatic 3D Materials Inc. | Manufacture of three dimensional objects from thermosets |
JP6961972B2 (ja) * | 2017-03-24 | 2021-11-05 | 富士フイルムビジネスイノベーション株式会社 | 立体形状成形装置、情報処理装置及びプログラム |
DE102017206452B3 (de) * | 2017-04-13 | 2018-09-13 | Schunk Kohlenstofftechnik Gmbh | Verfahren zur Herstellung eines Faserverbundbauteils |
WO2018204844A1 (en) * | 2017-05-04 | 2018-11-08 | Lehigh University | Additive manufacturing system with tunable material properties |
DE102017110984A1 (de) * | 2017-05-19 | 2018-11-22 | Isotech Holding Corporation Llc | Schuhschaft mit dreidimensionalen Ziermustern aus Polyurethan und Verfahren zur Herstellung desselben sowie Schuh mit dem derartigen Schuhschaft |
CN110730800B (zh) | 2017-05-26 | 2022-08-19 | 无限材料解决方案有限公司 | 水性聚合物组合物 |
US10434704B2 (en) | 2017-08-18 | 2019-10-08 | Ppg Industries Ohio, Inc. | Additive manufacturing using polyurea materials |
US10766195B2 (en) * | 2017-10-05 | 2020-09-08 | The Boeing Company | Additive manufacturing fiber composites and related systems and methods |
FR3074444A1 (fr) * | 2017-12-06 | 2019-06-07 | Safran Aircraft Engines | Procede de fabrication d'un reseau ordonne de canaux acoustiques en materiau abradable |
EP3720686A4 (en) | 2017-12-06 | 2021-08-11 | Chromatic 3D Materials Inc. | THREE-DIMENSIONAL PRINT ORDER |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
SG11202102434SA (en) * | 2018-09-11 | 2021-04-29 | Greene Tweed Technologies | Crosslinkable aromatic polymer compositions for use in additive manufacturing processes and methods for forming the same |
JP7223126B2 (ja) * | 2018-10-04 | 2023-02-15 | アルケマ フランス | 3d印刷された半結晶性及びアモルファスのポリマー物品 |
US11407176B2 (en) | 2019-03-20 | 2022-08-09 | Magnum Venus Products, Inc. | Pumping system and method for 3D printing |
EP3738772B1 (en) * | 2019-05-13 | 2023-02-15 | Henkel AG & Co. KGaA | Dual cure polyurethane formulations for 3d printing applications |
EP3738771B1 (en) * | 2019-05-13 | 2023-08-16 | Henkel AG & Co. KGaA | Dual cure epoxy formulations for 3d printing applications |
KR20220003633A (ko) | 2019-05-30 | 2022-01-10 | 폴린트 컴포지츠 유에스에이 인코포레이티드 | 적층 제조 조성물 및 방법 |
JP7446794B2 (ja) * | 2019-11-29 | 2024-03-11 | キヤノン株式会社 | 三次元造形物の製造方法、および三次元造形装置 |
WO2021174026A1 (en) * | 2020-02-28 | 2021-09-02 | Microtek Laboratories, Inc. | Radiation curable phase change material solutions and shape stable thermoset phase change material gels formed therefrom |
CN113429863B (zh) * | 2021-04-10 | 2022-05-10 | 中海油常州涂料化工研究院有限公司 | 一种聚酰胺-胺型水性木质素基环氧防腐涂料及其制备方法 |
JP2023048771A (ja) * | 2021-09-28 | 2023-04-07 | 三菱鉛筆株式会社 | 炭素成形体の製造方法 |
DE102022000307B3 (de) | 2022-01-27 | 2022-08-25 | Bundesrepublik Deutschland (Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr) | Verfahren zur Herstellung eines Silikonbauteils |
WO2024052724A1 (en) * | 2022-09-08 | 2024-03-14 | Bertech Panamá S.A. | Coating kit and method for repair and/or reconstitution of rubber and/or metal worn areas |
CN118374208A (zh) * | 2024-04-16 | 2024-07-23 | 天津大学浙江国际创新设计与智造研究院 | 一种高分子粉末材料、冷喷涂制品及冷喷涂制品的制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2583333A1 (fr) * | 1985-06-14 | 1986-12-19 | Cilas Alcatel | Procede pour realiser un modele de piece industrielle et dispositif de mise en oeuvre de ce procede |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2738019B2 (ja) * | 1989-05-25 | 1998-04-08 | ブラザー工業株式会社 | 三次元成形装置 |
US5121329A (en) | 1989-10-30 | 1992-06-09 | Stratasys, Inc. | Apparatus and method for creating three-dimensional objects |
US5902441A (en) | 1996-09-04 | 1999-05-11 | Z Corporation | Method of three dimensional printing |
US6067480A (en) | 1997-04-02 | 2000-05-23 | Stratasys, Inc. | Method and apparatus for in-situ formation of three-dimensional solid objects by extrusion of polymeric materials |
US5866058A (en) | 1997-05-29 | 1999-02-02 | Stratasys Inc. | Method for rapid prototyping of solid models |
JP4314396B2 (ja) * | 1997-09-26 | 2009-08-12 | マサチューセッツ・インスティテュート・オブ・テクノロジー | 塩から得られたバインダーを使用して粉末から製造される金属及びセラミック含有パーツの製造方法 |
US20040038009A1 (en) * | 2002-08-21 | 2004-02-26 | Leyden Richard Noel | Water-based material systems and methods for 3D printing |
KR101109977B1 (ko) * | 2003-07-23 | 2012-03-13 | 디에스엠 아이피 어셋츠 비.브이. | 점도 감소성 방사선 경화 수지 조성물 |
US7220380B2 (en) * | 2003-10-14 | 2007-05-22 | Hewlett-Packard Development Company, L.P. | System and method for fabricating a three-dimensional metal object using solid free-form fabrication |
DK2011631T3 (da) * | 2007-07-04 | 2012-06-25 | Envisiontec Gmbh | Fremgangsmåde og indretning til fremstilling af et tre-dimensionelt objekt |
DE102012020000A1 (de) * | 2012-10-12 | 2014-04-17 | Voxeljet Ag | 3D-Mehrstufenverfahren |
US20140284832A1 (en) | 2013-03-25 | 2014-09-25 | Petr Novikov | System and Method for Manufacturing a Three-Dimensional Object from Freely Formed Three-Dimensional Curves |
UA88001U (uk) | 2013-10-03 | 2014-02-25 | Товариство З Обмеженою Відповідальністю "Корум Груп" | Виїмковий комплекс |
JP2015157387A (ja) | 2014-02-24 | 2015-09-03 | セイコーエプソン株式会社 | 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物 |
US9650537B2 (en) | 2014-04-14 | 2017-05-16 | Ut-Battelle, Llc | Reactive polymer fused deposition manufacturing |
EP4147851B1 (en) * | 2014-06-08 | 2024-05-01 | Massivit 3D Printing Technologies Ltd. | A method for manufacture of 3d objects |
FR3029811B1 (fr) | 2014-12-16 | 2019-04-12 | Xavier Rocher | Dispositif et procede de fabrication de structures tridimensionnelles realisees en couches successives |
-
2015
- 2015-11-26 CN CN201580071404.2A patent/CN107405829A/zh not_active Withdrawn
- 2015-11-26 KR KR1020177017237A patent/KR20170091650A/ko not_active Application Discontinuation
- 2015-11-26 WO PCT/US2015/062820 patent/WO2016086216A1/en active Application Filing
- 2015-11-26 JP JP2017528466A patent/JP2017535459A/ja active Pending
- 2015-11-26 EP EP15863214.1A patent/EP3224028A4/en not_active Withdrawn
- 2015-11-26 US US14/952,999 patent/US10406726B2/en active Active
-
2016
- 2016-04-20 US US15/133,457 patent/US9707717B2/en active Active
-
2017
- 2017-05-18 IL IL252371A patent/IL252371A0/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2583333A1 (fr) * | 1985-06-14 | 1986-12-19 | Cilas Alcatel | Procede pour realiser un modele de piece industrielle et dispositif de mise en oeuvre de ce procede |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111655452A (zh) * | 2017-12-06 | 2020-09-11 | 赛峰航空器发动机 | 用耐磨材料制造声学通道的有序网络的方法 |
CN111655452B (zh) * | 2017-12-06 | 2023-01-17 | 赛峰航空器发动机 | 用耐磨材料制造声学通道的有序网络的方法 |
CN111556886A (zh) * | 2017-12-22 | 2020-08-18 | Ppg工业俄亥俄公司 | 在外观和流挂控制性能方面提供益处的可热固化的成膜组合物 |
CN111556886B (zh) * | 2017-12-22 | 2022-03-22 | Ppg工业俄亥俄公司 | 在外观和流挂控制性能方面提供益处的可热固化的成膜组合物 |
CN111646804A (zh) * | 2020-06-16 | 2020-09-11 | 中南大学 | 一种空心管微点阵结构陶瓷材料的制备方法 |
CN111646804B (zh) * | 2020-06-16 | 2021-03-26 | 中南大学 | 一种空心管微点阵结构陶瓷材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2017535459A (ja) | 2017-11-30 |
WO2016086216A1 (en) | 2016-06-02 |
US10406726B2 (en) | 2019-09-10 |
KR20170091650A (ko) | 2017-08-09 |
US9707717B2 (en) | 2017-07-18 |
EP3224028A1 (en) | 2017-10-04 |
EP3224028A4 (en) | 2018-07-18 |
US20160271872A1 (en) | 2016-09-22 |
IL252371A0 (en) | 2017-07-31 |
US20160151982A1 (en) | 2016-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107405829A (zh) | 用于添加制造中的材料挤出工艺中的触变性热固性树脂 | |
WO2017142867A1 (en) | Extrusion additive manufacturing of pellets or filaments of thermosetting resins | |
Kazmer | Three-dimensional printing of plastics | |
EP3313647B1 (de) | Verfahren zur herstellung von 3d objekten | |
EP1604808B1 (en) | Three-dimensional article | |
US7767130B2 (en) | Method and device for production of a three-dimensional article | |
CN110312582A (zh) | 用于增材制造的材料体系 | |
JP6808635B2 (ja) | 改良された機械的特性のための、硬化性追従材料を挿入することによる、付加製造技術で製造された複数の部分のスティッチング | |
JP6390108B2 (ja) | 焼結造形材料、焼結造形方法、焼結造形物および焼結造形装置 | |
US12083738B2 (en) | Method, device, and recoating module for producing a three-dimensional object | |
EP1415792B1 (en) | Methods and compositions for three-dimensional printing | |
WO2017108758A1 (de) | Vorrichtung und verfahren zur herstellung eines dreidimensionalen gegenstandes mit einer faserzuführeinrichtung | |
US20150125334A1 (en) | Materials and Process Using a Three Dimensional Printer to Fabricate Sintered Powder Metal Components | |
DE19727677A1 (de) | Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Objekten | |
CN109874324A (zh) | 通过可烧结粉末的局部活化粘结进行的三维制造 | |
JP2005067197A (ja) | 非反応性粉末を利用した立体自由形状成形の方法とシステム | |
WO2019155897A1 (ja) | 立体造形方法 | |
Fink | 3D industrial printing with polymers | |
Godec et al. | Introduction to additive manufacturing | |
CN113478822A (zh) | 三维物体打印方法及设备、存储介质、计算机设备 | |
Marnot et al. | Material extrusion additive manufacturing of high particle loaded suspensions: a review of materials, processes and challenges | |
JP7111111B2 (ja) | 立体造形物の製造方法、およびそれに用いる粉末材料 | |
DE102011015068A1 (de) | Vorrichtung und Verfahren zum schichtweisen Aufbau eines Muster- oder Serienprodukts | |
Mousah | Effects of filler content and coupling agents on the mechanical properties and geometrical accuracy of selective laser sintered parts in glass bead-filled polyamide 12 composites | |
DE102023101736A1 (de) | Verfahren zur additiven Herstellung eines Formkörpers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20171128 |