CN111628047B - Manufacturing method of N-type TOPCon solar cell - Google Patents

Manufacturing method of N-type TOPCon solar cell Download PDF

Info

Publication number
CN111628047B
CN111628047B CN202010483586.7A CN202010483586A CN111628047B CN 111628047 B CN111628047 B CN 111628047B CN 202010483586 A CN202010483586 A CN 202010483586A CN 111628047 B CN111628047 B CN 111628047B
Authority
CN
China
Prior art keywords
boron
doped region
temperature
layer
spin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010483586.7A
Other languages
Chinese (zh)
Other versions
CN111628047A (en
Inventor
袁玲
王芹芹
瞿辉
曹玉甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Shunfeng Solar Energy Technology Co ltd
Original Assignee
Changzhou Shunfeng Solar Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Shunfeng Solar Energy Technology Co ltd filed Critical Changzhou Shunfeng Solar Energy Technology Co ltd
Priority to CN202010483586.7A priority Critical patent/CN111628047B/en
Publication of CN111628047A publication Critical patent/CN111628047A/en
Application granted granted Critical
Publication of CN111628047B publication Critical patent/CN111628047B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The invention relates to a manufacturing method of an N-type TOPCon solar cell, which comprises the following steps: a. double-sided texturing: b. single-side spin coating: c. single-side oxidation: forming a boron-containing silicon oxide layer on the spin-coating surface; d. forming a heavy doped region substrate and a light doped region substrate: forming an organic mask layer for protecting the heavily doped region at the position corresponding to the metal grid line by using a mask mode; completely removing the boron-containing silicon oxide layer and the boron source outside the coverage area of the organic mask layer by using HF, and then removing the organic mask layer; e. completing heavy and light doping: completely pushing the spin-coated boron source into the silicon substrate by using a tubular low-pressure diffusion method to form a heavily doped region; then carrying out whole-surface source-through deposition to form a lightly doped region; finally, carrying out high-temperature oxidation to form a BSG layer with the thickness of 80-100 nm; then the normal subsequent procedures are carried out. The invention can lead the boron selective emitter to obtain higher photoelectric conversion efficiency, thereby improving the conversion efficiency of the solar cell.

Description

Manufacturing method of N-type TOPCon solar cell
Technical Field
The invention belongs to the solar cell production technology, and particularly relates to a manufacturing method of an N-type TOPCon solar cell.
Background
With the improvement of the quality of a silicon wafer, the surface recombination of a crystalline silicon battery becomes a main factor for restricting the efficiency of the crystalline silicon battery, the existing N-type TOPCon technology can improve the surface passivation of the battery and promote the transmission of majority carriers, and further the open-circuit voltage and the filling factor of the battery are improved. Compared with the PERC technology, the influence of laser grooving is avoided due to the fact that full back passivation is tested, and the filling factor is high; compared with the conventional P-type monocrystalline silicon, the N-type monocrystalline silicon has the advantages of high power generation quantity and high reliability, and is the development direction of future high-efficiency batteries.
The high-efficiency solar cell needs an emitter with low surface doping concentration, so that the loss caused by minority carrier recombination can be reduced, and the open-circuit voltage and the efficiency of the solar cell are improved; minority carrier recombination at the metal-semiconductor interface has been identified as one of the key challenges in achieving high efficiency silicon solar cells, with front metal contact induced recombination and resistance being the major limiting factors in the efficiency of N-type front junction silicon solar cells.
A Selective Emitter (SE) solar cell, which is formed by high-concentration doping at and near the contact portion of the metal gate line and the silicon wafer, and low-concentration doping at the region except the electrode, is shown in fig. 1. SE structure solar cells have several advantages: 1. the non-SE region can be doped with low concentration, and the carrier recombination rate is inversely proportional to the square of the impurity concentration, so that the low-concentration doping of the SE region can effectively reduce the transverse flow of carriers in the diffusion layer, reduce the carrier recombination rate and improve the open-circuit voltage and the current of the battery. 2. According to the theory of metal-semiconductor contact resistance, the contact resistance is related to metal potential barrier and surface doping concentration, the higher the doping concentration is, the smaller the contact resistance is, and the higher the filling factor is, so that the high-concentration doping of the B-extended surface SE structure can effectively improve the filling factor of the battery.
At present, the manufacturing technology of SE mainly comprises the following methods: 1. the laser method SE is to secondarily drive a doping source in the PSG or BSG by using laser energy to form a heavily doped region, and a non-laser region forms a shallow doped region. The method has few process steps, does not need to add other equipment except laser, is adopted by most PERC battery manufacturers at present, but has larger required laser power, larger damage to a silicon wafer, unobvious improvement on battery efficiency and lower production yield because a B source in BSG is difficult to promote. 2. And (3) a reverse etching method, namely printing an organic material mask as same as the pattern of the front grid line on the wafer after the re-diffusion to be used as a corrosion barrier layer, and then corroding the re-diffusion area outside the mask by using a corrosion liquid to form a shallow junction. The method has the advantages of high yield, low fragment rate and easy industrialization, but the reverse etching step is difficult to control, and more process equipment is added. 3. And printing a boron source by a single-step diffusion method, namely screen printing the boron source, performing diffusion by high-temperature heating, forming heavy doping at the contact position with the grid line, and forming shallow doping at other positions. The method has simple process and does not need to increase equipment. However, the diffusion process is difficult to adjust, and the boron source is easily introduced by screen printing, so that the battery and the diffusion furnace tube are polluted.
Disclosure of Invention
In order to overcome the above-mentioned drawbacks, an object of the present invention is to provide a method for fabricating an N-type TOPCon solar cell, which has a low production cost, effectively forms a high-concentration doped region and a low-concentration doped region on the surface of the cell, and enables a boron selective emitter to obtain a higher photoelectric conversion efficiency, thereby improving the conversion efficiency of the solar cell.
In order to realize the purpose, the technical scheme of the invention is as follows:
a. double-sided texturing: carrying out double-sided pretreatment and alkali texturing on the N-type silicon wafer to form a gold tower textured surface;
b. single-side spin coating: the volume ratio of the boron source: the pre-wetting liquid is 1:1.5-2, preparing spin coating liquid, and uniformly spin-coating and distributing the spin coating liquid on the textured surface of the single-sided silicon wafer;
c. single-side oxidation: controlling the temperature to be 650-700 ℃, and controlling the temperature to be between 650 and 700 ℃ under the condition of nitrogen: the volume ratio of oxygen is 1: oxidizing for 40-70min in 2.5-3.5 atmosphere, and forming a boron-containing silicon oxide layer with the thickness of 40-60nm on the spin-coating surface;
d. forming a heavy doped region substrate and a light doped region substrate: forming an organic mask layer for protecting the heavily doped region at the position corresponding to the metal grid line by using a mask mode; completely removing the boron-containing silicon oxide layer and the boron source outside the coverage area of the organic mask layer by using HF with the mass concentration of 1-5%, and then removing the organic mask layer;
e. completing heavy and light doping: using tubular low-pressure diffusion to carry out high-temperature propulsion for 25-40min at the temperature of 920-960 ℃, and completely propelling the spin-coated boron source into the silicon substrate to form a heavily doped region; then using a volume flow ratio meter to measure the mass flow ratio of boron trichloride: the oxygen is 1:4-6, controlling the temperature to 830-880 ℃, and performing whole-surface source-through deposition to form a lightly doped region; finally, carrying out high-temperature oxidation at 980-1000 ℃ in an oxygen atmosphere to form a BSG layer with the thickness of 80-100 nm;
f. removing the BSG on the back;
g. intrinsic polysilicon on both sides;
h. doping phosphorus on the two sides;
i. removing the front PSG and the front intrinsic polysilicon;
j. removing the back PSG and the front BSG;
k. making aluminum oxide on the front surface;
l, preparing silicon nitride on two sides;
m, screen printing; the thin grid region corresponds to the heavy doping region, and the non-grid line region corresponds to the light doping region.
As a preferred embodiment of the present invention, the material of the organic mask layer in step (d) is wax, and is dried at a temperature of 130-180 ℃ to form the organic mask layer. After the wax forms the organic mask layer, the wax can be ensured not to fall off in an HF solution with the mass concentration not more than 5%, but can be effectively removed when an alkaline solution is used.
As a further improvement of the invention: ammonia water is adopted for removing the organic mask layer in the step (d) according to the volume ratio: hydrogen peroxide: the water is 1:1:8-10, wherein the mass concentration of ammonia water and hydrogen peroxide is controlled to be 20-30%, so as to ensure effective removal of the organic mask layer and no damage to the silicon wafer.
As a further improvement of the invention: the double-sided intrinsic polysilicon in the step (g) is specifically operated as follows: the volume flow ratio silane: the nitrogen is 1:2-3, controlling the temperature to 600-650 ℃, and depositing for 15-30min in a low-pressure atmosphere to enable the thickness to reach 120-160nm.
As a further improvement of the invention: the double-sided phosphorus doping in the step (h) is specifically operated as follows: and (3) carrying out high-temperature annealing, wherein the temperature is maintained to be 800-900 ℃, and the nitrogen carrying a phosphorus source: the volume flow ratio of nitrogen is 1:2-3, controlling the time to be 20-40min, the thickness to be 120-160nm and the sheet resistance to be 40-50ohm/sq in a low-pressure atmosphere;
as a further improvement of the invention: in order to ensure that the boron source is uniformly mixed and can be easily and uniformly distributed on the textured surface of the single-sided silicon wafer in a spinning manner, the boron source in the step (b) comprises boric acid according to the volume ratio: water: propylene glycol monomethyl ether is 1:2.5-3:6.5-7; the pre-wetting liquid in the step (b) comprises propylene glycol monomethyl ether according to the volume ratio: the water is 1:1-2.
As a further improvement of the invention: the operation of removing the front PSG and the front intrinsic polysilicon is as follows: front side PSG was removed using a chain HF cleaner at a temperature of 75-85 ℃ using potassium hydroxide: the polishing additive is prepared from 2-4: and 1, removing the polysilicon on the front surface within 5-10min so as to ensure that the front surface is removed completely.
The invention has the advantages that:
1. the invention fully utilizes the prior TOPCon equipment and reduces the investment amount; the spin coating of boron is used as the heavily doped region of the boron selective emitter, has advantages compared with laser doping and reverse etching, has smaller damage compared with laser doping, has higher sheet resistance and uniformity controllability compared with a reverse etching mode, and has lower cost compared with an APCVD mode.
2. The front surface adopts a selective emitter structure, the lightly doped region can effectively reduce the transverse flow of current carriers in the diffusion layer, better surface passivation can be realized, the recombination rate of the current carriers is reduced, and the open-circuit voltage Voc and the short-circuit current Isc are improved; the heavily doped region can have better ohmic contact and smaller body resistance, thereby reducing series resistance and improving the fill factor FF.
3. The boron selective emitter can obtain higher photoelectric conversion efficiency, the photoelectric conversion efficiency is improved by 0.2-0.3%, and the improvement space is larger.
Drawings
Fig. 1 is a structural view of a conventional topocon solar cell;
FIG. 2 is a schematic diagram of an N-type TOPCon solar cell according to the present invention;
FIG. 3 is a schematic view of the structure formed in step (d) of the present invention;
FIG. 4 is a schematic structural diagram of the present invention after completing heavy and light doping in step (e).
In the figure: 1 is a silicon wafer substrate; 2 is a boron heavily doped region (P + + layer); 3 is a boron lightly doped region (P + layer); 4, a tunneling oxide layer; 5 is a phosphorus intrinsic polycrystalline silicon layer; 6 is an aluminum oxide passivation layer; 7 is a silicon nitride passivation layer; 8 is BSG layer; and 9 is a boron-containing silicon oxide layer.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments.
Example one
The method for manufacturing the N-type TOPCon solar cell comprises the following steps:
a. double-sided texturing: using an N-type silicon chip substrate 1 with minority carrier lifetime more than 10ms, carrying out double-sided pretreatment, reducing the thickness by 6 mu m, carrying out alkali texturing to form a gold tower textured surface, and controlling the reduction amount to be 0.40 g;
b. single-side spin coating: using a boron source in volume ratio: the pre-wetting liquid is 1:1.6 spin coating liquid, uniformly spin-coating and distributing on the texture surface of the textured silicon wafer at a rotating speed of 2000r/m as a precondition for forming a heavily doped region; wherein, the boric acid of each component in the boron source is calculated according to the volume ratio: water: propylene glycol monomethyl ether is 1:2.8:6.8: propylene glycol monomethyl ether in the pre-wetting liquid according to the volume ratio: the water is 1:1.5, so as to ensure that the boron source can be uniformly mixed and can be easily and uniformly spin-coated and distributed on the suede of the single-sided silicon wafer after wool making;
c. single-side oxidation to form boron-containing silicon oxide layer 9: the temperature was controlled at 680 ℃, under nitrogen: the volume ratio of oxygen is 1:3 for 50min, and forming a boron-containing silicon oxide layer 9 with the thickness of 50nm on the spin-coated surface, wherein the silicon-silicon oxide ratio is determined by the stoichiometric ratio of silicon to silicon oxide, si: siO 2 2 Is 0.46:1, accurately controlling the thickness of the silicon oxide; by controlling the oxidation temperature and time to form a boron-containing silicon oxide layer (the atomic radius of boron is 0.082nm, the atomic radius of silicon is 0.118nm, and the mismatch ratio is 0.75) on the surface layer, as a large mismatch ratio exists between boron and silicon, lattice tension is generated in the diffusion process, thus causing the formation of dislocation and reducing the diffusion rate; the diffusion rate of boron atoms is also influenced by the diffusion temperature and the concentration of the boron atoms, when the concentration of the boron atoms is fixed, the diffusion rate is slow when the diffusion temperature is lower than 700 ℃, the resistance values before and after oxidation are monitored, the sheet resistance is not changed, and the boron-containing silicon oxide layer 9 mainly plays a role in protecting the spin-coated boron source from being dissolved in water;
d. forming a heavy and light doped region substrate: on the surface which is spin-coated and formed with silicon oxide, organic wax is used as a mask and a mask layer is printed and formed in a printing mode to protect the heavily doped region, the printed pattern is the same as the metal grid line pattern, and the design of the line width of the mask layer is wider than the width of the metal grid line; drying the printed organic mask layer at the temperature of 150 ℃; after drying, completely removing silicon oxide and boron source outside the heavily doped region by using an HF solution with the mass concentration of 3%; and finally, using ammonia water in a mass ratio: hydrogen peroxide: 1 part of water: 1:9, removing the organic wax in the mask area by the mixed solution to form substrate distribution of the heavy-doping area and the light-doping area; wherein the mass concentration of the ammonia water and the hydrogen peroxide is 27 percent.
e. And (3) completing heavy and light doping: using tubular low-pressure diffusion, controlling the temperature to 950 ℃ to carry out high-temperature propulsion for 30min, completely propelling the spin-coated boron source into a silicon substrate to form a boron heavily-doped region, wherein if the temperature is too low, the doping cannot be effectively carried out, and the productivity is influenced by the too high temperature in the production process; then cooling to 850 ℃, and mixing boron trichloride according to the volume flow ratio: the oxygen is 1:4.5, carrying out whole-surface source-through deposition, reducing temperature deposition and facilitating diffusion distribution uniformity; finally, oxidizing and performing knot pushing in an oxygen atmosphere at a high temperature of 990 ℃ for 90min to form a BSG layer 8 with the thickness of 90nm, and synchronously forming a boron heavily doped region 2 and a boron lightly doped region 3;
f. removing the back BSG layer 8: removing by using a chain type HF machine and an HF solution with the mass concentration of 5%;
g. forming a tunneling oxide layer 4 and an intrinsic polycrystalline silicon layer by using the double-sided intrinsic polycrystalline silicon: using volume ratio Silane (SiH) 4 ): nitrogen (N) 2 ) Is 1:2, depositing for 20min at 630 ℃ in a low-pressure atmosphere to enable the thickness of the intrinsic polycrystalline silicon layer to be 140nm;
h. and (3) forming a phosphorus intrinsic polycrystalline silicon layer 5 and PSG by double-sided phosphorus doping: performing high temperature annealing at 850 deg.C in nitrogen (LN) containing phosphorus source 2 ): nitrogen (N) 2 ) The volume flow ratio is 1:3, controlling the time at 30min, the thickness at 140nm and the sheet resistance at 45 ohm/sq under a low-pressure atmosphere, wherein nitrogen carrying a phosphorus source is the small nitrogen in the field;
i. removing the front PSG and the front intrinsic polysilicon 5: front side PSG was removed using a chain HF cleaner at a temperature of 80 ℃, potassium hydroxide: the volume ratio of the polishing additive is 3:1, removing front polysilicon in 8min by using a polishing additive of PS 11;
j. removing the back surface PSG and the front surface BSG layer 8: using HF to soak and clean and remove BSG and PSG on the front and the back;
k. the aluminum oxide is produced on the front side to form an aluminum oxide passivation layer 6: single-sided passivation of alumina using ALD to a thickness of about 6nm;
l, preparing silicon nitride on both sides to form a silicon nitride passivation layer 7: passivating silicon nitride on the front surface and the back surface by using a tube, wherein the thickness of the front surface is about 80nm, and the refraction is 2.0; the back surface thickness is about 80nm, and the refractive index is 2.1;
m, screen printing: the front thin gate region corresponds to the heavily doped region, and the non-gate region corresponds to the lightly doped region.
Example two
The embodiment relates to a method for manufacturing an N-type TOPCon solar cell based on a selective emitter technology, which comprises the following steps: an N-type silicon chip is adopted, the resistivity is 1 omega-cm, and the minority carrier lifetime is more than 10ms.
1) Double-sided texturing: in a groove type machine, pre-treatment polishing is carried out firstly, and the polishing thickness is about 6 mu m; adopting potassium hydroxide: additive volume ratio for model TS52 was 8:1, maintaining the temperature at 80 ℃ for about 6min to carry out rapid texturing; the thinning amount is controlled to be 0.42g;
2) Single-sided spin coating, single-sided oxidation, using a mass ratio boron source: pre-wetting liquid =1:1.8 spin coating solution under nitrogen: oxygen volume ratio 1:2.8, in the atmosphere, controlling the temperature to be 700 ℃, and oxidizing by using a tube for 1 hour to form a boron-containing silicon oxide layer, so that the problem that a boron source is dissolved in water is solved;
3) And (3) completing heavy and light doping diffusion: retaining the boron-containing silicon oxide layer in the heavily doped region by using a wax mask mode, cleaning and removing the boron-containing silicon oxide layer in the lightly doped region by using HF (hydrogen fluoride) with the mass concentration of 2%, and then using ammonia water (NH) with the volume ratio 4 OH): hydrogen peroxide (H) 2 O 2 ): water (H20) is 1:1:9.5 removing the wax;
and (3) synchronously completing heavy and light doping by using low-pressure tubular diffusion: firstly at 940 deg.CComplete the heavy doping propulsion and then use boron trichloride (BCl) 3 ): oxygen (O) 2 ) The volume flow ratio is 1:5, carrying out light doping deposition at the temperature of 870 ℃, and finally carrying out high-temperature oxidation at the temperature of 995 ℃ to form the BSG with the thickness of about 93nm;
4) Double-sided intrinsic polysilicon, double-sided phosphorus doping: removing BSG on the back surface by using a chain type cleaning machine with HF of which the mass concentration is 5%; siH control using LPCVD equipment 4 (silane): n is a radical of 2 The flow ratio of (nitrogen) is 1:2.5; the time is about 25min, and the thickness is controlled at 135nm; then high temperature annealing is carried out, the temperature is maintained at 860 ℃, and nitrogen (LN) carrying phosphorus source is carried out 2 ): nitrogen (N) 2 ) The flow ratio is 1:2.5; the time is about 26min under the low-pressure atmosphere; the thickness is 135nm; controlling the sheet resistance at 45 omega/\9633;
5) Removing borosilicate glass (BSG) on the front surface, phosphosilicate glass (PSG) on the front surface and the back surface and intrinsic polysilicon (Poly) on the front surface: removing PSG on the front side by using a hydrofluoric acid single surface with the mass concentration of 5%, and then using an alkali polishing process, wherein the mass concentration of potassium hydroxide: the volume ratio of the model PS11 polishing additive is 3:1, maintaining the temperature at 80 ℃ for 7min, removing intrinsic polysilicon on the front surface, and finally HF-soaking at a mass concentration of 5% to clean BSG on the front surface and PSG on the back surface;
6) Front side alumina, double-sided silicon nitride: performing single-side passivation on aluminum oxide (AlOx) by utilizing an Atomic Layer Deposition (ALD) technology, wherein the thickness is controlled to be about 4 nm; then, the front surface is plated with silicon oxynitride, the thickness is about 78nm, and the refractive index is 2.0; the back surface is plated with silicon nitride, the thickness is about 80nm, and the refractive index is 2.1;
7) And screen printing, namely printing a fine grid, aligning the front heavily doped region accurately, and finishing the manufacture of a finished product at the sintering process temperature of 830 ℃.
Through detection, the solar cell related to the invention is compared with a conventional solar cell, and the data is as follows:
Figure DEST_PATH_IMAGE001
according to the invention, the conventional TOPCon equipment is fully utilized, boron is spin-coated to serve as a P + + region of the boron selective emitter, the P + + region has advantages compared with laser doping and reverse etching, damage is less than laser doping damage, the sheet resistance and uniformity controllability are higher than those of a reverse etching mode, and meanwhile, the cost is lower than that of an APCVD mode; the boron selective emitter can obtain higher photoelectric conversion efficiency.

Claims (7)

1. A manufacturing method of an N-type TOPCon solar cell is characterized by comprising the following steps:
a. double-sided texturing: carrying out double-sided pretreatment and alkali texturing on the N-type silicon wafer to form a gold tower textured surface;
b. single-side spin coating: the volume ratio of the boron source: the pre-wetting liquid is 1:1.5-2, and uniformly spin-coating and distributing the spin-coating liquid on the textured surface of the single-sided silicon wafer;
c. single-side oxidation: controlling the temperature to be 650-700 ℃, and controlling the temperature to be 650-700 ℃ under the condition of nitrogen: the volume ratio of oxygen is 1: oxidizing for 40-70min in 2.5-3.5 atmosphere to form a boron-containing silicon oxide layer with a thickness of 40-60nm on the spin-coating surface;
d. forming a heavy doped region substrate and a light doped region substrate: forming an organic mask layer for protecting the heavily doped region at the position corresponding to the metal grid line by using a mask mode; completely removing the boron-containing silicon oxide layer and the boron source outside the coverage area of the organic mask layer by using HF with the mass concentration of 1-5%, and then removing the organic mask layer;
e. completing heavy and light doping: using tubular low-pressure diffusion to carry out high-temperature propulsion for 25-40min at the temperature of 920-960 ℃, and completely propelling the spin-coated boron source into the silicon substrate to form a heavily doped region; and then using boron trichloride in a volume flow ratio: the oxygen is 1:4-6, controlling the temperature to 830-880 ℃, and performing whole-surface source-through deposition to form a lightly doped region; finally, carrying out high-temperature oxidation at 980-1000 ℃ in an oxygen atmosphere to form a BSG layer with the thickness of 80-100 nm;
f. removing the BSG layer on the back;
g. intrinsic polysilicon on both sides;
h. doping phosphorus on the two sides;
i. removing the front PSG and the front intrinsic polysilicon;
j. removing the back PSG layer and the front BSG layer;
k. making aluminum oxide on the front surface;
l, preparing silicon nitride on two sides;
m, screen printing; the thin grid region corresponds to the heavy doping region, and the non-grid line region corresponds to the light doping region.
2. The method of claim 1, wherein the method comprises: in the step (d), the organic mask layer is made of wax and is dried at the temperature of 130-180 ℃ to form the organic mask layer.
3. The method of claim 2, wherein the method comprises: ammonia water is adopted for removing the organic mask layer in the step (d) according to the volume ratio: hydrogen peroxide: the water is 1:1:8-10, wherein the mass concentration of the ammonia water and the hydrogen peroxide is controlled to be 20-30%.
4. The method of claim 1, wherein the method comprises: the double-sided intrinsic polycrystalline silicon in the step (g) is specifically operated as follows: the volume flow ratio silane: the nitrogen is 1:2-3, controlling the temperature to 600-650 ℃, and depositing for 15-30min in a low-pressure atmosphere to enable the thickness to reach 120-160nm.
5. The method of claim 1, wherein the method comprises: the specific operation of the double-sided phosphorus doping in the step (h) is as follows: carrying out high-temperature annealing, keeping the temperature at 800-900 ℃, and carrying nitrogen of a phosphorus source according to the volume flow ratio: the nitrogen is 1:2-3, controlling the time to be 20-40min and the sheet resistance to be 40-50ohm/sq under the low-pressure atmosphere.
6. The method of claim 1, wherein the method comprises: the boron source of step (b) comprises boric acid in volume ratio: water: propylene glycol monomethyl ether is 1:2.5-3:6.5-7.
7. The method of claim 1, wherein the method comprises: the pre-wetting liquid in the step (b) comprises propylene glycol monomethyl ether in volume ratio: the water is 1:1-2.
CN202010483586.7A 2020-06-01 2020-06-01 Manufacturing method of N-type TOPCon solar cell Active CN111628047B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010483586.7A CN111628047B (en) 2020-06-01 2020-06-01 Manufacturing method of N-type TOPCon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010483586.7A CN111628047B (en) 2020-06-01 2020-06-01 Manufacturing method of N-type TOPCon solar cell

Publications (2)

Publication Number Publication Date
CN111628047A CN111628047A (en) 2020-09-04
CN111628047B true CN111628047B (en) 2023-02-28

Family

ID=72273247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010483586.7A Active CN111628047B (en) 2020-06-01 2020-06-01 Manufacturing method of N-type TOPCon solar cell

Country Status (1)

Country Link
CN (1) CN111628047B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103364B (en) * 2020-10-13 2022-03-08 中国科学院宁波材料技术与工程研究所 Selective emitter structure, preparation method and application thereof
CN112670353A (en) * 2020-12-17 2021-04-16 浙江正泰太阳能科技有限公司 Boron-doped selective emitter battery and preparation method thereof
CN113140655A (en) * 2021-04-01 2021-07-20 常州顺风太阳能科技有限公司 Preparation method of TOPCON battery with back selective emitter
CN113345981B (en) * 2021-06-01 2022-12-06 常州时创能源股份有限公司 Chain type equipment for preparing selective emitter
CN113363352B (en) * 2021-06-01 2022-11-25 常州时创能源股份有限公司 Preparation method of N-type battery selective emitter
CN113363334A (en) * 2021-06-01 2021-09-07 常州时创能源股份有限公司 Preparation method of boron-doped selective emitter
CN113571411B (en) * 2021-07-12 2024-04-05 江苏顺风新能源科技有限公司 Manufacturing method of N-type TOPCON solar cell
CN113629172B (en) * 2021-09-14 2023-03-14 常州时创能源股份有限公司 Boron diffusion method of solar cell and manufacturing method thereof
CN114464701A (en) * 2022-01-17 2022-05-10 常州时创能源股份有限公司 Diffusion method of crystalline silicon solar cell and application thereof
CN116722056A (en) * 2022-05-26 2023-09-08 浙江晶科能源有限公司 Solar cell, preparation method of solar cell and photovoltaic module
CN116722054A (en) 2022-06-10 2023-09-08 浙江晶科能源有限公司 Solar cell, preparation method of solar cell and photovoltaic module
CN116705915B (en) * 2023-08-04 2023-10-20 常州亿晶光电科技有限公司 Preparation method of novel double-sided TOPCON battery

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261810A (en) * 1997-03-18 1998-09-29 Hitachi Ltd Solar cell and manufacture thereof
CN1343376A (en) * 1999-03-11 2002-04-03 默克专利股份有限公司 Doting pastes for producing p,p+ and n, n+zones in semiconductors
CN101030526A (en) * 2006-03-03 2007-09-05 株式会社半导体能源研究所 Method of manufacyuring semiconductor device
CN101158034A (en) * 2007-09-30 2008-04-09 南京大学 Device for rapid large-area preparation of thin film material and setting method
CN101307488A (en) * 2007-05-15 2008-11-19 中芯国际集成电路制造(上海)有限公司 Polycrystalline silicon thin film preparation method
CN101996869A (en) * 2009-08-31 2011-03-30 北大方正集团有限公司 Preparation method and preparation device for poly-silicon thin film
CN201966219U (en) * 2010-12-21 2011-09-07 苏州阿特斯阳光电力科技有限公司 N type silicon solar cell
CN102214709A (en) * 2010-04-02 2011-10-12 Lg电子株式会社 Selective emitter solar cell
CN102709342A (en) * 2012-07-05 2012-10-03 合肥海润光伏科技有限公司 Selective emitter structure of solar cell and preparation method thereof
CN204497251U (en) * 2014-12-31 2015-07-22 江苏顺风光电科技有限公司 A kind of high-efficiency N-type double-side solar cell
CN108155249A (en) * 2017-12-15 2018-06-12 南京日托光伏科技股份有限公司 A kind of MWT front electrode of solar battery and preparation method thereof
CN109616528A (en) * 2018-10-29 2019-04-12 晶澳太阳能有限公司 A kind of preparation method of selective emitter of solar battery
CN109686660A (en) * 2018-12-26 2019-04-26 浙江晶科能源有限公司 A kind of preparation method of solar battery
CN109742172A (en) * 2019-01-08 2019-05-10 华东理工大学 The method of spin coating boron source laser doping production N-type selective emitter double-side cell
CN110265497A (en) * 2019-06-28 2019-09-20 天合光能股份有限公司 A kind of N-shaped crystal-silicon solar cell of selective emitter and preparation method thereof
CN110600558A (en) * 2019-07-27 2019-12-20 江苏顺风光电科技有限公司 Boron process suitable for P + selective emitter battery

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261810A (en) * 1997-03-18 1998-09-29 Hitachi Ltd Solar cell and manufacture thereof
CN1343376A (en) * 1999-03-11 2002-04-03 默克专利股份有限公司 Doting pastes for producing p,p+ and n, n+zones in semiconductors
CN101030526A (en) * 2006-03-03 2007-09-05 株式会社半导体能源研究所 Method of manufacyuring semiconductor device
CN101307488A (en) * 2007-05-15 2008-11-19 中芯国际集成电路制造(上海)有限公司 Polycrystalline silicon thin film preparation method
CN101158034A (en) * 2007-09-30 2008-04-09 南京大学 Device for rapid large-area preparation of thin film material and setting method
CN101996869A (en) * 2009-08-31 2011-03-30 北大方正集团有限公司 Preparation method and preparation device for poly-silicon thin film
CN102214709A (en) * 2010-04-02 2011-10-12 Lg电子株式会社 Selective emitter solar cell
CN201966219U (en) * 2010-12-21 2011-09-07 苏州阿特斯阳光电力科技有限公司 N type silicon solar cell
CN102709342A (en) * 2012-07-05 2012-10-03 合肥海润光伏科技有限公司 Selective emitter structure of solar cell and preparation method thereof
CN204497251U (en) * 2014-12-31 2015-07-22 江苏顺风光电科技有限公司 A kind of high-efficiency N-type double-side solar cell
CN108155249A (en) * 2017-12-15 2018-06-12 南京日托光伏科技股份有限公司 A kind of MWT front electrode of solar battery and preparation method thereof
CN109616528A (en) * 2018-10-29 2019-04-12 晶澳太阳能有限公司 A kind of preparation method of selective emitter of solar battery
CN109686660A (en) * 2018-12-26 2019-04-26 浙江晶科能源有限公司 A kind of preparation method of solar battery
CN109742172A (en) * 2019-01-08 2019-05-10 华东理工大学 The method of spin coating boron source laser doping production N-type selective emitter double-side cell
CN110265497A (en) * 2019-06-28 2019-09-20 天合光能股份有限公司 A kind of N-shaped crystal-silicon solar cell of selective emitter and preparation method thereof
CN110600558A (en) * 2019-07-27 2019-12-20 江苏顺风光电科技有限公司 Boron process suitable for P + selective emitter battery

Also Published As

Publication number Publication date
CN111628047A (en) 2020-09-04

Similar Documents

Publication Publication Date Title
CN111628047B (en) Manufacturing method of N-type TOPCon solar cell
CN111564503B (en) Back-junction back-contact solar cell structure and preparation method thereof
CN110518088B (en) Preparation method of SE solar cell
CN111341881B (en) Method for removing front-side polycrystalline silicon by winding plating
CN113363354B (en) Preparation method of P-type back contact type crystalline silicon solar cell
CN115207137B (en) Combined passivation back contact battery and preparation method thereof
CN112490304A (en) Preparation method of high-efficiency solar cell
CN111785809A (en) Method for preparing passivated contact cell
CN110571302A (en) preparation method of N-type crystalline silicon battery
WO2024066207A1 (en) New solar cell and fabrication method therefor
CN115000246B (en) P-type passivation contact battery preparation method and passivation contact battery
CN111952409A (en) Preparation method of passivated contact battery with selective emitter structure
WO2023216628A1 (en) Heterojunction solar cell, preparation method therefor and power generation device
CN114005888A (en) Solar cell and preparation method thereof
CN116741871A (en) Method for manufacturing N-type TOPCON battery with boron-extended SE structure
CN115458612A (en) Solar cell and preparation method thereof
CN116666493A (en) Solar cell manufacturing method and solar cell
CN115394863A (en) Solar cell and preparation method thereof
CN115332366A (en) Back passivation contact heterojunction solar cell and preparation method thereof
CN114744054A (en) TOPCon battery and preparation method thereof
CN110534614B (en) Preparation method of P-type crystalline silicon cell
CN114725225A (en) Efficient P-type IBC battery and preparation method thereof
CN112466960A (en) Solar cell structure and preparation method thereof
CN117153953A (en) Preparation method of split-film type double-sided TOPCON battery
CN117199186A (en) Manufacturing method of N-TOPCON battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220519

Address after: 213123 No.99, Yanghu Road, Wujin high tech Industrial Development Zone, Changzhou City, Jiangsu Province

Applicant after: Changzhou Shunfeng Solar Energy Technology Co.,Ltd.

Address before: 213123 No.99, Yanghu Road, Wujin high tech Industrial Development Zone, Changzhou City, Jiangsu Province

Applicant before: JIANGSU SHUNFENG PHOTOVOLTAIC TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant