CN111551619A - 一种磺氨生物素修饰氮化铟糊电极传感器的制备方法 - Google Patents

一种磺氨生物素修饰氮化铟糊电极传感器的制备方法 Download PDF

Info

Publication number
CN111551619A
CN111551619A CN202010272115.1A CN202010272115A CN111551619A CN 111551619 A CN111551619 A CN 111551619A CN 202010272115 A CN202010272115 A CN 202010272115A CN 111551619 A CN111551619 A CN 111551619A
Authority
CN
China
Prior art keywords
indium nitride
paste electrode
nitride paste
electrode sensor
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010272115.1A
Other languages
English (en)
Other versions
CN111551619B (zh
Inventor
李慧芝
翟玉博
赵可贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202010272115.1A priority Critical patent/CN111551619B/zh
Publication of CN111551619A publication Critical patent/CN111551619A/zh
Application granted granted Critical
Publication of CN111551619B publication Critical patent/CN111551619B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种磺氨生物素修饰氮化铟糊电极传感器的制备方法,其特征在于,采用纳米氮化铟、氧化石墨烯、1‑胺丙基‑3‑甲基咪唑溴盐、矿物油、戊醇制备得到氮化铟糊电极传感器;在采用三亚乙基四胺和碳量子点修饰氮化铟糊电极,制备得到三亚乙基四胺/量子点修饰氮化铟糊电极;然后,在反应器中,加入,磷酸盐缓冲溶液:92~96%,磺氨生物素:4~8%,溶解,将三亚乙基四胺/量子点修饰氮化铟糊电极放入溶液中,室温搅拌浸泡2h,取出电极,洗涤,干燥,得到磺氨生物素修饰氮化铟糊电极传感器。该电极传感器具有比普通的碳糊电极导电性能高,对蛋白质具有专一识别性,灵敏度高。

Description

一种磺氨生物素修饰氮化铟糊电极传感器的制备方法
技术领域
本发明涉及一种电化学传感器的制备方法,特别涉及一种磺氨生物素修饰氮化铟糊电极传感器的制备方法及应用。属于电化学分析领域。
背景技术
氮化铟是一种新型的三族氮化物材料。这种材料的引人之处在于它的优良的电子输运性能和窄的能带,有望应用于制造新型高频太拉赫兹通信的光电子器件。氮化铟纳米结构是研制相关量子器件的基础。由于氮化铟本身具有很高的背景载流子浓度,费米能级在导带之上,通过能带关系图以及相关公式拟合光致发光图谱可以得到生长的氮化铟的带隙为0.67cV,并且可以计算出相应的载流子浓度为 n = 5.4×10cm,从而找到了一种联系光致发光谱与载流子浓度两者的方法,是一类具有高容量电化学储能电极材料。石墨烯作为一类新型的超级电容器电极材料,石墨烯表现出以下众多的优势:超高的比表面积、良好的导电性能、优异的稳定的化学性能以及宽的电势窗口。单层石墨烯的容量可达21μF/cm2,但是很多情况下石墨烯都是多层叠加在一起,层与层之间的面积没有得到有效利用,其实际容量比单层石墨烯容量低,将石墨烯与其他纳米结构复合也抑制石墨烯片层的重叠。将高容量的过渡金属氮化物或导电聚合物与石墨烯进行叠层复合,一方面石墨烯被其他物质隔离开,能够减少团聚,增加电解液的流动性,另一方面,石墨烯为复合后的赝电容物质提供了电子传导的三维网络。基于石墨烯的复合材料表现出协同效应,在获得高容量的同时保持有良好的倍率性能。
碳量子点(Carbon quantum dots, CQDs)是最近发现的一类具有突出荧光性的新型碳纳米材料,由尺寸小于10 nm的准离散球形碳纳米粒子组成,是一种兼具优异水溶性、高生物相容性和低毒性的环境友好材料。研究表明出诸多优势:①CQDs具有近红外光吸收特性,可拓宽催化剂对太阳光的吸收范围;②CQDs具有上转换光致发光特性,可激发半导体形成更多光生电子空穴对;③CQDs具有较强的电子传输性能,可有效转移和存储光生电子,达到改善电荷分离效率的效果,而且光生电子与其表面的吸附O2结合,可形成超氧自由基,实现多位点催化。因而将CQDs与半导体复合,是改善导电性能的重要途径。
磺氨生物素(Sulfo-NHS-Biotin)是一款水溶性NHS-酯生物素标记试剂,适用于蛋白的可逆标记。
发明内容
本发明的目的是采用氮化铟半导体与石墨烯作为导电材料,以1-胺丙基-3-甲基咪唑溴盐作为胶粘剂制备一种氮化铟糊电极,再采用碳量子点和磺氨生物素修饰电极,提供一种磺氨生物素修饰氮化铟糊电极传感器的制备方法,并应用检测蛋白质中。
仪器与试剂
CHI660B电化学工作站(上海辰华仪器公司),实验采用三电极体系:铂丝电极为辅助电极,Ag/AgCl为参比电极(SCE),磺氨生物素修饰氮化铟糊电极传感器(GCE)为工作电极;KQ-250E型超声波清洗器(坤峰超声仪器有限公司)。
纳米氮化铟,氧化石墨烯,1-胺丙基-3-甲基咪唑溴盐,无水乙醇,氢氧化钠,矿物油,戊醇、磷酸盐缓冲溶液,水溶性碳量子点,磺氨生物素(Sulfo-NHS-Biotin),三亚乙基四胺,牛血清蛋白质(BSA),所用试剂均为分析纯,水为去离子水。
本发明的目的通过如下技术方案实现。
一种磺氨生物素修饰氮化铟糊电极传感器的制备方法,其特征在于,该方法具有以下工艺步骤:
(1)氮化铟糊电极传感器的制备:在玛瑙研钵中,按如下质量百分比加入,纳米氮化铟:48~52%,氧化石墨烯:20~24%,1-胺丙基-3-甲基咪唑溴盐:12~14%,矿物油:6~8%,戊醇:6~10%,各组分质量百分比之和为百分之百,研磨均匀,即得混合物碳糊;然后将其碳糊装入连有导线的内经为Φ4mm的玻璃管内,压实,干燥,用抛光粉打磨,抛光,去离子水洗涤,即得氮化铟糊电极传感器;
(2)三亚乙基四胺/量子点修饰氮化铟糊电极制备:在反应器中,按如下组成的质量百分浓度加入,去离子水:78~82%,三亚乙基四胺:14~18%,碳量子点:3~6%,各组分质量百分比之和为百分之百,搅拌溶解,将氮化铟糊电极放入,室温浸泡4h,温度升到45±2℃恒温反应1h,取出电极,分别用去离子水、无水乙醇洗涤,干燥,得到三亚乙基四胺/量子点修饰氮化铟糊电极;
(3)磺氨生物素修饰氮化铟糊电极传感器的制备:在反应器中,按如下组成的质量百分浓度加入,磷酸盐缓冲溶液:92~96%,磺氨生物素:4~8%,溶解,将三亚乙基四胺/量子点修饰氮化铟糊电极放入溶液中,室温搅拌浸泡2h,取出电极,分别用磷酸盐缓冲溶液、无水乙醇洗涤,干燥,得到磺氨生物素修饰氮化铟糊电极传感器。
步骤(1)所述的矿物油与为生物级矿物油。
步骤(2)所述的碳量子点为水溶性的碳量子点。
步骤(3)所述的磷酸盐缓冲溶液的pH在7.0~7.2之间。
磺氨生物素修饰氮化铟糊电极传感器测定蛋白质步骤如下:
(1)标准溶液配制:配制一组包括空白标样在内的不同浓度的牛血清蛋白质标准溶液,底液为pH7.2的磷酸盐缓冲溶液;
(2)将Ag/AgCl为参比电极,铂丝电极为辅助电极,本发明制备的磺氨生物素修饰氮化铟糊电极为工作电极组成三电极系统, 连接CHI660B电化学工作站,底液为pH7.2的磷酸盐缓冲溶液,在-1.2~0.6V的电位范围,以25mV/s循环扫描18min,取出洗涤。然后采用计时电流法扫描该溶液,工作电压为-0.65V,取不同浓度下蛋白质的峰电流值与蛋白质浓度做工作曲线;
(3)蛋白质的检测:用待测样品处理成待测液代替步骤(1)中的蛋白质标准溶液,按照步骤(2)的方法进行检测,根据响应电流降低的差值△I和工作曲线,得到待测样品中蛋白质的含量;
本发明的优点及效果是:
(1)本发明制备磺氨生物素修饰氮化铟糊电极传感器,在糊电极中加入氮化铟,以1-胺丙基-3-甲基咪唑溴盐作为胶粘剂,将氮化铟与氧化石墨烯混合制备的糊电极比普通的碳糊电极导电性能提高2~4倍,再采用磺氨生物素修饰氮化铟糊电极制备的,电化学窗口宽、对蛋白质具有专一的选择性,制备方法简单、成本低、表面易更新、残余电流小等优点;
(2)本发明制备磺氨生物素修饰氮化铟糊电极传感器对蛋白质表现出很高选择性和灵敏性,响应电流与蛋白质的浓度1.0×10-7~5.0×10-4mol/L范围内呈良好的线性关系,相关系数R=0.9982,检测限为7.45×10-8mol/ L,回收率在95.26~104.12%之间;
(3)本发明制备磺氨生物素修饰氮化铟糊电极传感器在制备的过程中不使用有毒的试剂,环保绿色;
(4)将本发明制备磺氨生物素修饰氮化铟糊电极传感器成功用于药品、生物、食品等样品中蛋白质的检测中,解决了蛋白质检测困难。
具体实施方式
实施例1
(1)氮化铟糊电极传感器的制备:在玛瑙研钵中,分别加入,纳米氮化铟:50g,氧化石墨烯:22g,1-胺丙基-3-甲基咪唑溴盐:13g,矿物油:6g,戊醇:10 mL,研磨均匀,即得混合物碳糊;然后将其碳糊装入连有导线的内经为Φ4mm的玻璃管内,压实,干燥,用抛光粉打磨,抛光,去离子水洗涤,即得氮化铟糊电极传感器;
(2)三亚乙基四胺/量子点修饰氮化铟糊电极制备:在反应器中,分别加入,去离子水:80 mL,三亚乙基四胺:16g,碳量子点:4g,搅拌溶解,将氮化铟糊电极放入,室温浸泡4h,温度升到45±2℃恒温反应1h,取出电极,分别用去离子水、无水乙醇洗涤,干燥,得到三亚乙基四胺/量子点修饰氮化铟糊电极;
(3)磺氨生物素修饰氮化铟糊电极传感器的制备:在反应器中,分别加入,磷酸盐缓冲溶液:95 mL,磺氨生物素:5g,搅拌溶解,将三亚乙基四胺/量子点修饰氮化铟糊电极放入溶液中,室温搅拌浸泡2h,取出电极,分别用磷酸盐缓冲溶液、无水乙醇洗涤,干燥,得到磺氨生物素修饰氮化铟糊电极传感器。
实施例2
(1)氮化铟糊电极传感器的制备:在玛瑙研钵中,分别加入,纳米氮化铟:27g,氧化石墨烯:10g,1-胺丙基-3-甲基咪唑溴盐:6g,矿物油:3g,戊醇:6 mL,研磨均匀,即得混合物碳糊;然后将其碳糊装入连有导线的内经为Φ4mm的玻璃管内,压实,干燥,用抛光粉打磨,抛光,去离子水洗涤,即得氮化铟糊电极传感器;
(2)三亚乙基四胺/量子点修饰氮化铟糊电极制备:在反应器中,分别加入,去离子水:39 mL,三亚乙基四胺:8.5g,碳量子点:2.5g,搅拌溶解,将氮化铟糊电极放入,室温浸泡4h,温度升到45±2℃恒温反应1h,取出电极,分别用去离子水、无水乙醇洗涤,干燥,得到三亚乙基四胺/量子点修饰氮化铟糊电极;
(3)磺氨生物素修饰氮化铟糊电极传感器的制备:在反应器中,分别加入,磷酸盐缓冲溶液:46mL,磺氨生物素:4g,搅拌溶解,将三亚乙基四胺/量子点修饰氮化铟糊电极放入溶液中,室温搅拌浸泡2h,取出电极,分别用磷酸盐缓冲溶液、无水乙醇洗涤,干燥,得到磺氨生物素修饰氮化铟糊电极传感器。
实施例3
(1)氮化铟糊电极传感器的制备:在玛瑙研钵中,分别加入,纳米氮化铟:48g,氧化石墨烯:24g,1-胺丙基-3-甲基咪唑溴盐:14g,矿物油:8g,戊醇:8 mL,研磨均匀,即得混合物碳糊;然后将其碳糊装入连有导线的内经为Φ4mm的玻璃管内,压实,干燥,用抛光粉打磨,抛光,去离子水洗涤,即得氮化铟糊电极传感器;
(2)三亚乙基四胺/量子点修饰氮化铟糊电极制备:在反应器中,分别加入,去离子水:82 mL,三亚乙基四胺:15g,碳量子点:3g,搅拌溶解,将氮化铟糊电极放入,室温浸泡4h,温度升到45±2℃恒温反应1h,取出电极,分别用去离子水、无水乙醇洗涤,干燥,得到三亚乙基四胺/量子点修饰氮化铟糊电极;
(3)磺氨生物素修饰氮化铟糊电极传感器的制备:在反应器中,分别加入,磷酸盐缓冲溶液:48mL,磺氨生物素:2g,搅拌溶解,将三亚乙基四胺/量子点修饰氮化铟糊电极放入溶液中,室温搅拌浸泡2h,取出电极,分别用磷酸盐缓冲溶液、无水乙醇洗涤,干燥,得到磺氨生物素修饰氮化铟糊电极传感器。
实施例4
(1)氮化铟糊电极传感器的制备:在玛瑙研钵中,分别加入,纳米氮化铟:51g,氧化石墨烯:23g,1-胺丙基-3-甲基咪唑溴盐:12g,矿物油:7g,戊醇:11 mL,研磨均匀,即得混合物碳糊;然后将其碳糊装入连有导线的内经为Φ4mm的玻璃管内,压实,干燥,用抛光粉打磨,抛光,去离子水洗涤,即得氮化铟糊电极传感器;
(2)三亚乙基四胺/量子点修饰氮化铟糊电极制备:在反应器中,分别加入,去离子水:40 mL,三亚乙基四胺:7g,碳量子点:3g,搅拌溶解,将氮化铟糊电极放入,室温浸泡4h,温度升到45±2℃恒温反应1h,取出电极,分别用去离子水、无水乙醇洗涤,干燥,得到三亚乙基四胺/量子点修饰氮化铟糊电极;
(3)磺氨生物素修饰氮化铟糊电极传感器的制备:在反应器中,分别加入,磷酸盐缓冲溶液:46.5mL,磺氨生物素:3.5g,搅拌溶解,将三亚乙基四胺/量子点修饰氮化铟糊电极放入溶液中,室温搅拌浸泡2h,取出电极,分别用磷酸盐缓冲溶液、无水乙醇洗涤,干燥,得到磺氨生物素修饰氮化铟糊电极传感器。
本发明制备的磺氨生物素修饰氮化铟糊电极传感器成功用于药品、食品、生物等样品中蛋白质的检测中,回收率在95.26~104.12%之间,因此本发明制备的磺氨生物素修饰氮化铟糊电极传感器可广泛应用于生物医药、食品、生物检测等相关领域,解决了蛋白质检测的困难。

Claims (4)

1.一种磺氨生物素修饰氮化铟糊电极传感器的制备方法,其特征在于,该方法具有以下工艺步骤:
(1)氮化铟糊电极传感器的制备:在玛瑙研钵中,按如下质量百分比加入,纳米氮化铟:48~52%,氧化石墨烯:20~24%,1-胺丙基-3-甲基咪唑溴盐:12~14%,矿物油:6~8%,戊醇:6~10%,各组分质量百分比之和为百分之百,研磨均匀,即得混合物碳糊;然后将其碳糊装入连有导线的内经为Φ4mm的玻璃管内,压实,干燥,用抛光粉打磨,抛光,去离子水洗涤,即得氮化铟糊电极传感器;
(2)三亚乙基四胺/量子点修饰氮化铟糊电极制备:在反应器中,按如下组成的质量百分浓度加入,去离子水:78~82%,三亚乙基四胺:14~18%,碳量子点:3~6%,各组分质量百分比之和为百分之百,搅拌溶解,将氮化铟糊电极放入,室温浸泡4h,温度升到45±2℃恒温反应1h,取出电极,分别用去离子水、无水乙醇洗涤,干燥,得到三亚乙基四胺/量子点修饰氮化铟糊电极;
(3)磺氨生物素修饰氮化铟糊电极传感器的制备:在反应器中,按如下组成的质量百分浓度加入,磷酸盐缓冲溶液:92~96%,磺氨生物素:4~8%,溶解,将三亚乙基四胺/量子点修饰氮化铟糊电极放入溶液中,室温搅拌浸泡2h,取出电极,分别用磷酸盐缓冲溶液、无水乙醇洗涤,干燥,得到磺氨生物素修饰氮化铟糊电极传感器。
2.根据权利要求1所述的一种磺氨生物素修饰氮化铟糊电极传感器的制备方法,其特征在于,步骤(1)所述的矿物油与为生物级矿物油。
3.根据权利要求1所述的一种磺氨生物素修饰氮化铟糊电极传感器的制备方法,其特征在于,步骤(2)所述的碳量子点为水溶性的碳量子点。
4.根据权利要求1所述的一种磺氨生物素修饰氮化铟糊电极传感器的制备方法,其特征在于,步骤(3)所述的磷酸盐缓冲溶液的pH在7.0~7.2之间。
CN202010272115.1A 2020-04-09 2020-04-09 一种磺氨生物素修饰氮化铟糊电极传感器的制备方法 Expired - Fee Related CN111551619B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010272115.1A CN111551619B (zh) 2020-04-09 2020-04-09 一种磺氨生物素修饰氮化铟糊电极传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010272115.1A CN111551619B (zh) 2020-04-09 2020-04-09 一种磺氨生物素修饰氮化铟糊电极传感器的制备方法

Publications (2)

Publication Number Publication Date
CN111551619A true CN111551619A (zh) 2020-08-18
CN111551619B CN111551619B (zh) 2022-05-10

Family

ID=71998478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010272115.1A Expired - Fee Related CN111551619B (zh) 2020-04-09 2020-04-09 一种磺氨生物素修饰氮化铟糊电极传感器的制备方法

Country Status (1)

Country Link
CN (1) CN111551619B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025326A (zh) * 2021-03-11 2021-06-25 齐鲁工业大学 一种宽范围寿命可调磷光碳化聚合物点、制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424780A (zh) * 2015-11-26 2016-03-23 北京代尔夫特电子科技有限公司 一种氮化镓传感器、制备方法和多传感器系统
CN108414600A (zh) * 2018-05-14 2018-08-17 济南大学 一种透明质酸酶修饰氮化钒糊电极传感器的制备方法
CN108663422A (zh) * 2018-05-14 2018-10-16 济南大学 胆固醇氧化酶修饰TiB2复合糊电极传感器的制备方法
CN108896636A (zh) * 2018-05-14 2018-11-27 济南大学 一种超氧化物歧化酶修饰氮化钒糊电极传感器的制备
CN110297020A (zh) * 2019-06-28 2019-10-01 济南大学 一种钙掺杂氮化硅石墨烯糊电极传感器的制备方法
CN110836920A (zh) * 2019-11-20 2020-02-25 山西大学 一种铜纳米线-二硫化钼-石墨烯复合物及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424780A (zh) * 2015-11-26 2016-03-23 北京代尔夫特电子科技有限公司 一种氮化镓传感器、制备方法和多传感器系统
CN108414600A (zh) * 2018-05-14 2018-08-17 济南大学 一种透明质酸酶修饰氮化钒糊电极传感器的制备方法
CN108663422A (zh) * 2018-05-14 2018-10-16 济南大学 胆固醇氧化酶修饰TiB2复合糊电极传感器的制备方法
CN108896636A (zh) * 2018-05-14 2018-11-27 济南大学 一种超氧化物歧化酶修饰氮化钒糊电极传感器的制备
CN110297020A (zh) * 2019-06-28 2019-10-01 济南大学 一种钙掺杂氮化硅石墨烯糊电极传感器的制备方法
CN110836920A (zh) * 2019-11-20 2020-02-25 山西大学 一种铜纳米线-二硫化钼-石墨烯复合物及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LEQIAN HU 等: "Fabrication of high-intensity electron transfer electrochemiluminescence interface for Hg2+ detection by using reduced graphene oxide-Au nanoparticles nanocomposites and CdS quantum dots", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 *
MAÍSA AZEVEDO BELUOMINI 等: "Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: A review", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 *
董鹏飞 等: "Keggin型磷钨酸盐修饰碳糊电极传感多巴胺的研究", 《电化学》 *
许丽莉: "纳米材料新型生物传感器在生物样品检测中的应用研究", 《中国优秀博硕士学位论文全文数据库(硕士)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025326A (zh) * 2021-03-11 2021-06-25 齐鲁工业大学 一种宽范围寿命可调磷光碳化聚合物点、制备方法及应用

Also Published As

Publication number Publication date
CN111551619B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
Liu et al. In situ synthesis of ceria nanoparticles in the ordered mesoporous carbon as a novel electrochemical sensor for the determination of hydrazine
CN112240898B (zh) 一种光电化学适配体传感器及其制备方法和应用
CN110346438B (zh) 一种基于PbS/Co3O4复合物信号减弱型光电化学免疫传感器的制备方法
Reddy et al. ZnO and ZnO/polyglycine modified carbon paste electrode for electrochemical investigation of dopamine
CN106525942B (zh) 一种以时间为读取信号的光致电传感器的构建方法
CN108226252B (zh) 一种检测乳腺癌的电流型免疫传感器的制备方法及应用
CN113588751B (zh) MXene@CoAl-LDH纳米复合膜修饰电极及其制备方法和检测农药的应用
Sun et al. Silica‐Templated Metal Organic Framework‐Derived Hierarchically Porous Cobalt Oxide in Nitrogen‐Doped Carbon Nanomaterials for Electrochemical Glucose Sensing
CN111044590A (zh) 一种CuNi-MOF纳米材料修饰电极及其应用
CN111551619B (zh) 一种磺氨生物素修饰氮化铟糊电极传感器的制备方法
CN110940716B (zh) 一种纳米复合电极材料及制备方法和应用
Navaee et al. N-hydroxysuccinimide-mediated photoelectrooxidation of aliphatic alcohols based on cadmium telluride nanoparticles decorated graphene nanosheets
CN113429430B (zh) 一种卟啉基共价有机框架物及其制备方法和应用方法
CN105004712A (zh) 一种用于啶虫脒检测的光电化学传感器的构建方法和检测方法
CN112730559B (zh) 检测pcb72的光电适配体传感器的制备方法及应用
CN110297020B (zh) 一种钙掺杂氮化硅石墨烯糊电极传感器的制备方法
CN110887887A (zh) 基于电化学葡萄糖传感器的淀粉体外快速消化检测仪及其制备方法和应用
CN109187507B (zh) 一种用于检测双酚a的电致化学发光传感器及其制备方法和应用
CN114544739B (zh) 一种MnO2/N掺石墨烯电化学传感器制备方法及锌离子检测应用
CN108132287B (zh) 一种基于聚吡咯纳米片复合材料的电流型免疫传感器的制备方法及应用
CN111830108B (zh) 一种基于NiO/PbS/Au的肌氨酸光电化学自供能传感器的构建方法
CN111422929B (zh) 一种棒状二硫化镍-二硫化钼纳米复合物的制备方法及其应用
CN102534648B (zh) 利用超细3C-SiC纳米晶表面自催化效应电化学分解水制氢的方法
Huang et al. Fabrication of new magnetic nanoparticles (Fe3O4) grafted multiwall carbon nanotubes and heterocyclic compound modified electrode for electrochemical sensor
Mohammad Beigia et al. Electrochemiluminescence sensors based on lanthanide nanomaterials as modifiers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220510

CF01 Termination of patent right due to non-payment of annual fee