CN111807843B - 一种轻质高强碳化硅泡沫陶瓷及其制备方法 - Google Patents

一种轻质高强碳化硅泡沫陶瓷及其制备方法 Download PDF

Info

Publication number
CN111807843B
CN111807843B CN202010675964.1A CN202010675964A CN111807843B CN 111807843 B CN111807843 B CN 111807843B CN 202010675964 A CN202010675964 A CN 202010675964A CN 111807843 B CN111807843 B CN 111807843B
Authority
CN
China
Prior art keywords
silicon carbide
foam
strength
ceramic
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010675964.1A
Other languages
English (en)
Other versions
CN111807843A (zh
Inventor
史忠旗
袁媛
魏智磊
周小楠
王波
夏鸿雁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xianyang Gazelle Valley New Material Technology Co ltd
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202010675964.1A priority Critical patent/CN111807843B/zh
Publication of CN111807843A publication Critical patent/CN111807843A/zh
Application granted granted Critical
Publication of CN111807843B publication Critical patent/CN111807843B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种轻质高强碳化硅泡沫陶瓷及其制备方法,属于泡沫陶瓷制备技术领域。本发明以聚氨酯泡沫为模板,将高残碳树脂与无水乙醇混合均匀,制成具有不同粘度的浆料。通过挂浆、干燥及热解碳化的步骤得到孔筋结构和强度可控的泡沫碳前驱体,然后通过原位气固碳热还原反应烧结制得轻质高强碳化硅泡沫陶瓷。与传统的模板法比较,本发明通过控制挂浆量调控碳化后泡沫碳骨架的残碳量,从而实现碳化硅泡沫陶瓷制品孔筋结构、孔隙率和强度的控制。该法制备的碳化硅泡沫陶瓷为三维开孔互联网状骨架结构,具有孔筋芯部中空、孔筋壁光滑致密等结构特点,制品具有轻质、高强的特性。

Description

一种轻质高强碳化硅泡沫陶瓷及其制备方法
技术领域
本发明属于泡沫陶瓷制备技术领域,具体涉及一种轻质高强碳化硅泡沫陶瓷及其制备方法。
背景技术
碳化硅(SiC)泡沫陶瓷具有高气孔率(70%-95%)、低密度、高比表面积、高渗透性、耐高温、耐腐蚀以及抗氧化性等优异性能,可作为催化剂载体、熔融金属过滤器、复合材料增强相以及人造关节等器/部件使用,广泛应用于过滤催化、保温隔热、生物医疗、电子器件、航空航天和能源化工等领域。
传统有机模板浸渍法制备SiC泡沫陶瓷的实验流程为混料、挂浆、干燥、热解炭化以及烧结,具体浆料组成主要分为两大类。第一类为水系SiC浆料加烧结助剂混料,经烧结制得SiC泡沫陶瓷。如中国专利《一种低温液相烧结碳化硅泡沫陶瓷的制备方法》(申请号201310145115.5,申请公布号CN103253980A,申请公布日2013.8.21)采用碳化硅粉、氧化铝、氧化镁为主要原料,以氧化铝及氧化镁等为烧结助剂,通过液相烧结制得SiC泡沫陶瓷。这种方法在SiC陶瓷中引入烧结助剂虽然可降低烧结温度,但不利于其在生物医疗领域应用,因此极大程度上限制了SiC泡沫陶瓷的应用领域。第二类主要采用反应烧结方法制备SiC泡沫陶瓷并引入烧结助剂提高制品强度。此法可采用聚碳硅烷(PCS)为前驱体进行热解反应获得SiC泡沫陶瓷,或以Si粉和高残碳树脂为原料高温反应烧结制备SiC泡沫陶瓷。然而,以PCS为前驱体制备SiC泡沫陶瓷的原料成本高且制品易收缩开裂;而以Si粉和高残碳树脂为原料进行反应烧结时,由于硅碳反应产生体积收缩,会在SiC泡沫陶瓷孔筋上形成孔洞,导致SiC泡沫陶瓷强度极低。如中国专利《一种高强度碳化硅泡沫陶瓷及其一次挂浆炭化烧结制备方法》(申请号CN201810885523.7,申请公布号CN109133933A,申请公布日2019.1.4)以硅粉和高残碳树脂为主要原料,通过硅粉与高残碳树脂热解碳化后的无定形碳反应烧结制备SiC泡沫陶瓷。此方法主要是依靠反应烧结剩余的残余硅作为粘结剂以及添加烧结助剂来提升SiC泡沫陶瓷的强度,制备工艺较为繁琐,实验成本高且产物易发生成分不均匀的现象。除此以外,烧结助剂的引入也极大程度上限制了SiC泡沫陶瓷的应用领域。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种轻质高强碳化硅泡沫陶瓷及其制备方法,该方法无须添加烧结助剂,操作简单,实验成本低,易实现工业化生产和应用,而且此法制得的SiC泡沫陶瓷为三维开孔互联网状骨架结构,具有孔筋芯部中空、孔筋壁光滑致密的形貌和结构特征,制品具有轻质高强等特性。
为了达到上述目的,本发明采用以下技术方案予以实现:
本发明公开了一种轻质高强碳化硅泡沫陶瓷的制备方法,包括以下步骤:
1)浆料制备:以高残碳树脂为碳源,无水乙醇为溶剂,将高残碳树脂和无水乙醇以1:(0.3~1)的摩尔比充分混合均匀,制备成粘度为60~350mPa·s的浆料;
2)挂浆:采用聚氨酯泡沫作为模板,将聚氨酯泡沫浸渍于配制好的浆料中,使其充分挂浆,然后排除多余浆料后干燥,制得聚氨酯泡沫前驱体;
3)热解碳化:将聚氨酯泡沫前驱体在惰性气体气氛中,于1000℃热解碳化,得到具有表面致密光滑、芯部中空的三角形孔筋的泡沫碳骨架;
4)烧结:在烧结炉中的坩埚底部铺一层SiO粉,将步骤3)制得的泡沫碳骨架置于坩埚中部,在惰性气体气氛中于1650℃~1850℃保温处理2~6h,使SiO蒸汽与泡沫碳骨架进行原位气固碳热还原反应形成轻质高强碳化硅泡沫陶瓷。
优选地,所述高残碳树脂为环氧树脂、酚醛树脂、氨酚醛树脂、钡酚醛树脂、糠醛树脂、酚糠醛树脂和甲基酚醛树脂中的一种或几种。
优选地,采用的聚氨酯泡沫的规格为20-65PPI。
优选地,步骤2)中,在浸渍过程中充分揉搓聚氨酯泡沫使其充分挂浆,然后通过辊压法排除多余浆料,在室温下自然阴干。
优选地,步骤3)中,热解碳化是在氩气气氛下,自室温起,以1℃/min升温至1000℃,保温2~4h完成的。
优选地,步骤4)中,SiO粉与泡沫碳骨架的质量比为(6~12):1。
优选地,步骤4)中,惰性气体采用氩气,氩气压力为0.2~0.6MPa。
优选地,步骤4)中,烧结是以5℃/min的升温速率从室温升温至1650℃~1850℃。
本发明还公开了采用上述的轻质高强碳化硅泡沫陶瓷的制备方法制得的轻质高强碳化硅泡沫陶瓷,所述轻质高强碳化硅泡沫陶瓷为三维开孔互联网状骨架结构,具有三角形中空孔筋及光滑致密的孔筋壁;且该轻质高强碳化硅泡沫陶瓷的孔径分布均匀且无堵孔,孔径直径为200~350μm,孔筋直径为50~75μm,孔筋壁厚为3~8μm。
优选地,该轻质高强碳化硅泡沫陶瓷的抗压强度为60~80kPa,密度为0.05~0.08g/cm3,气孔率为97.5%~98.5%
与现有技术相比,本发明具有以下有益效果:
本发明公开的轻质高强SiC泡沫陶瓷的原位碳热还原反应制备方法,以聚氨酯泡沫为模板,将高残碳树脂与无水乙醇混合均匀,制成具有不同粘度的浆料,不同粘度的浆料可控制挂浆量。把聚氨酯泡沫模板浸渍在制备好的浆料中充分揉搓浸渍,使浆料均匀涂覆于聚氨酯泡沫模板孔筋表面,排除多余浆料后将泡沫前驱体干燥,然后将泡沫前驱体在氩气气氛下热解碳化,得到具有表面光滑致密、芯部中空的三角形孔筋结构的泡沫碳骨架。最后将泡沫碳骨架置于底部铺放SiO粉的坩埚中,通过原位气固碳热还原反应制得轻质高强SiC泡沫陶瓷。与传统的模板法比较,泡沫碳骨架与SiO蒸气通过原位气固碳热反应生成的SiC泡沫陶瓷为三维开孔互联网状骨架结构,具有孔筋芯部中空、孔筋壁光滑致密等结构特点,因此采用此法制备的SiC泡沫陶瓷具有轻质高强的特性。
进一步地,通过将高残碳树脂与无水乙醇以不同比例均匀混合以调控浆料的粘度,实现挂浆量的调控,进而控制碳化后泡沫碳骨架的残碳量,从而实现SiC泡沫陶瓷制品孔筋结构和强度的控制。除此以外,样品孔径均匀无堵孔、强度高且无烧结助剂、固化剂等添加剂,有利于SiC泡沫陶瓷在生物医疗领域发挥巨大的应用潜力。此法操作简单、实验成本低,可实现工业化大规模应用。
附图说明
图1为坩埚结构示意图。包括:1-炉体;2-坩埚盖;3-坩埚;4-泡沫碳骨架;5-镂空石墨纸支架;6-SiO粉末。
图2为实施例1制备的SiC泡沫陶瓷的宏观形貌照片。
图3为实施例1制备的SiC泡沫陶瓷的XRD。
图4为实施例1制备的SiC泡沫陶瓷的微观形貌照片。
图5为实施例1制备的SiC泡沫陶瓷孔筋断口SEM照片。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
实施例1
按照无水乙醇与酚醛树脂摩尔比1:0.3配制浆料,将50PPI聚氨酯泡沫模板放置在混合均匀的浆料中充分揉搓浸渍,通过辊压法排出多余浆料后把挂好浆的聚氨酯泡沫于室温下阴干24h。将制备好的泡沫前驱体放置在管式炉中,充入氩气,以1℃/min的升温速率升温至1000℃保温2h。把热解碳化好的泡沫碳骨架放置在坩埚中层,在坩埚底部铺一层SiO粉,SiO粉的质量为泡沫碳骨架质量的6倍,然后将坩埚放置在炉体中后通入0.2MPa的氩气气氛压力,以5℃/min的升温速率升温至1750℃,保温4h。
制得的SiC泡沫陶瓷的宏观形貌如图2所示。从图2可看出样品呈灰绿色的多孔形貌,且孔径均匀无堵孔。利用X射线衍射仪(XRD)和扫描电子显微镜对所得产物进行表征。图3是所得SiC泡沫陶瓷的XRD图谱,所有谱峰指标化为β-SiC相,没有出现任何杂质相的谱峰。图4是所得SiC泡沫陶瓷的SEM照片,可见制得的SiC泡沫陶瓷为孔径均匀的三维开孔互联网状骨架结构,孔筋壁上有少量纳米碳化硅晶须生成。图5是所得SiC泡沫陶瓷孔筋断口SEM照片,结果显示SiC泡沫陶瓷的孔筋具有三角形中空结构且孔筋壁光滑致密。因此,本发明可实现一种轻质高强SiC泡沫陶瓷的制备,通过对SiC泡沫陶瓷制品孔筋结构的控制可实现对其孔隙率和强度的调控,有效拓宽了SiC泡沫陶瓷的制备技术及应用领域。
实施例2
按照无水乙醇与酚醛树脂摩尔比1:1配制浆料,将65PPI的聚氨酯泡沫模板放置在混合均匀的浆料中充分揉搓浸渍,通过辊压法排出多余浆料后把挂好浆的聚氨酯泡沫于室温下阴干24h。将制备好的泡沫前驱体放置在管式炉中,充入氩气,以1℃/min的升温速率升温至1000℃保温2h。把热解碳化好的泡沫碳骨架放置在坩埚中层,在坩埚底部铺一层SiO粉,SiO粉的质量为泡沫碳骨架质量的10倍,然后将坩埚放置在炉体中后通入0.6MPa的氩气气氛压力,烧结炉以5℃/min的升温速率升温至1800℃,保温4h。
实施例3
按照无水乙醇与酚醛树脂摩尔比1:0.5配制浆料,将20PPI聚氨酯泡沫模板放置在混合均匀的浆料中充分揉搓浸渍,通过辊压法排出多余浆料后把挂好浆的聚氨酯泡沫于室温下阴干24h。将制备好的泡沫前驱体放置在管式炉中,充入氩气,以1℃/min的升温速率升温至1000℃保温4h。把热解碳化好的泡沫碳骨架放置在坩埚中层,在坩埚底部铺一层SiO粉,SiO粉的质量为泡沫碳骨架质量的8倍,然后将坩埚放置在炉体中后通入0.4MPa的氩气气氛压力,以5℃/min的升温速率升温至1650℃,保温6h。
实施例4
按照无水乙醇与酚醛树脂摩尔比1:0.5配制浆料,将50PPI聚氨酯泡沫模板放置在混合均匀的浆料中充分揉搓浸渍,通过辊压法排出多余浆料后把挂好浆的聚氨酯泡沫于室温下阴干24h。将制备好的泡沫前驱体放置在管式炉中,充入氩气,以1℃/min的升温速率升温至1000℃保温2h。把热解碳化好的泡沫碳骨架放置在坩埚中层,在坩埚底部铺一层SiO粉,SiO粉的质量为泡沫碳骨架质量的10倍,然后将坩埚放置在炉体中后通入0.2MPa的氩气气氛压力,以5℃/min的升温速率升温至1700℃,保温2h。
实施例5
按照无水乙醇与酚醛树脂摩尔比1:0.5配制浆料,将60PPI聚氨酯泡沫模板放置在混合均匀的浆料中充分揉搓浸渍,通过辊压法排出多余浆料后把挂好浆的聚氨酯泡沫于室温下阴干24h。将制备好的泡沫前驱体放置在管式炉中,充入氩气,以1℃/min的升温速率升温至1000℃保温4h。把热解碳化好的泡沫碳骨架放置在坩埚中层,在坩埚底部铺一层SiO粉,SiO粉的质量为泡沫碳骨架质量的12倍,然后将坩埚放置在炉体中后通入0.3MPa的氩气气氛压力,以5℃/min的升温速率升温至1850℃,保温2h。
实施例6
按照无水乙醇与酚醛树脂摩尔比1:0.8配制浆料,将40PPI聚氨酯泡沫模板放置在混合均匀的浆料中充分揉搓浸渍,通过辊压法排出多余浆料后把挂好浆的聚氨酯泡沫于室温下阴干24h。将制备好的泡沫前驱体放置在管式炉中,充入氩气,以1℃/min的升温速率升温至1000℃保温2h。把热解碳化好的泡沫碳骨架放置在坩埚中层,在坩埚底部铺一层SiO粉,SiO粉的质量为泡沫碳骨架质量的8倍,然后将坩埚放置在炉体中后通入0.5MPa的氩气气氛压力,以5℃/min的升温速率升温至1800℃,保温4h。
综上所述,本发明以聚氨酯泡沫为模板,将高残碳树脂与无水乙醇混合均匀,制成具有不同粘度的浆料。通过挂浆、干燥及热解碳化的步骤得到孔筋结构和强度可控的泡沫碳前驱体,然后通过原位气固碳热还原反应烧结制得轻质高强碳化硅泡沫陶瓷。与传统的模板法比较,本发明通过控制挂浆量调控碳化后泡沫碳骨架的残碳量,从而实现碳化硅泡沫陶瓷制品孔筋结构、孔隙率和强度的控制。该法制备的碳化硅泡沫陶瓷为三维开孔互联网状骨架结构,具有孔筋芯部中空、孔筋壁光滑致密等结构特点,制品具有轻质、高强的特性。
本发明上述实施例采用如图1所示的烧结炉坩埚,包括:1-炉体;2-坩埚盖;3-坩埚;4-泡沫碳骨架;5-镂空石墨纸支架;6-SiO粉末。烧结时,在烧结炉中的坩埚底部铺一层SiO粉,将制得的泡沫碳骨架置于坩埚中部,在惰性气体气氛中保温处理,使SiO蒸汽与泡沫碳骨架进行原位气固碳热还原反应形成轻质高强碳化硅泡沫陶瓷。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (7)

1.一种轻质高强碳化硅泡沫陶瓷的制备方法,其特征在于,包括以下步骤:
1)浆料制备:以高残碳树脂为碳源,无水乙醇为溶剂,将高残碳树脂和无水乙醇以1:(0.3~1)的摩尔比充分混合均匀,制备成粘度为60~350 mPa•s的浆料;高残碳树脂为环氧树脂、酚醛树脂、氨酚醛树脂、钡酚醛树脂、糠醛树脂、酚糠醛树脂和甲基酚醛树脂中的一种或几种;
2)挂浆:采用聚氨酯泡沫作为模板,将聚氨酯泡沫浸渍于配制好的浆料中,充分揉搓聚氨酯泡沫使其充分挂浆,通过辊压法排除多余浆料,在室温下自然阴干,制得聚氨酯泡沫前驱体;
3)热解碳化:将聚氨酯泡沫前驱体在惰性气体气氛中,于1000℃热解碳化,得到具有表面致密光滑、芯部中空的三角形孔筋的泡沫碳骨架;
4)烧结:在烧结炉中的坩埚底部铺一层SiO粉,将步骤3)制得的泡沫碳骨架置于坩埚中部,在惰性气体气氛中于1650℃~1850℃保温处理2~6h,使SiO蒸汽与泡沫碳骨架进行原位气固碳热还原反应形成轻质高强碳化硅泡沫陶瓷。
2.根据权利要求1所述的轻质高强碳化硅泡沫陶瓷的制备方法,其特征在于,采用的聚氨酯泡沫的规格为20-65 PPI。
3.根据权利要求1所述的轻质高强碳化硅泡沫陶瓷的制备方法,其特征在于,步骤3)中,热解碳化是在氩气气氛下,自室温起,以1℃/min升温至1000℃,保温2~4h完成的。
4.根据权利要求1所述的轻质高强碳化硅泡沫陶瓷的制备方法,其特征在于,步骤4)中,SiO粉与泡沫碳骨架的质量比为(6~12):1。
5.根据权利要求1所述的轻质高强碳化硅泡沫陶瓷的制备方法,其特征在于,步骤4)中,惰性气体采用氩气,氩气压力为0.2~0.6 MPa。
6.根据权利要求1所述的轻质高强碳化硅泡沫陶瓷的制备方法,其特征在于,步骤4)中,烧结是以5℃/min的升温速率从室温升温至1650℃~1850℃。
7.采用权利要求1~6中任意一项所述的轻质高强碳化硅泡沫陶瓷的制备方法制得的轻质高强碳化硅泡沫陶瓷,其特征在于,所述轻质高强碳化硅泡沫陶瓷为三维开孔互联网状骨架结构,具有三角形中空孔筋及光滑致密的孔筋壁;且该轻质高强碳化硅泡沫陶瓷的孔径分布均匀且无堵孔,孔径直径为200~350μm,孔筋直径为50~75μm,孔筋壁厚为3~8μm;该轻质高强碳化硅泡沫陶瓷的抗压强度为60~80kPa,密度为0.05~0.08g/cm3,气孔率为97.5%~98.5%。
CN202010675964.1A 2020-07-14 2020-07-14 一种轻质高强碳化硅泡沫陶瓷及其制备方法 Active CN111807843B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010675964.1A CN111807843B (zh) 2020-07-14 2020-07-14 一种轻质高强碳化硅泡沫陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010675964.1A CN111807843B (zh) 2020-07-14 2020-07-14 一种轻质高强碳化硅泡沫陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN111807843A CN111807843A (zh) 2020-10-23
CN111807843B true CN111807843B (zh) 2021-09-07

Family

ID=72864714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010675964.1A Active CN111807843B (zh) 2020-07-14 2020-07-14 一种轻质高强碳化硅泡沫陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111807843B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745135B (zh) * 2021-01-08 2022-11-29 武汉科技大学 一种氧化镁-碳化硅-碳多孔陶瓷过滤器及其制备方法
CN113307629A (zh) * 2021-07-05 2021-08-27 厦门大学 一种碳化硅泡沫陶瓷及其制备方法
CN113683423B (zh) * 2021-08-19 2022-06-07 西安超码科技有限公司 一种网状玻璃态多孔碳薄壁异形件及其制备方法
CN113912416B (zh) * 2021-11-10 2022-10-11 中国航发北京航空材料研究院 一种碳化硅纤维回收再利用的方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224592C (zh) * 2000-05-31 2005-10-26 中国科学院金属研究所 一种高强度碳化硅泡沫陶瓷的制备方法
CN103964887B (zh) * 2014-04-30 2015-03-11 中国科学院金属研究所 一种高机械强度泡沫陶瓷材料及其制备方法
CN110066175B (zh) * 2019-05-13 2020-10-27 中南大学 超轻碳化物陶瓷泡沫的制备方法

Also Published As

Publication number Publication date
CN111807843A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
CN111807843B (zh) 一种轻质高强碳化硅泡沫陶瓷及其制备方法
Eom et al. Processing and properties of macroporous silicon carbide ceramics: A review
Cao et al. Preparation of porous Al 2 O 3-ceramics by biotemplating of wood
CN102010222B (zh) 一种碳化硅多孔陶瓷及其制备方法
CN105272266A (zh) 一种先驱体转化碳化硅泡沫陶瓷的制备方法
Qian et al. Porous SiC ceramics fabricated by reactive infiltration of gaseous silicon into charcoal
WO2022222778A1 (zh) 一种通过陶瓷前驱体骨架成型的精细陶瓷材料及其制备方法和应用
CN100395211C (zh) 一种制备高孔隙率多孔碳化硅陶瓷的方法
JP3699992B2 (ja) 炭化ケイ素系耐熱性超軽量多孔質構造材及びその製造方法
WO2009140856A1 (en) Process for producing silicon carbide
CN111925229A (zh) 一种模板法结合化学气相渗透法制备高性能泡沫陶瓷的方法
CN109133933A (zh) 一种高强度碳化硅泡沫陶瓷及其一次挂浆炭化烧结制备方法
CN102173853A (zh) 一种制备高度定向贯通型多孔SiC陶瓷材料的方法
WO2007056895A1 (fr) Thyrite expansee compacte haute intensite et procede de preparation correspondant
CN109095930A (zh) 一种氮化硼泡沫材料及其制备方法
CN108129156A (zh) 一种碳陶复合材料及其先驱体浸渍制备方法
CN111848196B (zh) 一种原位碳化硅纳米线增韧碳化硅陶瓷的制备方法
CN108752038A (zh) 一种以可热固化聚碳硅烷制备的碳化硅泡沫陶瓷
CN108083832B (zh) 一种C/C-HfC复合材料的高效低成本近净成形制备方法
Wu et al. Preparation and properties of reticulated porous γ-Y2Si2O7 ceramics with high porosity and relatively high strength
CN108727059A (zh) 一种以可热固化聚碳硅烷制备碳化硅泡沫陶瓷的制备方法
CN113800935A (zh) 一种原位自生SiC(nw,np)-ZrB2-ZrC改性碳/碳复合材料的制备方法
CN112759387A (zh) 一种氧化锆陶瓷及其制备方法以及陶瓷过滤器
CN114933485A (zh) 一种晶须/纤维增强堇青石质多孔陶瓷及其制备方法和应用
CN114671674A (zh) 一种二氧化硅泡沫陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221207

Address after: 712046 Floor 2, Building 7, Incubation Park, Gaoke Second Road, Xianyang Hi tech Industrial Development Zone, Shaanxi Province

Patentee after: Xianyang Gazelle Valley New Material Technology Co.,Ltd.

Address before: 710049 No. 28 West Xianning Road, Shaanxi, Xi'an

Patentee before: XI'AN JIAOTONG University

TR01 Transfer of patent right