CN111548147A - 一种低温区低温漂的微波介质陶瓷 - Google Patents

一种低温区低温漂的微波介质陶瓷 Download PDF

Info

Publication number
CN111548147A
CN111548147A CN202010300036.7A CN202010300036A CN111548147A CN 111548147 A CN111548147 A CN 111548147A CN 202010300036 A CN202010300036 A CN 202010300036A CN 111548147 A CN111548147 A CN 111548147A
Authority
CN
China
Prior art keywords
low temperature
hours
dielectric ceramic
ball milling
microwave dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010300036.7A
Other languages
English (en)
Inventor
李玲霞
岳涛
杜明昆
于仕辉
倪立争
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202010300036.7A priority Critical patent/CN111548147A/zh
Publication of CN111548147A publication Critical patent/CN111548147A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种低温度区低温漂的微波介质陶瓷,先按化学计量式制备MgTiO3、Ca0.8Sr0.2TiO3和LaAlO3,再按(1‑x)[(1‑y)MgTiO3‑yCa0.8Sr0.2TiO3]‑xLaAlO3,其中x=0.01~0.02,y=0.06~0.07配料,经过烘干、过筛、造粒后,压力制成生坯,生坯于1200~1300℃烧结,制成MgTiO3基低温度区低温漂的微波介质陶瓷。本发明在低温区(‑40℃‑25℃)下的谐振频率偏差Δf<±0.6MHz,具有高的品质因数(Q×f:40,103~45,356GHz),同时兼具适中的介电常数(εr~22.0031~22.5808)。

Description

一种低温区低温漂的微波介质陶瓷
技术领域
本发明属于一种以成分为特征的陶瓷组合物,具体涉及一种低温度区间(-40℃-25℃)低温漂(谐振频率偏差Δf<±0.6MHz)微波介质陶瓷的制备方法。
背景技术
随着5G时代的到来,物联网、卫星通信等迅速发展,人们对于移动设备的依赖程度也越来越高,5G基站受限于大规模天线集成化的要求,其核心元件滤波器需要更加小型化和集成化,传统的金属腔体滤波器已经无法满足5G需求,更易小型化的陶瓷介质滤波器有望成为主流解决方案。
在一些特定场景中,移动通信设备等通常需要长期工作在较低温度下。北欧国家常年气温较低,全年最低温度接近-40℃而且北欧拥有非常漫长的冬季,部分城市冬季平均温度-10℃左右,如何保障滤波器等关键器件在低温下能够稳定工作非常重要。陶瓷粉体对滤波器性能具有重要影响,其低温区谐振频率偏差小使得滤波器在不同温度下得以稳定工作。
由于基站天面承载数量与重量的增加,对滤波器提出了轻量化的要求;通常高介电常数可以满足滤波器尺寸小型化设计,但介电常数并不是越高越好,过高的介电常数会影响滤波器的传输损失,因此需要选用具有适当介电常数、谐振频率偏差小的微波介质陶瓷材料。
钛酸镁(MgTiO3)陶瓷作为一种传统的微波介质材料,具有低介电常数、较高品质因数、价格低廉等特点。在众多陶瓷体系中,钛酸镁密度较小,相比于金属腔体滤波器,使用钛酸镁材料制成的陶瓷介质滤波器重量大大减小,但钛酸镁介电常数较低,不利于滤波器的小型化,适当提升其介电常数,将有利于满足5G基站对小型化的要求。同时,钛酸镁低温区谐振频率偏差较大,影响了工作稳定性,因此通过优化获得低温区(-40℃-25℃)低温漂(谐振频率偏差Δf<±0.6MHz)温度稳定性良好、具有高品质因数、适中介电常数的陶瓷具有重大意义。
发明内容
发明的目的,是克服现有MgTiO3微波介质陶瓷谐振频率偏差过大的缺点,同时适当提高介电常数以满足小型化的要求。添加钙钛矿型固溶体Ca0.8Sr0.2TiO3的MgTiO3微波介质陶瓷其居里温度的峰宽较大、峰强较高,居里峰位置处在工作范围内,造成谐振频率温度系数较大。通过添加钙钛矿型固溶体LaAlO3,将居里峰的位置移动至远离工作范围温度,从而使工作范围温度谐振频率随温度的变化曲线更平缓,从而达到降低谐振频率偏差的目的。获得的(1-x)[(1-y)MgTiO3-yCa0.8Sr0.2TiO3]-xLaAlO3体系微波介质陶瓷,其中x=0.01~0.02,y=0.06~0.07,调控体系结构稳定性,在低温区(-40℃-25℃)低温漂(谐振频率偏差Δf<±0.6MHz)温度稳定性良好、具有高的品质因数(Q×f:40,103~45,356GHz),同时兼具适中的介电常数(εr~22.0031~22.5808),提供一种很有前景的温度稳定型的高Q值微波介质陶瓷。
本发明通过如下技术方案予以实现。
一种低温度区(-40℃-25℃)低温漂(谐振频率偏差Δf<±0.6MHz)微波介质陶瓷,合成物表达式为(1-x)[(1-y)MgTiO3-yCa0.8Sr0.2TiO3]-xLaAlO3体系微波介质陶瓷,其中x=0.01~0.02,y=0.06~0.07。
上述低温区低温漂中温烧结温度稳定型高Q值微波介质陶瓷的制备方法,具有如下步骤:
(1)将化学原料MgO、TiO2按化学计量式MgTiO3进行配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨12小时;
(2)将步骤(1)球磨后的原料放入红外干燥箱中于100℃烘干,然后过40目筛;
(3)将步骤(2)过筛后的粉料于900℃预烧,保温4小时;
(4)将化学原料CaCO3、SrCO3、TiO2按化学计量式Ca0.8Sr0.2TiO3进行配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨12小时;
(5)将步骤(4)球磨后的原料放入红外干燥箱中于100℃烘干,然后过40目筛;
(6)将步骤(5)过筛后的粉料于1100℃预烧,保温4小时;
(7)将化学原料La2O、Al2O3按化学计量式LaAlO3进行配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨12小时;
(8)将步骤(7)球磨后的原料于100℃烘干,然后过40目筛;
(9)将步骤(8)过筛后的粉料于1250℃预烧,保温4小时;
(10)将步骤(3)、步骤(6)、步骤(9)得到的粉料按照(1-x)[(1-y)MgTiO3-yCa0.8Sr0.2TiO3]-xLaAlO3,其中x=0.01~0.02,y=0.06~0.07的摩尔比配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨1小时;
(11)将步骤(10)球磨后的原料于100℃烘干,然后过40目筛;
(12)将步骤(11)过筛后的粉料,外加8wt%石蜡作为粘结剂,过80目筛进行造粒;
(13)将步骤(12)造粒后的粉料用粉末压片机以4MPa的压力制成生坯;
(14)将步骤(13)的生坯于1200℃~1300℃烧结,保温4小时,制成MgTiO3基低温区低温漂的微波介质陶瓷。
所述步骤(1)(4)(7)(10)采用行星式球磨机进行球磨,球磨机转速为400转/分。
所述步骤(13)的生坯直径为10mm,厚度为5mm。
本发明添加使用Ca0.8Sr0.2TiO3、LaAlO3相互调节,使得MgTiO3基微波介质陶瓷在低温区(-40℃-25℃)下的谐振频率偏差Δf<±0.6M,Hz具有高的品质因数(Q×f:40,103~45,356GHz),同时兼具适中的介电常数(εr~22.0031~22.5808),提供了一种很有前景的温度稳定型的高Q值微波介质陶瓷。
具体实施方式
下面通过具体实施例对本发明作进一步描述。
实施例1
(1)将化学原料MgO、TiO2按化学计量式MgTiO3进行配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨12小时;
(2)将步骤(1)球磨后的原料放入红外干燥箱中于100℃烘干,然后过40目筛;
(3)将步骤(2)过筛后的粉料放入中温炉中,于900℃预烧,保温4小时;
(4)将化学原料CaCO3、SrCO3、TiO2按化学计量式Ca0.8Sr0.2TiO3进行配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨12小时;
(5)将步骤(4)球磨后的原料放入红外干燥箱中于100℃烘干,然后过40目筛;
(6)将步骤(5)过筛后的粉料放入中温炉中,于1100℃预烧,保温4小时;
(7)将化学原料La2O、Al2O3按化学计量式LaAlO3进行配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨12小时;
(8)将步骤(7)球磨后的原料放入红外干燥箱中于100℃烘干,然后过40目筛;
(9)将步骤(8)过筛后的粉料放入中温炉中,于1250℃预烧,保温4小时;
(10)将步骤(3)、步骤(6)、步骤(9)得到的粉料按照(1-x)[(1-y)MgTiO3-yCa0.8Sr0.2TiO3]-xLaAlO3,其中x=0.015,y=0.07的摩尔比91.605:0.06895:0.015配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨1小时;
(11)将步骤(10)球磨后的原料放入干燥箱中,于100℃烘干,然后过40目筛;
(12)将步骤(11)过筛后的粉料,外加8wt%石蜡作为粘结剂,过80目筛进行造粒;
(13)将步骤(12)过筛后的粉料用粉末压片机以4MPa的压力制成生坯;
(14)将步骤(13)的生坯于1250℃烧结,保温4小时,制成MgTiO3基低温区低温漂的微波介质陶瓷。
所述步骤(1)(4)(7)(10)采用行星式球磨机进行球磨,球磨机转速为400转/分。
所述步骤(13)的生坯直径为10mm,厚度为5mm。
实施例2
(1)将化学原料MgO、TiO2按化学计量式MgTiO3进行配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨12小时;
(2)将步骤(1)球磨后的原料放入红外干燥箱中于100℃烘干,然后过40目筛;
(3)将步骤(2)过筛后的粉料放入中温炉中,于900℃预烧,保温4小时;
(4)将化学原料CaCO3、SrCO3、TiO2按化学计量式Ca0.8Sr0.2TiO3进行配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨12小时;
(5)将步骤(4)球磨后的原料放入红外干燥箱中于100℃烘干,然后过40目筛;
(6)将步骤(5)过筛后的粉料放入中温炉中,于1100℃预烧,保温4小时;
(7)将化学原料La2O、Al2O3按化学计量式LaAlO3进行配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨12小时;
(8)将步骤(7)球磨后的原料放入红外干燥箱中于100℃烘干,然后过40目筛;
(9)将步骤(8)过筛后的粉料放入中温炉中,于1250℃预烧,保温4小时;
(10)将步骤(3)、步骤(6)、步骤(9)得到的粉料按照(1-x)[(1-y)MgTiO3-yCa0.8Sr0.2TiO3]-xLaAlO3,其中x=0.01,y=0.06的摩尔比93.06:0.0594:0.01配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨1小时;
(11)将步骤(10)球磨后的原料放入干燥箱中,于100℃烘干,然后过40目筛;
(12)将步骤(11)过筛后的粉料,外加8wt%石蜡作为粘结剂,过80目筛进行造粒;
(13)将步骤(12)过筛后的粉料用粉末压片机以4MPa的压力制成生坯;
(14)将步骤(13)的生坯于1250℃烧结,保温4小时,制成MgTiO3基低温区低温漂的微波介质陶瓷。
所述步骤(1)(4)(7)(10)采用行星式球磨机进行球磨,球磨机转速为400转/分。
所述步骤(13)的生坯直径为10mm,厚度为5mm。
实施例3~6
实施例3~6与上述实施例除了组分含量之外,其余制备方法完全相同于实施例1~2。
上述具体实施例的主要工艺参数及其介电性能的测试结果详见表1。
表1
Figure BDA0002453649890000041
Figure BDA0002453649890000051
本发明提供的谐振频率温度系数近零的MgTiO3基微波介质陶瓷(1-x)[(1-y)MgTiO3-yCa0.8Sr0.2TiO3]-xLaAlO3,其中x=0.01~0.02,y=0.06~0.07,低温区(-40℃-25℃)低温漂(谐振频率偏差Δf<±0.6MHz)温度稳定性良好,具有高品质因数,同时兼具适中的介电常数,微波介电性能优异,最佳配方和性能如下
(1-x)[(1-y)MgTiO3-yCa0.8Sr0.2TiO3]-xLaAlO3,x=0.015,y=0.07;
介电常数:22.5808;
品质因数:41,326GHz;
测试频率:8.117GHz;
谐振频率偏差:-0.065MHz;
本发明并不局限于上述实施例,很多细节的变化是可能的,但这并不因此违背本发明的范围和精神。

Claims (3)

1.一种低温区低温漂的微波介质陶瓷,合成物表达式为(1-x)[(1-y)MgTiO3-yCa0.8Sr0.2TiO3]-xLaAlO3体系微波介质陶瓷,其中x=0.01~0.02,y=0.06~0.07。
上述低温区低温漂微波介质陶瓷的制备方法,具有如下步骤:
(1)将化学原料MgO、TiO2按化学计量式MgTiO3进行配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨12小时;
(2)将步骤(1)球磨后的原料放入红外干燥箱中于100℃烘干,然后过40目筛;
(3)将步骤(2)过筛后的粉料于900℃预烧,保温4小时;
(4)将化学原料CaCO3、SrCO3、TiO2按化学计量式Ca0.8Sr0.2TiO3进行配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨12小时;
(5)将步骤(4)球磨后的原料放入红外干燥箱中于100℃烘干,然后过40目筛;
(6)将步骤(5)过筛后的粉料于1100℃预烧,保温4小时;
(7)将化学原料La2O、Al2O3按化学计量式LaAlO3进行配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨12小时;
(8)将步骤(7)球磨后的原料于100℃烘干,然后过40目筛;
(9)将步骤(8)过筛后的粉料于1250℃预烧,保温4小时;
(10)将步骤(3)、步骤(6)、步骤(9)得到的粉料按照(1-x)[(1-y)MgTiO3-yCa0.8Sr0.2TiO3]-xLaAlO3,其中x=0.01~0.02,y=0.06~0.07的摩尔比配料,放入聚酯球磨罐中,加入去离子水和锆球后,球磨1小时;
(11)将步骤(10)球磨后的原料于100℃烘干,然后过40目筛;
(12)将步骤(11)过筛后的粉料,外加8wt%石蜡作为粘结剂,过80目筛进行造粒;
(13)将步骤(12)造粒后的粉料用粉末压片机以4MPa的压力制成生坯;
(14)将步骤(13)的生坯于1200℃~1300℃烧结,保温4小时,制成MgTiO3基低温区即-40℃~25℃、低温漂即谐振频率偏差Δf<±0.6MHz的微波介质陶瓷。
2.根据权利要求1所述的一种低温区低温漂的微波介质陶瓷,其特征在于,所述步骤(1)、(4)、(7)、(10)采用行星式球磨机进行球磨,球磨机转速为400转/分。
3.根据权利要求1所述的一种低温区低温漂的微波介质陶瓷,其特征在于,所述步骤(13)的生坯直径为10mm,厚度为5mm。
CN202010300036.7A 2020-04-16 2020-04-16 一种低温区低温漂的微波介质陶瓷 Pending CN111548147A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010300036.7A CN111548147A (zh) 2020-04-16 2020-04-16 一种低温区低温漂的微波介质陶瓷

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010300036.7A CN111548147A (zh) 2020-04-16 2020-04-16 一种低温区低温漂的微波介质陶瓷

Publications (1)

Publication Number Publication Date
CN111548147A true CN111548147A (zh) 2020-08-18

Family

ID=71997655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010300036.7A Pending CN111548147A (zh) 2020-04-16 2020-04-16 一种低温区低温漂的微波介质陶瓷

Country Status (1)

Country Link
CN (1) CN111548147A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890786A (zh) * 2022-04-18 2022-08-12 浙江钛迩赛新材料有限公司 一种近零温漂5g陶瓷滤波器材料及其制备方法
CN114933474A (zh) * 2022-05-02 2022-08-23 西北工业大学 一种具有高品质因数的低介复相微波介质陶瓷及制备方法
CN116396067A (zh) * 2023-06-08 2023-07-07 常熟理工学院 一种近零温漂的黑滑石矿质微波介质陶瓷材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242213A (en) * 1978-04-19 1980-12-30 Murata Manufacturing Co., Ltd. Dielectric ceramic compositions based on magnesium, calcium and rare earth metal titanates
CN104944939A (zh) * 2015-06-26 2015-09-30 天津大学 一种温度稳定型中温烧结微波介质陶瓷及其制备方法
CN104961453A (zh) * 2015-06-26 2015-10-07 天津大学 一种温度稳定型低损耗微波介质陶瓷及其制备方法
CN110143814A (zh) * 2019-06-27 2019-08-20 无锡鑫圣慧龙纳米陶瓷技术有限公司 一种中介温度稳定型微波介质陶瓷及其制备方法
CN110156458A (zh) * 2019-06-28 2019-08-23 南京喜博通讯技术有限公司 一种小型化低损耗微波介质材料及制备方法
CN110256066A (zh) * 2019-04-30 2019-09-20 天津大学 一种频率温度特性优异的中温烧结微波介质材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242213A (en) * 1978-04-19 1980-12-30 Murata Manufacturing Co., Ltd. Dielectric ceramic compositions based on magnesium, calcium and rare earth metal titanates
CN104944939A (zh) * 2015-06-26 2015-09-30 天津大学 一种温度稳定型中温烧结微波介质陶瓷及其制备方法
CN104961453A (zh) * 2015-06-26 2015-10-07 天津大学 一种温度稳定型低损耗微波介质陶瓷及其制备方法
CN110256066A (zh) * 2019-04-30 2019-09-20 天津大学 一种频率温度特性优异的中温烧结微波介质材料
CN110143814A (zh) * 2019-06-27 2019-08-20 无锡鑫圣慧龙纳米陶瓷技术有限公司 一种中介温度稳定型微波介质陶瓷及其制备方法
CN110156458A (zh) * 2019-06-28 2019-08-23 南京喜博通讯技术有限公司 一种小型化低损耗微波介质材料及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHUNG-LONG PAN ET AL.: "Characterization and dielectric behavior of a new dielectric ceramics MgTiO3-Ca0.8Sr0.2TiO3 at microwave frequencies", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
JHIH-YONG CHEN ET AL.: "A new low-loss microwave dielectric using (Ca0.8Sr0.2)TiO3-doped MgTiO3 ceramics", 《MATERIALS LETTERS》 *
LINGXIA LI ET AL.: "Influence of LaAlO3 additive to MgTiO3-CaTiO3 ceramics on sinteringbehavior and microwave dielectric properties", 《MATERIALS LETTERS》 *
ZHENPENG XU ET AL.: "Microstructure and microwave dielectric characteristics of magnesium fluoride additive to MgTiO3-(Ca0.8Sr0.2)TiO3 ceramics", 《MATERIALS LETTERS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890786A (zh) * 2022-04-18 2022-08-12 浙江钛迩赛新材料有限公司 一种近零温漂5g陶瓷滤波器材料及其制备方法
CN114933474A (zh) * 2022-05-02 2022-08-23 西北工业大学 一种具有高品质因数的低介复相微波介质陶瓷及制备方法
CN116396067A (zh) * 2023-06-08 2023-07-07 常熟理工学院 一种近零温漂的黑滑石矿质微波介质陶瓷材料及其制备方法
CN116396067B (zh) * 2023-06-08 2023-09-22 常熟理工学院 一种近零温漂的黑滑石矿质微波介质陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
CN111548147A (zh) 一种低温区低温漂的微波介质陶瓷
CN103601487A (zh) 一种(SrCa)TiO3-LaAlO3基微波介质陶瓷材料及其制备方法
CN110092655B (zh) 一种钡钐钛系低损耗微波介质陶瓷及其制备方法
CN111995383B (zh) Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN108358633B (zh) 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN103864414A (zh) 一种低介电常数的微波介质陶瓷及其制备方法
CN112851346B (zh) 超低损耗铌酸锆镁体系微波介质陶瓷材料及制备方法
CN105254293A (zh) 一种微波介质陶瓷材料及其制备方法
CN110790576A (zh) 一种微波陶瓷粉体材料及其制备方法
CN102976751B (zh) 低温烧结微波介质陶瓷材料及其制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN113896530B (zh) 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法
CN111320473B (zh) 一种低烧微波介质陶瓷材料及其制备方法
CN102491744A (zh) 一种低损耗微波介质陶瓷及其制备方法
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN104944937A (zh) 一种ZnAl2O4/Li4Ti5O12微波介质陶瓷材料及其制备方法
CN110256066A (zh) 一种频率温度特性优异的中温烧结微波介质材料
CN111548158B (zh) 超低温烧结微波介质复合材料Sr1-xCaxV2O6及其制备方法
CN106518051B (zh) 一种温度稳定型微波介质陶瓷材料及其制备方法
CN110627480B (zh) MgO-Al2O3-GeO2三元体系微波介质材料的制备方法
CN109650886B (zh) 一种Ba-Mg-Ta系LTCC材料及其制备方法
CN113072373A (zh) 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法
CN110395984A (zh) 一种低温烧结微波陶瓷材料及其制备方法
CN104961458A (zh) 一种温度稳定型钙钛矿结构微波介质陶瓷

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200818

WD01 Invention patent application deemed withdrawn after publication