CN111569901B - 一种用于有机储氢材料加氢与脱氢非贵金属与贵金属双金属催化剂的制备方法和应用 - Google Patents

一种用于有机储氢材料加氢与脱氢非贵金属与贵金属双金属催化剂的制备方法和应用 Download PDF

Info

Publication number
CN111569901B
CN111569901B CN202010406445.5A CN202010406445A CN111569901B CN 111569901 B CN111569901 B CN 111569901B CN 202010406445 A CN202010406445 A CN 202010406445A CN 111569901 B CN111569901 B CN 111569901B
Authority
CN
China
Prior art keywords
reaction
hydrogen storage
catalyst
dehydrogenation
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010406445.5A
Other languages
English (en)
Other versions
CN111569901A (zh
Inventor
孙予罕
王慧
陈新庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Cluster Rui Low Carbon Energy Technology Co ltd
Original Assignee
Shanghai Cluster Rui Low Carbon Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Cluster Rui Low Carbon Energy Technology Co ltd filed Critical Shanghai Cluster Rui Low Carbon Energy Technology Co ltd
Priority to CN202010406445.5A priority Critical patent/CN111569901B/zh
Publication of CN111569901A publication Critical patent/CN111569901A/zh
Application granted granted Critical
Publication of CN111569901B publication Critical patent/CN111569901B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/044Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Indole Compounds (AREA)

Abstract

本发明公开了一种用于有机储氢材料加氢与脱氢的催化剂的制备方法及应用。所述制备方法为:将非贵金属前驱体、贵金属前驱体、去离子水混合,加入氧化物、分子筛和二维多孔材料中的至少一种作为载体搅拌,然后烘干、焙烧;将焙烧后的样品进行还原反应即可。在催化剂的作用下通过对有机储氢材料的加氢和脱氢,来实现氢能的储运及应用。本发明在实现催化储氢与脱氢的催化性能之外能明显降低有机物载体储氢与脱氢催化剂成本。

Description

一种用于有机储氢材料加氢与脱氢非贵金属与贵金属双金属 催化剂的制备方法和应用
技术领域
本发明涉及一种有机物载体储氢与脱氢的非贵金属与贵金属结合的双金属催化剂的制备方法和应用,涉及储氢催化剂材料制备技术领域。
背景技术
氢能作为可持续能源的代表,具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等优点,被认为是未来能源结构中最具有发展潜力的能源载体,也是世纪重要的绿色能源。氢能应用包括氢气制备、储存、运输和应用等环节,其中氢能储存是关键和难点。目前研究和应用中的氢气储存方式主要包括:高压气态储氢、深冷液化储氢、有机储氢材料、碳基储氢材料(如活性炭、碳纳米材料、石墨烯基碳材料等)、多孔材料(如MOFs、POPs等),氢化物固态储氢(如LaNi合金等)等多种储氢技术。
有机储氢材料是伴随着氢能和环境保护在最近二三十年才发展起来的新型功能材料。新型有机储氢材料能量密度高且安全性好,被认为是最有发展前景的一种氢气储存方式。有机储氢材料储氢技术同时存在加氢和脱氢过程,加氢过程相对简单,技术比较成熟,脱氢过程是一个强吸热、高度可逆的反应,从动力学和热力学两方面来看,高温都有利于脱氢反应。目前拥有的贵金属催化剂在有机液体储氢领域已经取得了一些阶段性的成果,常用的脱氢催化剂中,贵金属组分起着脱氢作用,但在脱氢过程中催化剂上贵金属活性组分易发生聚集尺寸变大最终导致活性降低,另外贵金属价格昂贵导致脱氢成本很高。因此开展有机储氢材料储氢催化剂研究的重点是减少贵金属用量,降低脱氢成本。
发明内容
本发明所要解决的技术问题是:提供一种有机储氢材料储氢脱氢催化剂的制备方法,其制备的催化剂应用于有机物的储氢脱氢反应时能够具有较高的选择性。
为了解决上述问题,本发明提供了一种用于有机储氢材料加氢与脱氢的催化剂的制备方法,其特征在于,包括以下步骤:
步骤1):将非贵金属前驱体、贵金属前驱体、去离子水按比例混合,常温下搅拌均匀;
步骤2):在步骤1)所得的混合物中加入氧化物、分子筛和二维多孔材料中的至少一种作为载体搅拌;
步骤3):将步骤2)所得的样品放入烘箱中烘干;
步骤4):将烘干后的样品放入马弗炉中焙烧;
步骤5):将焙烧后的样品进行还原反应,得到用于有机储氢材料加氢与脱氢的催化剂。
优选地,所述步骤1)中非贵金属前驱体为非贵金属的硝酸盐和氯化盐中的任意一种或几种的混合物;所述贵金属前驱体为贵金属的硝酸盐和氯化盐中的任意一种或几种的混合物。
更优选地,所述非贵金属为Ni、Cu、Mg或Fe;所述贵金属为Pt、Pd、Rh、Ru或Au。
优选地,所述步骤2)中的氧化物为氧化铝、氧化锡、氧化铈和氧化硅中的任意一种或几种的混合物;所述分子筛为MCM-41和SBA-15中的至少一种或两种的混合物;所述二维多孔材料为石墨烯、活性炭和氮化碳中的任意一种或几种的混合物。
优选地,所述步骤2)中的搅拌时间为24h。
优选地,所述步骤3)中的烘干温度为70-110℃;所述步骤4)中的焙烧温度为300-500℃。
优选地,所述步骤5)中的还原反应采用还原剂还原或氢气和氮气气氛焙烧还原。
更优选地,所述还原剂采用硼氢化钠。
本发明还提供了上述制备方法所制备的用于有机储氢材料加氢与脱氢的催化剂在有机储氢材料加氢与脱氢反应中的应用。
优选地,所述的有机储氢材料为乙二醇、环己烷、甲基环己烷、十氢化萘、喹啉、咔唑、N-甲基咔唑、N-乙基咔唑和N-丙基咔唑中的任意一种。
优选地,所述有机储氢材料加氢与脱氢反应中有机储氢材料与催化剂的质量比为(5-20):1;加氢反应条件为:反应温度130-160℃,氢气压力5-8Mpa;脱氢反应条件为:反应温度180-220℃,氢气压力为1Bar。
本发明首先通过采用浸渍法将金属氧化物(氧化铝、氧化硅、氧化锡、氧化钼、氧化铈)、石墨烯与分子筛载体(MCM-41、HY)与贵金属前驱体(Ni、Cu、Mg、Fe)或贵金属(Pt、Pd、Rh、Ru、Au)前驱体混合物溶液混合一起,经充分搅拌、干燥、焙烧、还原得到用于有机物载体储氢与脱氢的催化剂。在催化剂的作用下通过对液态有机储氢载体加氢得到氢化有机液体,再通过对氢化有机液体脱氢得到液态有机储氢载体。其中,非贵金属或非贵金属混合物的负载量为1~30%,贵金属或贵金属混合物负载量为0.05~0.2%。
本发明在有机储氢材料储氢与脱氢催化剂的制备过程中,通过筛选合适的非贵金属前驱体与贵金属前驱体,通过调控比例共同制备一种非贵金属与贵金属相结合的双金属催化剂,该催化剂在有机储氢材料储氢反应中具有催化剂活性高,稳定性好和价格低廉的优点。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,作详细说明如下。
实施例1
称取0.248g的六水合硝酸镍和0.004g的氯化铑溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至500℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5g N-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
实施例2
称取0.495g的六水合硝酸镍和0.002g的氯化铑溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至500℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5g N-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
实施例3
称取0.743g的六水合硝酸镍和0.002g的氯化铑溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至500℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5g N-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
实施例4
称取0.991g的六水合硝酸镍和0.002g的氯化铑溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至500℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5g N-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
实施例5
称取1.486g的六水合硝酸镍和0.001g的氯化铑溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至500℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5g N-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
实施例6
称取0.743g的六水合硝酸镍和0.002g的氯化铑溶于去离子水中在常温下搅拌均匀,加入1g二氧化钛常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至500℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5g N-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
实施例7
称取0.495g的六水合硝酸镍和0.002g的氯化铑溶于去离子水中在常温下搅拌均匀,加入1g二氧化硅-氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至500℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5g N-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
实施例8
称取0.743g的六水合硝酸镍和0.002g的氯化铑溶于去离子水中在常温下搅拌均匀,加入1g二氧化硅常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至500℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5g N-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
实施例9
称取0.743g的六水合硝酸镍和0.002g的氯化铑溶于去离子水中在常温下搅拌均匀,加入1g MCM-41分子筛常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至500℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5g N-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
实施例10
称取0.495g的六水合硝酸镍和0.001g的氯化铑溶于去离子水中在常温下搅拌均匀,加入1g还原氧化石墨烯常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至500℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5g N-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
实施例11
称取0.078g的氯化亚铜和0.004g的氯化铑溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至300℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5gN-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
实施例12
称取0.312g的氯化亚铜和0.0014g的氯化钌溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至300℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5gN-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
实施例13
称取0.234g的氯化亚铜和0.002g的氯铂酸溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至300℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5gN-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
实施例14
称取0.234g的氯化亚铜和0.003g的氯化钯溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至300℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5gN-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
对比例1
称取0.234g的氯化亚铜溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至300℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5gN-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
对比例2
称取0.743g的六水合硝酸镍溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至500℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5gN-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
对比例3
称取0.004g的氯化铑溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至300℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5gN-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
对比例4
称取0.02g的氯化铑溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至300℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5gN-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
对比例5
称取0.027g的氯化钌溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至300℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5gN-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
对比例6
称取0.021g的氯铂酸溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至300℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5gN-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
对比例7
称取0.025g的氯化钯溶于去离子水中在常温下搅拌均匀,加入1g氧化铝常温下搅拌24h,将样品放入80℃烘箱中12h烘干后移入马弗炉中以2℃/min升温至500℃焙烧3h。取出样品放入管式炉中,通入氢氮混合气(V氢气:V氮气=1:9)流速为60mL/min,以2℃/min的速率将管式炉升温至300℃,保持3h降温后得到有机储氢材料储氢脱氢催化剂。
将催化剂应用于N-乙基咔唑的储氢加氢反应中,称取0.25g催化剂与5gN-乙基咔唑移入高压反应釜中,将氢气压力调至6Mpa,反应温度升至160℃,反应1h,等高压反应釜冷却至室温后读取高压反应釜压力变化值,算出N-乙基咔唑吸氢量,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表1。
脱氢反应中,实验时称取0.5g催化剂加入圆底烧瓶,先用氮气吹扫20min以除去烧瓶中的空气。将三口烧瓶置于油浴中,将油浴加热至280℃,加入5g全氢化N-乙基咔唑,同时打开磁力搅拌,全氢化N-乙基咔唑立即开始进行脱氢反应,记录反应生成气体体积随反应时间的变化。待反应结束后,将残留液相和生成气体的组成分别用GC-MS和气相色谱进行定性、定量分析。其结果见表2。
表1不同类型的催化剂催化加氢的活性及选择性比较
/>
表2不同类型的催化剂催化脱氢的活性及选择性比较
/>
从表1-2中可以看出,以Ni和Rh为共同负载物制备的双金属催化剂与单一贵金属催化剂和单一非贵金属催化剂相比对储氢材料N-乙基咔唑具有较好的转化率与选择性;此类催化剂在减少贵金属用量的前提下同样能达到目前拥有的贵金属催化剂对储氢材料N-乙基咔唑的催化性能。

Claims (8)

1.一种用于有机储氢材料加氢与脱氢的催化剂在有机储氢材料加氢与脱氢反应中的应用,其特征在于,所述的有机储氢材料为咔唑、N-甲基咔唑、N-乙基咔唑和N-丙基咔唑中的任意一种;所述用于有机储氢材料加氢与脱氢的催化剂的制备方法包括以下步骤:
步骤1):将非贵金属前驱体、贵金属前驱体、去离子水按比例混合,常温下搅拌均匀;
步骤2):在步骤1)所得的混合物中加入氧化物、分子筛和二维多孔材料中的至少一种作为载体搅拌;所述的氧化物为氧化铝、氧化锡、氧化铈和氧化硅中的任意一种或几种的混合物;
步骤3):将步骤2)所得的样品放入烘箱中烘干;
步骤4):将烘干后的样品放入马弗炉中焙烧;
步骤5):将焙烧后的样品进行还原反应,得到用于有机储氢材料加氢与脱氢的催化剂;
所述非贵金属前驱体中的非贵金属采用镍,所述贵金属前驱体中的金属采用铑;镍的负载量为 10~20 %,铑的负载量为 0.1~0.2%。
2.如权利要求1所述的应用,其特征在于,所述步骤1)中非贵金属前驱体为非贵金属的硝酸盐和氯化盐中的任意一种或几种的混合物;所述贵金属前驱体为贵金属的硝酸盐和氯化盐中的任意一种或几种的混合物。
3.如权利要求1所述的应用,其特征在于,所述步骤2)中的分子筛为MCM-41和SBA-15中的至少一种或两种的混合物;所述二维多孔材料为石墨烯、活性炭和氮化碳中的任意一种或几种的混合物。
4.如权利要求1所述的应用,其特征在于,所述步骤2)中的搅拌时间为24h。
5.如权利要求1所述的应用,其特征在于,所述步骤3)中的烘干温度为70-110℃;所述步骤4)中的焙烧温度为300-500℃。
6.如权利要求1所述的应用,其特征在于,所述步骤5)中的还原反应采用还原剂还原或氢气和氮气气氛焙烧还原。
7.如权利要求6所述的应用,其特征在于,所述还原剂采用硼氢化钠。
8.如权利要求1所述的应用,其特征在于,所述有机储氢材料加氢与脱氢反应中有机储氢材料与催化剂的质量比为(5-20):1;加氢反应条件为:反应温度130-160℃,氢气压力5-8Mpa;脱氢反应条件为:反应温度180-220℃,氢气压力为1Bar。
CN202010406445.5A 2020-05-14 2020-05-14 一种用于有机储氢材料加氢与脱氢非贵金属与贵金属双金属催化剂的制备方法和应用 Active CN111569901B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010406445.5A CN111569901B (zh) 2020-05-14 2020-05-14 一种用于有机储氢材料加氢与脱氢非贵金属与贵金属双金属催化剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010406445.5A CN111569901B (zh) 2020-05-14 2020-05-14 一种用于有机储氢材料加氢与脱氢非贵金属与贵金属双金属催化剂的制备方法和应用

Publications (2)

Publication Number Publication Date
CN111569901A CN111569901A (zh) 2020-08-25
CN111569901B true CN111569901B (zh) 2023-08-29

Family

ID=72117317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010406445.5A Active CN111569901B (zh) 2020-05-14 2020-05-14 一种用于有机储氢材料加氢与脱氢非贵金属与贵金属双金属催化剂的制备方法和应用

Country Status (1)

Country Link
CN (1) CN111569901B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112358509A (zh) * 2020-11-18 2021-02-12 云南电网有限责任公司电力科学研究院 金属有机配合物固态储氢材料及其制备方法
CN113753854A (zh) * 2020-12-31 2021-12-07 厦门大学 一种具有直孔结构的储氢燃料及其制备方法
CN113070078B (zh) * 2021-03-15 2023-02-28 青岛创启新能催化科技有限公司 一种掺杂有稀土元素的有机储氢介质加氢单原子催化剂及其制备方法
CN113184804A (zh) * 2021-04-02 2021-07-30 上海簇睿低碳能源技术有限公司 一种液态有机材料及其制备方法和应用
CN113546623B (zh) * 2021-07-28 2024-01-30 金宏气体股份有限公司 稀土复合有机储氢载氢催化活性物质、负载物及应用
CN113941328B (zh) * 2021-11-11 2022-12-09 苏州金宏气体股份有限公司 铂/钼脱氢催化材料、制备方法及其应用
CN114160128A (zh) * 2021-12-06 2022-03-11 苏州金宏气体股份有限公司 液体储氢用载氢催化剂、制备方法及应用
CN114308066B (zh) * 2021-12-29 2023-12-12 上海簇睿低碳能源技术有限公司 一种用于加氢脱氢的双金属催化剂及其制备方法、应用
CN114497630B (zh) * 2022-01-30 2023-11-21 北京东方红升新能源应用技术研究院有限公司 一种储氢用有机液体材料、催化储氢体系及储氢方法
CN114768858A (zh) * 2022-03-14 2022-07-22 天津科技大学 一种用于固定床反应器的含氮类有机液体储氢的非贵金属催化剂
CN114700075B (zh) * 2022-04-28 2023-05-12 陕西氢易能源科技有限公司 一种多组分催化剂的制备方法、多组分催化剂及其应用
CN114917929B (zh) * 2022-04-29 2023-03-21 北京海望氢能科技有限公司 用于有机液体储氢材料加氢与脱氢的催化剂及其制备方法和应用
CN114700084B (zh) * 2022-04-29 2022-12-13 北京海望氢能科技有限公司 用于有机储氢液体加氢与脱氢的催化剂及其制备方法和有机储氢液体加氢与脱氢的方法
CN115709078B (zh) * 2022-11-21 2023-12-19 金宏气体股份有限公司 低温液相有机储氢脱氢催化剂、制备方法及其应用
CN116803520B (zh) * 2023-06-28 2024-04-05 黑龙江省科学院石油化学研究院 同时适用于液体有机氢载体储氢与释氢的介孔SiO2负载钯钌催化剂及其制备方法
CN116606240B (zh) * 2023-07-20 2023-10-31 北京海望氢能科技有限公司 加氢反应的方法和连续式加氢反应方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051473A (ja) * 2004-08-16 2006-02-23 Toyota Central Res & Dev Lab Inc 水素吸蔵放出触媒およびそれを用いた水素吸蔵複合材料
CN107597108A (zh) * 2017-09-21 2018-01-19 西南化工研究设计院有限公司 一种四氢萘加氢制备十氢萘的催化剂及其制备方法和应用
CN108080003A (zh) * 2017-12-18 2018-05-29 安徽工业大学 用RuFe/N-CNTs催化剂催化合成9-乙基八氢咔唑的方法
CN110841630A (zh) * 2019-11-29 2020-02-28 中国科学院上海高等研究院 一种有机储氢材料加氢与脱氢催化剂及其制备方法
CN111054384A (zh) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 有机液体储氢材料脱氢的催化剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901491B2 (en) * 2008-03-31 2011-03-08 General Electric Company Hydrogen storage material and related system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051473A (ja) * 2004-08-16 2006-02-23 Toyota Central Res & Dev Lab Inc 水素吸蔵放出触媒およびそれを用いた水素吸蔵複合材料
CN107597108A (zh) * 2017-09-21 2018-01-19 西南化工研究设计院有限公司 一种四氢萘加氢制备十氢萘的催化剂及其制备方法和应用
CN108080003A (zh) * 2017-12-18 2018-05-29 安徽工业大学 用RuFe/N-CNTs催化剂催化合成9-乙基八氢咔唑的方法
CN111054384A (zh) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 有机液体储氢材料脱氢的催化剂及其制备方法
CN110841630A (zh) * 2019-11-29 2020-02-28 中国科学院上海高等研究院 一种有机储氢材料加氢与脱氢催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ni对Pt/γ-Al_2O_3催化甲基环己烷脱氢性能的影响;童凤丫等;《化工进展》;20161115;第183-184、186页 *

Also Published As

Publication number Publication date
CN111569901A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN111569901B (zh) 一种用于有机储氢材料加氢与脱氢非贵金属与贵金属双金属催化剂的制备方法和应用
CN110841630B (zh) 一种有机储氢材料加氢与脱氢催化剂及其制备方法
CN101982236B (zh) 加氢催化剂及1,4-环己烷二甲醇的制备方法
CN110302769A (zh) 一种催化剂载体、负载型催化剂及其制备方法和用途
CN114797912B (zh) 一种脱氢催化剂及其制备方法
CN111215053A (zh) 负载型单原子分散贵金属催化剂及制备方法
CN113262781B (zh) 一种金属铂催化剂及其制备方法和应用
CN102886272A (zh) 一种负载型催化剂及其制备方法和用途
CN114917929B (zh) 用于有机液体储氢材料加氢与脱氢的催化剂及其制备方法和应用
CN108620079B (zh) 加压二氧化碳重整甲烷制合成气的镍基复合催化剂
CN111725531B (zh) 一种用于氢气转运系统的高选择性铜铂合金催化剂及其制备方法
CN111013662B (zh) 一类金属氢化物增强性能的有机储氢液体加氢或脱氢催化剂及其制备方法
CN102908957B (zh) 一种费托合成方法
CN110252295A (zh) 一种以氧化铈为载体的钌基氨合成催化剂
CN112191252B (zh) 一种纳米镍颗粒分散于二氧化铈修饰的管状四氧化三钴催化剂及其制备方法与应用
CN113117689B (zh) 一种催化剂在费托合成反应中的应用
AU2020412959A1 (en) Composite catalysts for hydrogen energy storage and conversion
CN102441391B (zh) 一种钴基费托合成催化剂的制备方法
CN114308066B (zh) 一种用于加氢脱氢的双金属催化剂及其制备方法、应用
CN115138359B (zh) 一种负载型单原子协同纳米颗粒双金属催化剂及制备和应用
CN102309991B (zh) 一种钴基费托合成催化剂的制备方法
CN108654637A (zh) 一种钴基催化剂及制备方法和应用及费托合成方法
CN114768858A (zh) 一种用于固定床反应器的含氮类有机液体储氢的非贵金属催化剂
CN113952957A (zh) 镍系加氢催化剂及其制备方法和应用
CN111068662A (zh) 一种金属纳米催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant