CN111646803B - 一种熔融态3d直写打印浆料及其制备方法和应用 - Google Patents

一种熔融态3d直写打印浆料及其制备方法和应用 Download PDF

Info

Publication number
CN111646803B
CN111646803B CN202010545474.XA CN202010545474A CN111646803B CN 111646803 B CN111646803 B CN 111646803B CN 202010545474 A CN202010545474 A CN 202010545474A CN 111646803 B CN111646803 B CN 111646803B
Authority
CN
China
Prior art keywords
direct
molten
slurry
writing
polycarbosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010545474.XA
Other languages
English (en)
Other versions
CN111646803A (zh
Inventor
张斗
王小峰
赵连仲
熊慧文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202010545474.XA priority Critical patent/CN111646803B/zh
Publication of CN111646803A publication Critical patent/CN111646803A/zh
Application granted granted Critical
Publication of CN111646803B publication Critical patent/CN111646803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63408Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

本发明公开了一种熔融态3D直写浆料及其制备方法和应用,所述熔融态3D直写打印浆料为采用改性剂对陶瓷先驱体改性,所得改性陶瓷先驱体粉末再加热至250℃~300℃所得熔融态的物质,所述陶瓷先驱体为聚碳硅烷。所述改性剂选自聚丙烯,超支化液态聚碳硅烷,液态聚乙烯基硅烷,聚二甲基硅氧烷中的至少一种。本发明首创的提供了一种熔融态的3D直写打印浆料,即是一种完全无溶剂的3D直写打印浆料,通过控制温度即可以简单的控制浆料流变性能。相比于溶液、悬浮液浆料,采用本发明中的熔融态的3D直写打印浆料制备的陶瓷结构表面十分光滑,内部几乎没有缺陷,去除了打印后的坯体需要脱除溶剂的过程,克服了溶剂对坯体的不利影响。

Description

一种熔融态3D直写打印浆料及其制备方法和应用
技术领域
本发明属于3D打印材料技术领域,具体涉及一种熔融态3D直写浆料及其制备方法和应用。
背景技术
3D打印技术是将三维模型数字化切片为二维横截面,通过逐点、线、面的方式添加制造零件,因而可以实现传统工艺难加工或者无法加工的结构。其中直写成型技术作为一种廉价的3D打印技术,最早是由美国Sandia国家实验室的Joseph Cesarano III等提出。该方法可以实现大的高宽比和尺寸控制范围,并能实现具有无支撑特征结构的三维结构。其打印使用的墨水原料成分设计自由度高,可以实现金属、陶瓷甚至活体细胞的三维成形。
在使用直写成型技术制备陶瓷三维材料时,浆料的成分,微观组织机构以及流变性能是重点与难点。为了使浆料在挤出后能够保持形状,这就要求浆料具有合适的流变性能,一种方法是将陶瓷粉末均匀的分散在水或其他有机溶剂中,通过调节PH值或者离子浓度等方法,达到控制浆料流变性能的目的,另一种方法则是通过施加外部条件,如紫外光,热刺激等方式实现浆料的固化。如:G.Franchin,P.Scanferla,L.Zeffiro,H.Elsayed,A.Baliello,G.Giacomello,M.Pasetto,P.Colombo,Direct ink writing ofgeopolymeric inks,J Eur Ceram Soc 37(6)(2017)2481-2489.C.M.Larson,J.J.Choi,P.A.Gallardo,S.W.Henderson,M.D.Niemack,G.Rajagopalan,R.F.Shepherd,Direct InkWriting of Silicon Carbide for Microwave Optics,Adv Eng Mater 18(1)(2016)39-45.H.H.Chen,X.F.Wang,F.D.Xue,Y.J.Huang,K.C.Zhou,D.Zhang,3D printing of SiCceramic:Direct ink writing with a solution of preceramic polymers,J Eur CeramSoc 38(16)(2018)5294-5300.
在以往的报道中,设计的浆料往往是溶液或者悬浮液的形式,而这种浆料的流变性能往往对溶质的浓度十分敏感,尤其是具有强烈挥发性质的溶剂,这就导致了浆料的流变性能难以控制。另一方面,成形后的坯体中残留大量的溶剂,在脱除这些溶剂的过程中,将不可避免的给坯体留下大量的微裂纹与气孔。
发明内容
针对现有技术的不足,本发明的目的在于提供一种熔融态3D直写打印浆料及其制备方法和应用。
为了实现上述目的,本发明采用如下技术方案:
本发明一种熔融态3D直写打印浆料,所述熔融态3D直写打印浆料为采用改性剂对陶瓷先驱体改性,所得改性陶瓷先驱体粉末再加热至250℃~300℃所得熔融态的物质,所述陶瓷先驱体为聚碳硅烷(PCS),所述改性剂选自聚丙烯,超支化液态聚碳硅烷,液态聚乙烯基硅烷,聚二甲基硅氧烷中的至少一种。
本发明首创的提供了一种熔融态的3D直写打印浆料,是一种完全无溶剂的3D直写打印浆料,通过控制温度即可以简单的控制浆料流变性能。
本发明的熔融态3D直写打印浆料采用改性陶瓷先驱体粉末加热至熔融获得,聚碳硅烷是最常用、最稳定的陶瓷先驱体,然而其本身脆性高,本发明通过与聚碳硅烷具有很好相容性,且具有优异成形性的改性剂对聚碳硅烷进行改性,通过添加少量的改性剂,即可以大大改善聚碳硅烷在常温下的脆性,从而避免在打印过程中聚碳硅烷因为热应力而产生的大量裂纹。
优选的方案,所述熔融态3D直写打印浆料在10s-1剪切速率下的粘度为100Pa.s~1000Pa.s,优选为100~300Pa.s。
优选的方案,所述改性剂的加入量为陶瓷先驱体质量的1~5%。
将改性剂的加入量控制在上述优选范围内,即可以完全改善聚碳硅烷的脆性,又可中以避免由于引入过多的改性剂从而在先驱体降温过程中析出,成为缺陷,留下裂纹。
优选的方案,所述聚碳硅烷的分子量为1000~2000g/mol。
本发明一种熔融态3D直写打印浆料的制备方法,包括如下步骤:
步骤一
将聚碳硅烷、改性剂加入有机溶剂中于100~140℃反应4~8h,获得混合溶液,将混合溶液干燥后,研磨过筛,取筛下物获得改性陶瓷先驱体粉末;
步骤二
将改性陶瓷先驱体粉末置于打印针筒,向针筒中通入氮气,并以5~10℃/min的速度升温至250℃~300℃,保温30~60min,除去气泡,即得熔融态3D直写打印浆料。
在实际操作过程中,步骤一中,在搅拌下进行反应。
优选的方案,步骤一中,所述有机溶剂选自二甲苯,四氢呋喃,甲苯中的一种。
优选的方案,步骤一中,所述干燥的温度为100~140℃,干燥的时间为12~24h,干燥的压力≤-0.1MPa。
优选的方案,步骤一中,所述过筛所用筛网的目数为100目。
本发明一种熔融态3D直写打印浆料的应用,将所述熔融态3D直写打印浆料应用于制备3D陶瓷。
优选的方案,所述3D直写打印陶瓷材料的过程为:根据设计的三维结构,将陶瓷浆料通过3D直写打印设备逐层打印获得三维结构粗坯,再将三维结构粗坯在交联气氛下于180℃~250℃进行预氧化反应≥24h,获得预氧化坯体,再进行热解即得3D陶瓷。
在实际应用过程中,在将改性陶瓷先驱体粉末置于打印针筒的过程中,同步的将针头,活塞和导气管连接,之后将整体安装在Z轴上的夹具上;然后向针筒中通入氮气,并以5~10℃/min的速度升温至250℃~300℃,保温30~60min,除去气泡,获得熔融态的改性陶瓷先驱体,同时设定直写成形装置的成形平台温度为150~195℃,接着,借助计算机辅助设计所需的三维结构的图案,通过计算机自动控制安装在Z轴上的针筒的气压,使浆料从针嘴流出,并沉积在按照程序移动的X-Y轴成型平台上,从而获得第一层结构;之后,Z轴精确地向上移动或旋转到结构方案确定的高度,第二层成型将在第一层结构上进行;随后,通过逐层叠加的方式,获得三维点阵结构的粗坯,所述气压范围为1~1000PSI,成型平台得移动的速度为0.1~500mm/s。
进一步的优选,所述交联气氛选自选自空气,臭氧,氯气、环己烯,正庚烯,辛炔中的一种。
进一步的优选,所述交联气氛的流量为40~60ml/min。
进一步的优选,所述热解的温度为1000~1400℃,热解的时间为1~2h。
原理与优势
本发明首创的提供了一种熔融态的3D直写打印浆料,即是一种完全无溶剂的3D直写打印浆料,通过控制温度即可以简单的控制浆料流变性能。
相比于溶液、悬浮液浆料,采用本发明中的熔融态的3D直写打印浆料制备的陶瓷结构表面十分光滑,内部几乎没有缺陷,去除了打印后的坯体需要脱除溶剂的过程,克服了溶剂对坯体的不利影响。
本发明的熔融态的3D直写打印浆料,只需采用少量改性剂对常用的陶瓷先驱体改性、加热即得,制备方法简单,本发明熔融态的3D直写打印浆料为3D直写打印浆料的开发,提供了一种全新的思路。
附图说明
图1:实施例1中得到的三维SiC陶瓷结构的电子扫描显微镜图片;
图2:对比例1中得到的三维SiC陶瓷结构的电子扫描显微镜图片。
具体实施方式
下面举例对本发明进行进一步说明,但不限于此:
实施例1:
采用聚碳硅烷/聚丙烯粉末为浆料,空气为交联气体,制备三维陶瓷结构。
将6g聚碳硅烷和、0.3g聚丙烯、1000ml二甲苯放入烧杯中,在120℃的油浴锅中磁力搅拌6h。随后将澄清透明的溶液转移至真空干燥箱中,温度设置为120℃,压力为-0.1MPa,真空干燥24h,得到均匀共混的聚碳硅烷/聚丙烯颗粒,将粉末研磨并过筛得到直写用浆料。筛网选用100目。
去5g聚碳硅烷/聚丙烯粉末装入不锈钢针筒中,在针筒顶部装入200μm孔径针头,在针筒外部安装加热套,组装活塞、导气管,向针筒内通入99.999%的高纯氮气,压力设置为60psi,保持10min,除去针筒内空气。之后以5℃/min升温至300℃,保温60min,除去熔融态先驱体内部气泡,获得熔融态3D直写打印浆料,所得熔融态3D直写打印浆料的粘度在剪切速率为10s-1时为173Pa·s。
打印基板设置温度为190℃,对浆料进行直写成型,得到三维点阵结构粗坯。成型压力为60psi,移动速度为10mm/s。
将坯体置于管式炉中,通入空气,气流量为40ml/min,温度设定为200℃,保温时间为24h。之后将坯体置于氩气其气氛下,以5℃/min升温至1200℃,得到三维SiC陶瓷结构,单根丝线的平均直径为180μm。如图1所示。
对比例1:
采用聚碳硅烷/正己烷溶液作为打印浆料,空气为交联气体,制备三维陶瓷结构。
将5g聚碳硅烷、20ml正己烷混合,在室温下通过磁力搅拌2h直至聚碳硅烷充分溶解在正己烷中。不停搅拌,使有机溶剂挥发,得到固含量76wt%的浆料。将浆料注射进50ml的针筒中,以1000r/min转速,离心10分钟,除去浆料气泡。
然后在针筒顶部装入200um孔径的针头。对浆料进行直写成型,在载玻片上获得纵横交错的三维立体结构。成型压力20PSI;移动速度5mm/s。坯体交联与裂解过程与实例1中相同。发现得到的SiC陶瓷内部存在大量气孔裂纹等缺陷,表面质量差。如图2所示。
实施例2:
采用聚碳硅烷/聚丙烯粉末为浆料,空气为交联气体,制备三维陶瓷结构。
将4g聚碳硅烷和、0.12g聚丙烯、50ml二甲苯放入烧杯中,在120℃的油浴锅中磁力搅拌4h。随后将澄清透明的溶液转移至真空干燥箱中,温度设置为120℃,压力为-0.1MPa,真空干燥12h,得到均匀共混的聚碳硅烷/聚丙烯颗粒,将粉末研磨并过筛得到直写用浆料。筛网选用100目。
去2g聚碳硅烷/聚丙烯粉末装入不锈钢针筒中,在针筒顶部装入200μm孔径针头,在针筒外部安装加热套,组装活塞、导气管,向针筒内通入99.999%的高纯氮气,压力设置为50psi,保持10min,除去针筒内空气。之后以5℃/min升温至300℃,保温30min,除去熔融态先驱体内部气泡,获得熔融态3D直写打印浆料,所得熔融态3D直写打印浆料的粘度在10s-1时黏度为212Pa·s;
打印基板设置温度为195℃,对浆料进行直写成型,得到三维点阵结构粗坯。成型压力为60psi,移动速度为7mm/s。
将坯体置于管式炉中,通入空气,气流量为40ml/min,温度设定为200℃,保温时间为24h。之后将坯体置于氩气其气氛下,以5℃/min升温至1200℃,得到三维SiC陶瓷结构,单根丝线的平均直径为198μm。
对比例2:
其余条件与实施例2相同,不同之处在于针筒温度设定为310℃,发现由于温度设定过高,先驱体挤出后黏度过低,无法成形三维结构。
对比例3:
其余条件与实施例2相同,不同之处在于针筒温度设定为240℃,发现由于温度设定过低,先驱体黏度过高,浆料无法挤出。
实施例3:
采用聚碳硅烷/聚丙烯粉末为浆料,空气为交联气体,制备三维陶瓷结构。
将4g聚碳硅烷和、0.04g聚丙烯、50ml二甲苯放入烧杯中,在120℃的油浴锅中磁力搅拌4h。随后将澄清透明的溶液转移至真空干燥箱中,温度设置为120℃,压力为-0.1MPa,真空干燥12h,得到均匀共混的聚碳硅烷/聚丙烯颗粒,将粉末研磨并过筛得到直写用浆料。筛网选用100目。
去2g聚碳硅烷/聚丙烯粉末装入不锈钢针筒中,在针筒顶部装入400μm孔径针头,在针筒外部安装加热套,组装活塞、导气管,向针筒内通入99.999%的高纯氮气,压力设置为50psi,保持10min,除去针筒内空气。之后以5℃/min升温至300℃,保温30min,除去熔融态先驱体内部气泡;获得熔融态3D直写打印浆料,所得熔融态3D直写打印浆料的粘度在剪切速率为10s-1时黏度为263Pa·s;
打印基板设置温度为195℃,对浆料进行直写成型,得到三维点阵结构粗坯。成型压力为40psi,移动速度为6mm/s。
将坯体置于管式炉中,通入空气,气流量为40ml/min,温度设定为200℃,保温时间为24h。之后将坯体置于氩气其气氛下,以5℃/min升温至1200℃,得到三维SiC陶瓷结构,单根丝线的平均直径为392μm。
对比例4:
其余条件与实施例3相同,不同之处在于加入的聚丙烯量为0.02g(0.5wt%),发现坯体太脆,打印过程中出现贯穿整体的大裂纹,样品在交联或碎裂。
对比例5:
其余条件与实施例3相同,不同之处在于加入的聚丙烯量为0.4g(10wt%),发现坯体成形后整体呈乳白色,聚丙烯大量析出,坯体裂解后裂成碎片,无法成形。
实施例4:
采用聚碳硅烷/聚二甲基硅氧烷粉末为浆料,空气为交联气体,制备三维陶瓷结构。
将4g聚碳硅烷和、0.04g聚丙烯、50ml二甲苯放入烧杯中,在120℃的油浴锅中磁力搅拌4h。随后将澄清透明的溶液转移至真空干燥箱中,温度设置为120℃,压力为-0.1MPa,真空干燥12h,得到均匀共混的聚碳硅烷/聚丙烯颗粒,将粉末研磨并过筛得到直写用浆料。筛网选用100目。
去2g聚碳硅烷/聚丙烯粉末装入不锈钢针筒中,在针筒顶部装入400μm孔径针头,在针筒外部安装加热套,组装活塞、导气管,向针筒内通入99.999%的高纯氮气,压力设置为50psi,保持10min,除去针筒内空气。之后以5℃/min升温至300℃,保温30min,除去熔融态先驱体内部气泡;获得熔融态3D直写打印浆料,所得熔融态3D直写打印浆料的粘度在剪切速率为10s-1时为292Pa·s;
打印基板设置温度为195℃,对浆料进行直写成型,得到三维点阵结构粗坯。成型压力为40psi,移动速度为6mm/s。
将坯体置于管式炉中,通入空气,气流量为40ml/min,温度设定为200℃,保温时间为24h。之后将坯体置于氩气其气氛下,以5℃/min升温至1200℃,得到三维SiC陶瓷结构,单根丝线的平均直径为397μm。

Claims (9)

1.一种熔融态3D直写打印浆料的制备方法,其特征在于:包括如下步骤:
步骤一
将聚碳硅烷、改性剂加入有机溶剂中于100~140℃反应4~8h,获得混合溶液,将混合溶液干燥后,研磨过筛,取筛下物获得改性陶瓷先驱体粉末;
步骤二
将改性陶瓷先驱体粉末置于打印针筒,向针筒中通入氮气,并以5~10℃/min的速度升温至250℃~300℃,保温30~60min,除去气泡,即得熔融态3D直写打印浆料;
所述陶瓷先驱体为聚碳硅烷,所述改性剂选自聚丙烯,超支化液态聚碳硅烷,液态聚乙烯基硅烷,聚二甲基硅氧烷中的至少一种。
2.根据权利要求1所述的一种熔融态3D直写打印浆料的制备方法,其特征在于:
步骤一中,所述有机溶剂选自二甲苯,四氢呋喃,甲苯中的一种;
步骤一中,所述干燥的温度为100~140℃,干燥的时间为12~24h,干燥的压力≤-0.1MPa;
步骤一中,所述过筛所用筛网的目数为100目。
3.根据权利要求1所述的一种熔融态3D直写打印浆料的制备方法,其特征在于:所述熔融态3D直写打印浆料在10s-1剪切速率下的粘度为100Pa·s~1000Pa·s。
4.根据权利要求1所述的一种熔融态3D直写打印浆料的制备方法,其特征在于:所述改性剂的加入量为陶瓷先驱体质量的1~5%。
5.根据权利要求1所述的一种熔融态3D直写打印浆料的制备方法,其特征在于:所述聚碳硅烷的分子量为1000~2000g/mol。
6.根据权利要求1-5任意一项所述的制备方法所制备的一种熔融态3D直写打印浆料的应用,其特征在于:将所述熔融态3D直写打印浆料应用于制备3D陶瓷。
7.根据权利要求6所述的一种熔融态3D直写打印浆料的应用,其特征在于:所述3D直写打印陶瓷材料的过程为:根据设计的三维结构,将陶瓷浆料通过3D直写打印设备逐层打印获得三维结构粗坯,再将三维结构粗坯在交联气氛下于180℃~250℃进行预氧化反应≥24h,获得预氧化坯体,再进行热解即得3D陶瓷。
8.根据权利要求7所述的一种熔融态3D直写打印浆料的应用,其特征在于:所述交联气氛选自空气,臭氧,氯气、环己烯,正庚烯,辛炔中的一种;所述交联气氛的流量为40~60ml/min。
9.根据权利要求7所述的一种熔融态3D直写打印浆料的应用,其特征在于:所述热解的温度为1000~1400℃,热解的时间为1~2h。
CN202010545474.XA 2020-06-16 2020-06-16 一种熔融态3d直写打印浆料及其制备方法和应用 Active CN111646803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010545474.XA CN111646803B (zh) 2020-06-16 2020-06-16 一种熔融态3d直写打印浆料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010545474.XA CN111646803B (zh) 2020-06-16 2020-06-16 一种熔融态3d直写打印浆料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111646803A CN111646803A (zh) 2020-09-11
CN111646803B true CN111646803B (zh) 2021-04-13

Family

ID=72345275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010545474.XA Active CN111646803B (zh) 2020-06-16 2020-06-16 一种熔融态3d直写打印浆料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111646803B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976917A (zh) * 2021-09-30 2022-01-28 西安汇创贵金属新材料研究院有限公司 一种光固化增材制造贵金属生坯的脱脂方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015112889A1 (en) * 2014-01-23 2015-07-30 United Technologies Corporation Additive manufacturing of metal matrix composite feedstock
CN105161599A (zh) * 2015-08-07 2015-12-16 厦门大学 一种led灯丝灯灯丝基板材料的制备方法
CN105523767A (zh) * 2014-10-17 2016-04-27 联合工艺公司 官能性无机物和陶瓷增材制造
CN106866164A (zh) * 2017-02-27 2017-06-20 西安交通大学 一种基于纤维增强陶瓷先驱体3d打印技术的陶瓷复合材料成形方法
CN107043259A (zh) * 2017-03-17 2017-08-15 宁波伏尔肯陶瓷科技有限公司 一种反应烧结碳化硅陶瓷激光选区烧结成型方法
CN107651963A (zh) * 2017-09-08 2018-02-02 中南大学 先驱体转化陶瓷的直写成型方法
CN107673763A (zh) * 2017-10-27 2018-02-09 西北工业大学 采用热塑性陶瓷前驱体通过熔融沉积成型3d打印制备陶瓷结构件的方法
CN109485430A (zh) * 2018-11-30 2019-03-19 中南大学 一种制备具有仿生多孔的复杂三维结构陶瓷的方法
CN109627028A (zh) * 2019-01-16 2019-04-16 苏州宏久航空防热材料科技有限公司 一种3d打印碳纤维增韧碳化硅陶铝复合材料及其制备方法
CN110372390A (zh) * 2019-07-26 2019-10-25 华中科技大学 基于増材制造的连续纤维增强SiC零件制备方法及产品
CN111016162A (zh) * 2019-12-26 2020-04-17 深圳市捷泰技术有限公司 一种3d打印快速熔融装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6802517B2 (ja) * 2016-07-26 2020-12-16 セイコーエプソン株式会社 三次元造形物の造形ステージ、三次元造形物の製造装置及び三次元造形物の製造方法
CN109665819A (zh) * 2018-12-10 2019-04-23 北京工业大学 一种基于3d打印的多孔极小曲面结构氧化铝陶瓷的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015112889A1 (en) * 2014-01-23 2015-07-30 United Technologies Corporation Additive manufacturing of metal matrix composite feedstock
CN105523767A (zh) * 2014-10-17 2016-04-27 联合工艺公司 官能性无机物和陶瓷增材制造
CN105161599A (zh) * 2015-08-07 2015-12-16 厦门大学 一种led灯丝灯灯丝基板材料的制备方法
CN106866164A (zh) * 2017-02-27 2017-06-20 西安交通大学 一种基于纤维增强陶瓷先驱体3d打印技术的陶瓷复合材料成形方法
CN107043259A (zh) * 2017-03-17 2017-08-15 宁波伏尔肯陶瓷科技有限公司 一种反应烧结碳化硅陶瓷激光选区烧结成型方法
CN107651963A (zh) * 2017-09-08 2018-02-02 中南大学 先驱体转化陶瓷的直写成型方法
CN107673763A (zh) * 2017-10-27 2018-02-09 西北工业大学 采用热塑性陶瓷前驱体通过熔融沉积成型3d打印制备陶瓷结构件的方法
CN109485430A (zh) * 2018-11-30 2019-03-19 中南大学 一种制备具有仿生多孔的复杂三维结构陶瓷的方法
CN109627028A (zh) * 2019-01-16 2019-04-16 苏州宏久航空防热材料科技有限公司 一种3d打印碳纤维增韧碳化硅陶铝复合材料及其制备方法
CN110372390A (zh) * 2019-07-26 2019-10-25 华中科技大学 基于増材制造的连续纤维增强SiC零件制备方法及产品
CN111016162A (zh) * 2019-12-26 2020-04-17 深圳市捷泰技术有限公司 一种3d打印快速熔融装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
耐高温陶瓷基结构吸波复合材料研究进展;胡悦等;《航空材料学报》;20191231;第39卷(第5期);第1-12页 *

Also Published As

Publication number Publication date
CN111646803A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
CN107651963B (zh) 先驱体转化陶瓷的直写成型方法
Chen et al. 3D printing of SiC ceramic: Direct ink writing with a solution of preceramic polymers
CN109485430B (zh) 一种制备具有仿生多孔的复杂三维结构陶瓷的方法
CN111848141A (zh) 一种浆料直写成型3d打印用陶瓷膏体的制备方法
CN107200583B (zh) 一种具有孔隙率连续梯度的多孔材料及其制备方法
US5707584A (en) Method for the production of ceramic hollow fibres
CN110922204B (zh) 一种低温烧结氧化铝陶瓷膜的制备方法
CN109400123B (zh) 一种细晶氧化铝陶瓷及其制备方法和应用
CN108261928A (zh) 纯碳化硅陶瓷膜元件及其制备方法
CN112778020A (zh) 一种高温多孔陶瓷及其制备方法
CN111646803B (zh) 一种熔融态3d直写打印浆料及其制备方法和应用
CN101646635B (zh) 制造sic基陶瓷多孔体的方法
CN113277859A (zh) 一种纳米包覆氧化铝颗粒及用其制备的高纯抗热震氧化铝陶瓷材料
KR100491022B1 (ko) 미세다공질 세라믹스 소재 및 그 제조방법
CN111410542B (zh) 一种利用无机共融盐制备亚微孔均匀分布的多孔陶瓷及其制备方法
CN111646804B (zh) 一种空心管微点阵结构陶瓷材料的制备方法
CN109761623B (zh) 无有机沉积相3d打印氮氧化硅墨水的制备方法及其应用
JP2009220074A (ja) 耐食性に優れる分離膜用アルミナ質基体及びその製造方法
CN104086183B (zh) 一种气孔率可控多孔Si3N4的制备方法
US5167887A (en) SI3 N4 process using polysilane as a binder
CN114149274A (zh) 一种采用煤泥作为造孔剂制备定向多孔SiC陶瓷方法
US5080844A (en) SI3N4 process using polysilane or polysilazane as a binder
US4820664A (en) Piggy back method for producing ceramic fibers and non-circular ceramic fibers in particular
CN111333410B (zh) 可纺性铝溶胶、其制备方法及氧化铝连续纤维
CN114105671A (zh) 一种煤矸石-石英基陶瓷支撑体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant