CN111618260A - 金属连铸棒的制造方法和制造装置 - Google Patents

金属连铸棒的制造方法和制造装置 Download PDF

Info

Publication number
CN111618260A
CN111618260A CN202010115164.4A CN202010115164A CN111618260A CN 111618260 A CN111618260 A CN 111618260A CN 202010115164 A CN202010115164 A CN 202010115164A CN 111618260 A CN111618260 A CN 111618260A
Authority
CN
China
Prior art keywords
ingot
region
cooling liquid
cooling
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010115164.4A
Other languages
English (en)
Other versions
CN111618260B (zh
Inventor
北原正典
山根冴羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lishennoco Co ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of CN111618260A publication Critical patent/CN111618260A/zh
Application granted granted Critical
Publication of CN111618260B publication Critical patent/CN111618260B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0403Multiple moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/049Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture
    • B22D7/064Cooling the ingot moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

本发明提供一种能够制造高品质的连铸件的金属连铸棒的制造方法。本发明的对象是以下金属连铸棒的制造方法,其向以并列状态从多个铸模(2)导出的多个铸锭(W2)的各外周面供给冷却液(M),从而分别冷却多个铸锭(W2)。将铸锭(W2)的外周面中的开放而没有与其他铸锭相对的区域设为开放区域(x),并将与其他铸锭相对的区域设为铸锭相对区域(y),对于开放区域(x),以使冷却液(M)在该开放区域(x)的冷却程度小于冷却液(M)在铸锭相对区域(y)的冷却程度的弱冷来进行冷却。

Description

金属连铸棒的制造方法和制造装置
技术领域
本发明涉及例如用于制造铝等金属的连铸件的金属连铸棒的制造方法和制造装置。
再者,在本说明书和权利要求书中,除了特别明确示出的情况以外,术语“铝(Al)”的意思包括铝合金(Al合金),术语“连铸”的意思包括半连铸。
背景技术
在以铝材料为基础的各种铝制品中,对于要求波动小的高品质、高强度的制品,大多使用由锻造加工得到的锻造制品、由轧制加工得到的轧制制品、由挤出加工得到的挤出制品。作为它们的加工材料的锻造材料、轧制材料和挤出材料,一般以由铝的连铸而得到的连铸件为基础来制作。
作为用于制作连铸件的制造装置(连铸装置),例如下述专利文献1、2所示,铸造方向垂直向下的立式连铸装置是众所周知的。在该立式连铸装置中,对于熔液穿过铸模从而外周面凝固了的铸锭,在铸模正下方从铸锭的整周喷射作为冷却液(冷却介质)的冷却水,由此整个铸锭被快速冷却。
以往,作为用于冷却铸锭的冷却水的喷射方式,如该文献1、2所示,一般的方式是从设在铸锭外周的狭缝状或圆孔状的冷却水喷出口喷射冷却水。
在这样的铝的连铸中,冷却铸锭的工序是非常重要的工序,通过从铸锭的整个外周平衡良好地快速冷却凝固到铸锭内部(中心部),由此能够将铸锭组织控制为良好的状态,在整个铸锭中,材料晶体组织、结晶物和析出物行为变为同等,能够制作没有波动的具有良好铸锭组织的高品质连铸件。
现有技术文献
专利文献1:日本特开2006-51535号公报
专利文献2:日本特开2003-211255号公报
发明内容
然而,在以往的铝的连铸方法中,出于提高生产效率等目的,大多采用所谓多连式连铸,其通过多个铸模并列配置,熔液分别穿过各铸模,由此多根连铸棒同时并列地连铸。在这样的多连式连铸中,相邻的连铸棒之间彼此受到热的影响,连铸棒的外周面的温度分布变复杂,因此无法将全部连铸件分别平衡良好地冷却,存在难以切实地制作高品质连铸件的课题。
本发明的优选实施方式是鉴于相关技术中的上述和/或其他问题而完成的。本发明的优选实施方式能够显著改善现有方法和/或装置。
本发明是鉴于上述课题而完成的,其目的是提供一种金属连铸棒的制造方法和制造装置,能够将全部铸锭平衡良好地冷却,制造高品质的连铸件。
本发明的其他目的和优点根据以下优选实施方式变得明确。
为了解决上述课题,本发明具备以下手段。
[1]一种金属连铸棒的制造方法,其向以并列状态从多个铸模导出的多个铸锭的各外周面供给冷却液,从而分别冷却多个铸锭,
所述制造方法的特征在于,
将铸锭的外周面中的开放而没有与其他铸锭相对的区域设为开放区域,并将与其他铸锭相对的区域设为铸锭相对区域,
对于所述开放区域,以使冷却液在该开放区域的冷却程度小于冷却液在所述铸锭相对区域的冷却程度的弱冷来进行冷却。
[2]根据前项[1]所述的金属连铸棒的制造方法,冷却液对所述开放区域的供给量被设定为小于冷却液对所述铸锭相对区域的供给量。
[3]根据前项[1]或[2]所述的金属连铸棒的制造方法,冷却液对所述开放区域的供给压力被设定为小于冷却液对所述铸锭相对区域的供给压力。
[4]一种金属连铸棒的制造装置,具备并列配置的多个铸模、以及与各铸模对应地分别设置的冷却液喷出口,从所述多个冷却液喷出口,对以并列状态从所述多个铸模导出的多个铸锭的各外周面供给冷却液,从而分别冷却多个铸锭,
所述制造装置的特征在于,具备供给量调整单元,
将铸锭的外周面中的开放而没有与其他铸锭相对的区域设为开放区域,并将与其他铸锭相对的区域设为铸锭相对区域,所述供给量调整单元用于使冷却液对所述开放区域的供给量小于冷却液对所述铸锭相对区域的供给量。
[5]根据前项[5]所述的金属连铸棒的制造装置,所述冷却液喷出口沿着对应的铸锭的外周隔开间隔配置多个,从各冷却液喷出口喷出冷却液,向对应的铸锭的外周面供给,
所述多个冷却液喷出口中的与铸锭的所述开放区域对应配置的冷却液喷出口的总开口面积被设定为小于与所述铸锭相对区域对应配置的冷却液喷出口的总开口面积,
所述供给量调整单元由所述多个冷却液喷出口构成。
[6]根据前项[5]所述的金属连铸棒的制造装置,所述多个冷却液喷出口中的与铸锭的所述开放区域对应配置的冷却液喷出口的口径被设定为小于与所述铸锭相对区域对应配置的冷却液喷出口的口径。
[7]根据前项[5]或[6]所述的金属连铸棒的制造装置,所述多个冷却液喷出口中的与铸锭的所述开放区域对应配置的多个冷却液喷出口的间隔被设定为大于与所述铸锭相对区域对应配置的多个冷却液喷出口的间隔。
[8]根据前项[4]~[7]中任一项所述的金属连铸棒的制造装置,具备供给压力调整单元,所述供给压力调整单元用于使冷却液对所述开放区域的供给压力低于冷却液对所述铸锭相对区域的供给压力,
所述供给量调整单元由所述供给压力调整单元构成。
根据发明[1]的金属连铸棒的制造方法,对于铸锭的外周面中的没有与其他铸锭相对的开放区域,以相比于与其他铸锭相对的铸锭相对区域更弱的弱冷来冷却,因此能够较弱地冷却来自其他铸锭的热影响小从而能够效率良好地冷却的开放区域,且能够较强地冷却来自其他铸锭的热影响大从而无法效率良好地冷却的铸锭相对区域,能够将各铸锭从整个外周到中心部无偏向且平衡良好地冷却,能够将整个铸锭形成为均匀且良好的铸锭组织,且能够切实地铸造作为无波动的高品质铸锭的连铸件。
根据发明[2]和[3]的金属连铸棒的制造方法,能够更切实地获得上述效果。
根据发明[4]的金属连铸棒的制造装置,具备供给量调整单元,该供给量调整单元用于使冷却液对铸锭的外周面中的没有与其他铸锭相对的开放区域的供给量小于冷却液对与其他铸锭相对的铸锭相对区域的供给量,因此能够以比相对于铸锭相对区域弱更弱的弱冷来冷却开放区域。因此,与上述同样地,能够将各铸锭从整个外周到中心部无偏向且平衡良好地冷却,能够将整个铸锭形成为均匀且良好的铸锭组织,能够切实地铸造作为无波动的高品质铸锭的连铸件。
根据发明[5]~[8]的金属连铸棒的制造装置,能够更切实地获得上述效果。
附图说明
图1是概略地表示作为本发明实施方式的连铸棒的制造装置的立式连铸装置的侧面图。
图2是表示应用于实施方式的连铸装置的热顶铸造机的侧面截面图。
图3是用于说明由实施方式的连铸装置铸造出的铸锭的概略水平截面图。
图4是用于说明由实施方式的连铸装置铸造出的铸锭的外周面区域的概略水平截面图。
图5A是示意性地表示实施方式的热顶铸造机的第1例的水平截面图。
图5B是示意性地表示实施方式的热顶铸造机的第2例的水平截面图。
图5C是示意性地表示实施方式的热顶铸造机的第3例的水平截面图。
图6是用于说明本发明其他实施方式的连铸装置中的铸锭的冷却方法的概略水平截面图。
图7是用于说明本发明其他实施方式的连铸装置中的铸锭的冷却方法的概略水平截面图。
图8是用于说明上述其他实施方式的连铸装置的铸锭的外周面区域的概略水平截面图。
附图标记说明
1:铸造机
2:铸模
3:喷出口
x:开放领域
y:铸锭相对区域
M:冷却水(冷却液)
W2:铸锭(连铸件)
具体实施方式
图1是示意性地表示作为本发明实施方式即铝的连铸件的制造装置的连铸装置应用的立式连铸装置的侧面图,图2是表示应用于实施方式的铸造装置的热顶铸造机1的侧面截面图。
如图1所示,该铸造装置具备并列配置的3台热顶铸造机1。如图1和图2所示,各铸造机1具备:将铝的熔液W1凝固从而铸造铸锭W2的铸模(模具)2、设在各铸模1的下端部的作为冷却液喷出口的喷出口3、以及设在铸模1的上侧且向铸模2注入熔液W1的熔液接受槽4。
铸模2通过被供给到其内部的作为一次冷却水的冷却水M而冷却。另外,设在铸模2的下端部的喷出口3将铸模2内的冷却水(冷却液)M作为二次冷却水喷出。再者,如图5A~图5C等所示,在本实施方式中,在周向上隔开适当间隔设置多个喷出口3,对于该喷出口31的具体结构稍后说明。
该铸造装置中,供给到各铸造机1的各熔液接受槽4内的作为金属的铝的熔液W1被注入到冷却了的各铸模2的内部。被注入到各铸模2的熔液W1通过与各铸模2接触而一次性地冷却,分别变成半凝固状态的铸锭W2。半凝固状态的铸锭W2处于在其外周部形成有凝固膜的状态。
然后,该状态的各铸锭W2向下方分别连续地穿过铸模2的内侧,从各喷出口31对刚穿过各铸模2之后的铸锭W2喷出冷却水M,冷却水M与各铸锭W2的外周面分别直接接触,各铸锭W2被冷却。这样,在各铸锭W2向下方拉拔的同时被二次冷却从而大部分凝固,3根圆棒状的连铸件(坯料)以并列配置的状态同时并列地制造。
接着,在本实施方式的铸造装置中对铸锭W2的冷却方法进行说明。图3是用于说明由本实施方式的铸造装置铸造出的铸锭(连铸棒)W2的概略水平截面图,图4是用于说明各铸锭W2的外周面区域的概略水平截面图。
如两图所示,在本实施方式中,3根铸锭W2以并列配置并行地铸造,将该铸造的各铸锭W2的外周面在周向上划分为4个区域。
即,将铸锭W2的外周面在周向上4等分,将该划分出的区域中的前面的区域(向着图3和图4上侧的区域)设为前面区域F、将后面的区域(向着图3和图4下侧的区域)设为后面区域B、将右侧面的区域(向着图3和图4右侧的区域)设为右面区域R、并将左侧面的区域(向着两图左侧的区域)设为左面区域L。而且,将这4个区域中与相邻的铸锭W2相对而被该其他铸锭W2堵塞了的区域设为“铸锭相对区域y”,将没有与相邻的其他铸锭W2相对、也就是不存在其他铸锭W2而开放的区域设为“开放区域x”。例如,位于图3的左端的铸锭W2,前面区域F、后面区域B和左面区域L成为开放区域x,右面区域R成为铸锭相对区域y。此外,位于图3的中间的铸锭W2,前面区域F和后面区域B成为开放区域x,左面区域L和右面区域R成为铸锭相对区域y。此外,位于图3的右端的铸锭W2,前面区域F、后面区域B和右面区域R成为开放区域x,左面区域L成为铸锭相对区域y。
并且,在本实施方式中,在通过冷却水M的喷出而冷却铸锭W2时,通过使对开放区域x的冷却程度小于对铸锭相对区域y的冷却程度,由此以弱冷来冷却开放区域x,并以强冷来冷却铸锭相对区域y。
在此,本实施方式中,减小冷却程度是指减少从铸锭W2吸收的热量,相反,增大冷却程度是指增多从铸锭W2吸收的热量。另外,本发明中,开放区域x是没有与其他铸锭W2相对的区域,没有必要完全开放。例如本发明中,即使开放区域x被机罩壁等的铸锭以外的构件堵塞,只要没有与其他铸锭W2相对,就可以将其视为开放区域。
接着,在本实施方式中,对铸锭W2的冷却方法的具体例进行说明。如图5A所示,本实施方式的铸造装置中的各铸造机1的铸模2上,与被铸造的铸锭W2的外周面对应地形成有冷却水喷出口3。该喷出口3在周向上以等间隔配置多个。另外,在该图5A所示铸造机1中,与铸造的铸锭W2的外周表面中的开放区域x对应地配置的喷出口3孔径(口径),比与铸锭相对区域y对应地配置的喷出口3形成得小。由此,冷却水M从口径小的喷出口3喷到开放区域x,并且冷却水M从口径大的喷出口3喷到铸锭相对区域y,开放区域x的冷却水M的供给量小于铸锭相对区域y,开放区域x以弱冷被冷却,铸锭相对区域y以强冷被冷却。
另外,在图5B所示铸造机1中,多个喷出口3被设定为各个口径(孔径)等的大小相同,但与开放区域x对应地配置的多个喷出口3中的相邻的喷出口3间的间隔(间距)比被设定为大于与铸锭相对区域y对应地配置的多个喷出口3间的间隔(间距)。由此,冷却水M从间距大且稀疏地排列的喷出口3喷到开放区域x,冷却水M从间距小且密集地排列的喷出口3喷到铸锭相对区域y,开放区域x的冷却水M的供给量比铸锭相对区域y少,开放区域x以弱冷被冷却,铸锭相对区域y以强冷被冷却。
通过这样将与开放区域x对应的喷出口3的总开口面积设定为小于与铸锭相对面积y对应的喷出口3的总开口面积,由此能够以比对铸锭相对区域y的冷却弱的弱冷,来冷却开放区域x。在此,在本实施方式中,供给量调整单元由口径和/或间距不同的多个喷出口3构成。
再者,上述实施方式中,将喷出口3的形状形成为圆形,但喷出口3的形状没有特别限定,在本发明中可以采用长方形、椭圆形、狭缝状、三角形和四边形等多边形、不规则形状以及这些形状的混合等。此外,即使采用圆形以外的喷出口3的情况下,也可以通过与上述同样地调整口径和间距来调整冷却程度。
具体而言,在采用狭缝状的喷出口3的情况下,以设为弱冷的喷出口3的狭缝宽度为1mm,且设为强冷的喷出口3的狭缝宽度为2mm的方式,阶段性或连续地变更狭缝宽度,在采用圆形的喷出口3的情况下,以设为弱冷的喷出口3的孔径为φ2mm,且设为强冷的喷出口3的孔径为φ3mm的方式,阶段性或连续地变更孔径,或者以相邻的喷出口的间隔(间距)在设为弱冷的部分为15度间距,且在设为强冷的部分为10度间距的方式,阶段性或连续地变更其间距。
另外,在本实施方式中,也可以通过调整来自喷出口3的冷却水M的供给压力(水压)来以弱冷冷却开放区域x。例如图5C所示,在铸造机1的铸模2中,在周向上以等间隔形成有相同口径的多个喷出口3。并且,从与开放区域x对应配置的喷出口3喷出的冷却水M的水压被设定为低于从与铸锭相对面积y对应配置的喷出口3喷出的冷却水M的水压。由此,冷却水M以低压和低速向开放区域x供给,且冷却水M以高压和高速向铸锭相对区域y供给,开放区域x的冷却水M的供给量比铸锭相对区域y少,开放区域x以弱冷被冷却,铸锭相对区域y以强冷被冷却。
在此,在该图5C所示冷却方式中,由用于调整冷却水M的水压的水流泵等水压调整单元(供给压力调整单元)来构成供给量调整单元。
另外,在本发明中,可以对各射出口3分别设置能够调整冷却水M的水压的水压调整单元。该情况下,可以针对各射出口3细微地调整冷却水M的水压,能够更精确地调整冷却程度,能够铸造更高品质的连铸件。然而,如果对各射出口3设置水压调整单元,则水压调整单元的设置数增多,因此可能导致结构的复杂化和成本增加。
再者,在图5A~图5C的例子中,能够以冷却水M的水量从开放区域x的周向中间位置直到铸锭相对区域y的周向中间位置逐渐增高的方式使孔径、孔间距、水压等连续变化,也能够以水量在开放区域x和铸锭相对区域y阶段性地变化的方式,对整个开放区域x以恒定的少量水供给冷却水M,并对整个开放区域x以恒定的大量水供给冷却水M。
另外,在本实施方式中,通过调整喷出口3的口径、间距和/或调整来自喷出口3的冷却水M的水压,来调整冷却程度,但不仅限于此,在本发明中,也可以通过变更冷却水的温度和/或冷却水(冷却液)的种类来调整冷却程度。例如,通过将喷到开放区域x的冷却水M的温度设定为高于喷到铸锭相对区域y的冷却水M的温度,能够以弱冷来冷却开放区域x。此外,作为喷到铸锭相对区域y上的冷却液,采用冷却能力比喷到开放区域x上的冷却液更高的冷却液,由此能够以比对铸锭相对区域y的冷却弱的弱冷来冷却开放区域x。
如上所述,根据本实施方式,在将多个铸锭(连铸件)W2并列铸造的连铸装置中,对于规定的铸锭W2的外周面中的没有与其他铸锭W2相对的开放区域x,利用比与其他铸锭W2相对的铸锭相对区域y弱的弱冷来冷却,因此能够高品质地铸造全部铸锭W2。
即,铸锭W2的外周面中的开放区域x不容易受到来自其他铸锭W2的热影响,从而冷却效率高,而铸锭相对区域y容易受到来自相邻的其他铸锭W2的热影响,从而冷却效率低。因此,在本实施方式中,对于冷却效率高的开放区域x,利用比冷却效率低的铸锭相对区域y弱的弱冷进行冷却,因此,能够将各铸锭W2从整个外周直到中心部无偏向且平衡良好地冷却,能够将整个铸锭形成为均匀且良好的铸锭组织,能够切实地铸造无波动的高品质铸锭(连铸件)W2。
另外,在本实施方式中,通过以弱冷来冷却开放区域x,能够防止过度的冷却,能够防止超出必要地浪费冷却所需的能量,能够更有效地冷却,进而能够进一步提高铸造制品的生产效率。
再者,在上述实施方式中,举例说明了对以1列配置了的3根铸锭W2应用本发明的情况,但本发明不仅限于此,在本发明中,对于横纵各2列以上配置的多根铸锭能够与上述同样地应用本发明。
例如图6所示,在作为本发明其他实施方式的连铸装置中,纵横各3列的合计9根铸锭W2被同时并行地铸造。为了便于理解本发明,在该实施方式中,朝向图6的纸面将从上起第1列(行)设为第1行,第2列(行)设为第2行,第3(最下段)的列(行)设为第3行,左端的列设为第a列,从左起第2列设为第b列,右端的列设为第c列加以说明。
在该图6的其他实施方式中,在1行a列(左上)的铸锭W2中,外周面中的前面区域F和左面区域L变为开放区域x,后面区域B和右面区域R变为铸锭相对区域y。此外,1行b列的铸锭W2中,仅前面区域F变为开放区域x,后面区域B和两侧区域L、R变为铸锭相对区域y。另外,2行b列(中央)的铸锭W2中,前后左右的周围所有区域F、B、L、R变为铸锭相对区域y,该2行b列的铸锭W2没有调整冷却程度,以相同程度、也就是强冷冷却整个外周。因此,本发明中,对于纵横各3列以上配置的铸锭W2,除了其中央的铸锭W2以外,在配置于外周的铸锭W2,对于开放区域x以比铸锭相对区域y弱的弱冷来冷却。换句话说,对于配置在不存在开放区域x的中央的铸锭W2,没有应用本发明,而对于存在开放区域x而配置在外侧的铸锭W2,应用本发明。即,本发明对于存在开放区域x的铸锭W2、具体而言对于存在至少1个以上的开放区域x的铸锭W2应用。再者,在本发明中,除了整个外周被铸锭包围的铸锭以外的铸锭W2,例如配置成1列(1行)或配置成2列(2行)的铸锭W2全都成为配置在外侧的铸锭W2。
图7是用于说明作为本发明其他实施方式的连铸装置中的铸锭的冷却方法的概略水平截面图。在该实施方式中,铸锭W2以被配置为前后2行、左右3列(a~c列)的状态同时并行地铸造,铸锭W2的排列形态在上述图6所示的其他实施方式等中,对于相邻的4根铸锭W2的轴心在俯视时位于正方形的4个顶点那样的所谓正方形排列的铸锭W2应用了本发明,但该图7所示实施方式中,对相邻的3根铸锭W2的轴心在俯视时位于正三角形的3个顶点那样的所谓正三角形的铸锭W2应用了本发明。
在该图7的实施方式中,如图8所示,将各铸锭W2的外周面进行6等分,将该被划分的区域中的左侧的中间区域设为左中央区域LC,将左侧的前方区域设为左前方区域LF,将左侧的后方区域设为左后方区域LB,将右侧的中央区域设为右中央区域RC,将右侧的前方区域设为右前方区域RF,并将右侧的后方区域设为右后方区域RB。
例如,1行a列(图7的左上)的铸锭W2中,左中央区域LC、左前方区域LF、右前方区域RF成为开放区域x,右中央区域RC、右后方区域RB、左后方区域LB成为铸锭相对区域y。因此,该开放区域x利用比铸锭相对区域y弱的弱冷来冷却。
另外,1行c列(图7中的右上)的铸锭W2中,左前方区域LF、右前方区域RF、右中央区域RC、右后方区域RB成为开放区域x,左中央区域LC、左后方区域LB成为铸锭相对区域y。因此,该开放区域x利用比铸锭相对区域y弱的弱冷来冷却。
此外,2行b列(图7的后部中央)的铸锭W2中,左后方区域LB、右后方区域RB成为开放区域x,左中央区域LC、左前方区域LF、右前方区域RF、右中央区域RC成为铸锭相对区域y。因此,该开放区域x利用弱冷来冷却。
这样对于以正三角形排列而铸造的铸锭W2,将外周面在周向上6等分,按6等分了的各区域LC、LF、LB、RC、RF、RB设定开放区域x和铸锭相对区域y中的任一者即可。
再者,在上述实施方式等中,举例说明了将本发明应用于铸造方向被设定为垂直方向的立式连铸装置的情况,但本发明不仅限于此,也可以应用于铸造方向被设定为垂直方向以外的例如水平型(横型)连铸装置中。
产业上的可利用性
本发明的金属连铸棒的制造装置在制造例如用作铝等金属的挤压材料、轧制材料、锻造材料用等的材料的连铸件时能够合适地使用。
本申请主张2019年2月28日提出申请的日本专利申请2019-36612号的优先权,其公开内容原样地构成本申请的一部分。
应该认识到,在此使用的术语和表达是为了说明而使用的,不是为了限制性地解释而使用的,并不排除在此示出和叙述的特征事项的任何均等物,也允许在本发明要求保护的范围内的各种变形。

Claims (8)

1.一种金属连铸棒的制造方法,其向以并列状态从多个铸模导出的多个铸锭的各外周面供给冷却液,从而分别冷却多个铸锭,
所述制造方法的特征在于,
将铸锭的外周面中的开放而没有与其他铸锭相对的区域设为开放区域,并将与其他铸锭相对的区域设为铸锭相对区域,
对于所述开放区域,以使冷却液在该开放区域的冷却程度小于冷却液在所述铸锭相对区域的冷却程度的弱冷来进行冷却。
2.根据权利要求1所述的金属连铸棒的制造方法,
冷却液对所述开放区域的供给量被设定为小于冷却液对所述铸锭相对区域的供给量。
3.根据权利要求1或2所述的金属连铸棒的制造方法,
冷却液对所述开放区域的供给压力被设定为小于冷却液对所述铸锭相对区域的供给压力。
4.一种金属连铸棒的制造装置,具备并列配置的多个铸模、以及与各铸模对应地分别设置的冷却液喷出口,从所述多个冷却液喷出口,对以并列状态从所述多个铸模导出的多个铸锭的各外周面供给冷却液,从而分别冷却多个铸锭,
所述制造装置的特征在于,具备供给量调整单元,
将铸锭的外周面中的开放而没有与其他铸锭相对的区域设为开放区域,并将与其他铸锭相对的区域设为铸锭相对区域,所述供给量调整单元用于使冷却液对所述开放区域的供给量小于冷却液对所述铸锭相对区域的供给量。
5.根据权利要求4所述的金属连铸棒的制造装置,
所述冷却液喷出口沿着对应的铸锭的外周隔开间隔配置多个,从各冷却液喷出口喷出冷却液,向对应的铸锭的外周面供给,
所述多个冷却液喷出口中的与铸锭的所述开放区域对应配置的冷却液喷出口的总开口面积被设定为小于与所述铸锭相对区域对应配置的冷却液喷出口的总开口面积,
所述供给量调整单元由所述多个冷却液喷出口构成。
6.根据权利要求5所述的金属连铸棒的制造装置,
所述多个冷却液喷出口中的与铸锭的所述开放区域对应配置的冷却液喷出口的口径被设定为小于与所述铸锭相对区域对应配置的冷却液喷出口的口径。
7.根据权利要求5或6所述的金属连铸棒的制造装置,
所述多个冷却液喷出口中的与铸锭的所述开放区域对应配置的多个冷却液喷出口的间隔被设定为大于与所述铸锭相对区域对应配置的多个冷却液喷出口的间隔。
8.根据权利要求4~7中任一项所述的金属连铸棒的制造装置,
具备供给压力调整单元,所述供给压力调整单元用于使冷却液对所述开放区域的供给压力低于冷却液对所述铸锭相对区域的供给压力,
所述供给量调整单元由所述供给压力调整单元构成。
CN202010115164.4A 2019-02-28 2020-02-25 金属连铸棒的制造方法和制造装置 Active CN111618260B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-036612 2019-02-28
JP2019036612A JP7155044B2 (ja) 2019-02-28 2019-02-28 金属の連続鋳造棒の製造方法および製造装置

Publications (2)

Publication Number Publication Date
CN111618260A true CN111618260A (zh) 2020-09-04
CN111618260B CN111618260B (zh) 2023-03-10

Family

ID=72236003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010115164.4A Active CN111618260B (zh) 2019-02-28 2020-02-25 金属连铸棒的制造方法和制造装置

Country Status (3)

Country Link
US (1) US10974315B2 (zh)
JP (1) JP7155044B2 (zh)
CN (1) CN111618260B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113751678B (zh) * 2021-09-08 2023-06-20 广东华域重工有限公司 一种高强度重钢生产工艺及其加工设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4597432A (en) * 1981-04-29 1986-07-01 Wagstaff Engineering, Inc. Molding device
WO1988000867A1 (en) * 1986-08-08 1988-02-11 Kurzinski Cass R Cluster casting machine and method
JP2006095586A (ja) * 2004-09-30 2006-04-13 Sumitomo Metal Ind Ltd ツイン・トリプル鋳造用鋳型装置および連続鋳造方法
JP2008238244A (ja) * 2007-03-28 2008-10-09 Sanyo Special Steel Co Ltd 連続鋳造2次冷却比水量のストランド別制御による健全な内部組織を有する鋳片の製造方法
JP2010227994A (ja) * 2009-03-30 2010-10-14 Hitachi Cable Ltd 連続鋳造用水冷鋳型及び鋳塊の製造方法
CN102240781A (zh) * 2011-06-23 2011-11-16 哈尔滨中飞新技术股份有限公司 一种立式dc铸造多根小直径铝合金铸锭的设备及其方法
JP2012176427A (ja) * 2011-02-25 2012-09-13 Toho Titanium Co Ltd 金属溶製用溶解炉およびこれを用いた金属の溶製方法
JP2012177522A (ja) * 2011-02-25 2012-09-13 Toho Titanium Co Ltd 金属製造用溶解炉
CN203109189U (zh) * 2013-01-23 2013-08-07 北京科技大学 板坯连铸浇注方坯的新型结晶器
CN203900416U (zh) * 2014-05-30 2014-10-29 上海坤孚企业(集团)有限公司 一种结晶器
KR20160149638A (ko) * 2015-06-18 2016-12-28 현대제철 주식회사 인고트 제조장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263778A (ja) * 1997-03-24 1998-10-06 Kawasaki Steel Corp 連続鋳造における鋳片の二次冷却方法
JP2001179414A (ja) * 1999-12-24 2001-07-03 Daido Steel Co Ltd 連続鋳造における2次冷却方法及び2次冷却装置
JP3765535B2 (ja) 2002-01-18 2006-04-12 住友軽金属工業株式会社 アルミニウム鋳塊の連続鋳造方法
JP4401896B2 (ja) 2004-08-16 2010-01-20 住友軽金属工業株式会社 アルミニウム又は銅の半連続鋳造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4597432A (en) * 1981-04-29 1986-07-01 Wagstaff Engineering, Inc. Molding device
WO1988000867A1 (en) * 1986-08-08 1988-02-11 Kurzinski Cass R Cluster casting machine and method
JP2006095586A (ja) * 2004-09-30 2006-04-13 Sumitomo Metal Ind Ltd ツイン・トリプル鋳造用鋳型装置および連続鋳造方法
JP2008238244A (ja) * 2007-03-28 2008-10-09 Sanyo Special Steel Co Ltd 連続鋳造2次冷却比水量のストランド別制御による健全な内部組織を有する鋳片の製造方法
JP2010227994A (ja) * 2009-03-30 2010-10-14 Hitachi Cable Ltd 連続鋳造用水冷鋳型及び鋳塊の製造方法
JP2012176427A (ja) * 2011-02-25 2012-09-13 Toho Titanium Co Ltd 金属溶製用溶解炉およびこれを用いた金属の溶製方法
JP2012177522A (ja) * 2011-02-25 2012-09-13 Toho Titanium Co Ltd 金属製造用溶解炉
CN102240781A (zh) * 2011-06-23 2011-11-16 哈尔滨中飞新技术股份有限公司 一种立式dc铸造多根小直径铝合金铸锭的设备及其方法
CN203109189U (zh) * 2013-01-23 2013-08-07 北京科技大学 板坯连铸浇注方坯的新型结晶器
CN203900416U (zh) * 2014-05-30 2014-10-29 上海坤孚企业(集团)有限公司 一种结晶器
KR20160149638A (ko) * 2015-06-18 2016-12-28 현대제철 주식회사 인고트 제조장치

Also Published As

Publication number Publication date
JP7155044B2 (ja) 2022-10-18
JP2020138223A (ja) 2020-09-03
US10974315B2 (en) 2021-04-13
CN111618260B (zh) 2023-03-10
US20200276635A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US7234505B2 (en) Aluminium pressure casting
CN111618260B (zh) 金属连铸棒的制造方法和制造装置
CN108160961A (zh) 一种气体辅助连续铸挤的方法及装置
CN111618261B (zh) 金属连铸棒的制造方法和制造装置
AU757475B2 (en) High speed continuous casting device and relative method
CN111203521B (zh) 一种圆环状铸锭铸造设备及其铸造方法
JP2020062678A (ja) 金属の連続鋳造装置および連続鋳造方法
CN114555260B (zh) 连铸模具
CN101528386A (zh) 连铸结晶器
WO2008017711A1 (en) Crystalliser
WO2014168501A1 (ru) Устройство для непрерывного литья, прокатки и прессования катанки
JP2002346694A (ja) マルチゲート鋳造用金型及び鋳造方法
KR101962230B1 (ko) 개선된 구조의 연속주조용 침지노즐
US3934638A (en) Continuous casting process
JP4468267B2 (ja) 連続鋳造装置
RU2082541C1 (ru) Многоручьевой кристаллизатор для горизонтального непрерывного литья прутковых заготовок
CN213002604U (zh) 铝锭铸造铸模分配装置
CN104254413A (zh) 用于连续铸造的结晶器
KR20090000146U (ko) 연속 주조기용 몰드
CN109789477B (zh) 用于多重浇铸金属股线的方法
CN118162587A (zh) 一种异形薄壁铸件砂型铸造成型装置及浇注方法
CN113102690A (zh) 一种铸造模具的设计方法
RU2146573C1 (ru) Способ получения непрерывнолитых деформированных заготовок и устройство для его осуществления
RU2136434C1 (ru) Устройство для получения непрерывно литых биметаллических деформированных заготовок
CN113976844A (zh) 可多根同时铸造的异形铝合金铸锭结晶装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: Lishennoco Co.,Ltd.

Address before: Tokyo, Japan

Patentee before: Showa electrical materials Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230506

Address after: Tokyo, Japan

Patentee after: Showa electrical materials Co.,Ltd.

Address before: Tokyo, Japan

Patentee before: SHOWA DENKO Kabushiki Kaisha