CN114933474A - 一种具有高品质因数的低介复相微波介质陶瓷及制备方法 - Google Patents

一种具有高品质因数的低介复相微波介质陶瓷及制备方法 Download PDF

Info

Publication number
CN114933474A
CN114933474A CN202210477074.9A CN202210477074A CN114933474A CN 114933474 A CN114933474 A CN 114933474A CN 202210477074 A CN202210477074 A CN 202210477074A CN 114933474 A CN114933474 A CN 114933474A
Authority
CN
China
Prior art keywords
ceramic
tio
dielectric
mgti
microwave dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210477074.9A
Other languages
English (en)
Inventor
樊慧庆
张澳
王维佳
贾宇欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210477074.9A priority Critical patent/CN114933474A/zh
Publication of CN114933474A publication Critical patent/CN114933474A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种具有高品质因数的低介复相微波介质陶瓷及制备方法,选用三方铁钛矿MgTi0.95Sn0.05O3陶瓷为基体,以具有相反谐振频率温度系数的正交钙钛矿Ca0.8Sr0.2TiO3陶瓷作第二相,通过传统固相反应法制备了一种新型的复相微波介质陶瓷。本发明中的陶瓷在1375~1450℃范围内烧结都能保持两相共存,且具有优良的微波介电性能。特别地,对于MgTi0.95Sn0.05O3‑xCa0.8Sr0.2TiO3陶瓷在1425℃烧结时,介电常数εr为20.4,品质因数Qf高达63,770GHz,且具有优异的温度稳定性,谐振频率温度系数τf仅仅‑1.8ppm/℃。它可以应用于介质谐振器、滤波器、多层陶瓷电容器等微波通讯器件领域。此外,本方法操作简单,产品可大量制备。

Description

一种具有高品质因数的低介复相微波介质陶瓷及制备方法
技术领域
本发明属于功能材料和微波介质陶瓷领域,涉及一种具有高品质因数的低介复相微波介质陶瓷及制备方法。
背景技术
微波介质陶瓷主要应用于微波频段(300MHz~300GHz),在电路中常作为介质 材料从而实现隔离、波导以及谐振等一种或多种功能。在现代技术产业中,微波介质 陶瓷是振荡器、谐振器、滤波器、移相器、介质波导回路、微波基板和微波天线等多 种电子元器件的关键材料。
近三十年来,系列化介电常数的微波介质陶瓷早已进入商业化,参与人们的实际日常生产和生活。其中,与具有高介电常数的微波介质陶瓷相比,较低的介电常数能 够降低信号延迟。商用K20(介电常数在20附近)微波介质陶瓷主要是MgTiO3-CaTiO3, 其介电常数εr为21,品质因数Qf为56,000GHz,谐振频率温度系数近零。随着5G微 波通讯器件向小型化、集成化和高频化方向飞速发展,信号传输在速度和效率方面的 需求日益增长,这对微波介质材料的要求也越来越高。传统商用材料逐渐无法满足应 用需求,寻找制备介电常数较低(在20附近)的具有高品质因数微波介质陶瓷已成为 当下研究的热点。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种具有高品质因数的低介复相微波介 质陶瓷及制备方法,通过具有正负谐振频率温度系数的陶瓷两相复合,去优化陶瓷的微波介电性能。
技术方案
一种具有高品质因数的低介复相微波介质陶瓷,其特征在于在三方铁钛矿MgTi0.95Sn0.05O3陶瓷中掺杂正交钙钛矿Ca0.8Sr0.2TiO3形成复相陶瓷,且陶瓷的组成表达 式为MgTi0.95Sn0.05O3-xCa0.8Sr0.2TiO3,其中x=0.02~0.06。
所述MgTi0.95Sn0.05O3-xCa0.8Sr0.2TiO3陶瓷的微波介电常数εr为16.3~20.4,品质因数Qf为151,580~63,770GHz,谐振频率温度系数τf为-41.3~-1.8ppm/℃。
一种所述的具有高品质因数的低介复相微波介质陶瓷材料的制备方法,其特征在于 步骤如下:
步骤1:按照MgTi0.95Sn0.05O3中各元素的配比,称取原料Mg(OH)2·4MgCO3·5H2O、TiO2和SnO2为A组原料;
按照Ca0.8Sr0.2TiO3中各元素的配比,称取原料CaCO3、SrCO3和TiO2为B组原 料;
步骤2:将两组原料进行湿法球磨、烘干和过筛,并干压得到块状原料;
步骤3:将两块状原料分别在1200℃煅烧;
步骤4:按照MgTi0.95Sn0.05O3-xCa0.8Sr0.2TiO3中MgTi0.95Sn0.05O3与Ca0.8Sr0.2TiO3的质量比将两种块体进行混合,然后进行二次湿法球磨、烘干和过筛, 得到粉体;
步骤5:将步骤4中的粉体预压成型,再进行冷等静压成型得到胚体,成型压力 为180~220MPa;
步骤6:将胚体放置在铺有步骤4的粉体的刚玉瓷舟上,然后另取一个刚玉瓷舟 盖住,在1375~1450℃烧结,然后随炉冷却,即得到具有高品质因数的低介复相微波 介质陶瓷材料。
所述步骤2和步骤4中湿法球磨均以氧化锆作磨球,乙醇为球磨助剂,行星式球 磨4~6h,转速为350r/min。
所述步骤2中的块状原料直径15mm,厚度15~20mm。
所述步骤3中煅烧时间为5h.。
所述步骤6中烧结时间为4h。
所述步骤5中预压成型圆片或圆柱。
所述圆片直径为12mm,厚度为1~2mm。
所述圆柱为直径为12mm,厚度为5.5~6.5mm。
有益效果
本发明提出的一种具有高品质因数的低介复相微波介质陶瓷及制备方法,选用三方 铁钛矿MgTi0.95Sn0.05O3陶瓷为基体,以具有相反谐振频率温度系数的正交钙钛矿Ca0.8Sr0.2TiO3陶瓷作第二相,通过传统固相反应法制备了一种新型的复相微波介质陶 瓷。本发明中的陶瓷在1375~1450℃范围内烧结都能保持两相共存,且具有优良的微 波介电性能。特别地,对于MgTi0.95Sn0.05O3-xCa0.8Sr0.2TiO3陶瓷在1425℃烧结时,介 电常数εr为20.4,品质因数Qf高达63,770GHz,且具有优异的温度稳定性,谐振频率 温度系数τf仅仅-1.8ppm/℃。它可以应用于介质谐振器、滤波器、多层陶瓷电容器等 微波通讯器件领域。此外,本方法操作简单,产品可大量制备。
附图说明
图1是本发明方法实施例1制备的MgTi0.95Sn0.05O3-0.06Ca0.8Sr0.2TiO3陶瓷的XRD图像。
图2是本发明方法实施例1制备的MgTi0.95Sn0.05O3-0.06Ca0.8Sr0.2TiO3陶瓷的SEM图像和EDS元素含量分析。
图3是本发明方法实施例3制备的MgTi0.95Sn0.05O3-0.02Ca0.8Sr0.2TiO3陶瓷的SEM图像。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1:
本发明所述的具有高品质因数的低介复相微波介质陶瓷材料,其特征在于在三方铁 钛矿MgTi0.95Sn0.05O3陶瓷中掺杂正交钙钛矿Ca0.8Sr0.2TiO3形成复相陶瓷,且陶瓷的组成表达式为MgTi0.95Sn0.05O3-xCa0.8Sr0.2TiO3,其中x=0.06。
原料粉体分成两组称取,第一组按照MgTi0.95Sn0.05O3中各元素的配比,称取原料Mg(OH)2·4MgCO3·5H2O 5.7054g、TiO2 15.1753g和SnO2 1.5067g,第二组按照Ca0.8Sr0.2TiO3中各元素的配比,称取原料CaCO3 8.0072g、SrCO3 2.8526g和TiO2 7.9870 g;
将称取的两组原料分开放入球磨罐中,以氧化锆作磨球,乙醇为球磨助剂,行星式球磨5h,转速为350r/min。然后将球磨的到的混合物烘干过筛,并利用模具干压, 得到直径15mm,厚度15~20mm的大块;
将两组大块放置于陶瓷板上,并在1200℃煅烧5h。然后取第一组大块16.5676g 和第二组大块1.1686g放入球磨罐,进行二次球磨,球磨时间为5h,接着烘干过筛得 到混合粉体;
混合粉体先利用模具预压成直径为12mm,厚度为2mm的小圆片和厚度为6mm 小圆柱,再进行冷等静压成型,成型压力为200MPa;
将胚体放置在铺有相同组分粉体的刚玉瓷舟上,然后另取一个刚玉瓷舟盖住,放入炉子中进行烧结。烧结温度为1425℃,保温时间4h,随炉冷却。
将烧结好的小圆片充分研磨后,用于X射线衍射分析。另取小圆片直接喷金处理,进行扫描电子显微镜观察。烧结的小圆柱依次用240目、400目、600目、1200目的 砂纸打磨抛光,最后超声清洗30min去除表面污渍。烘干后,利用矢量网络分析仪进 行微波性能测试,最后采用阿基米德排水法测量实际密度。
图1是制备的MgTi0.95Sn0.05O3-0.06Ca0.8Sr0.2TiO3陶瓷的XRD图像。主相与三方相的MgTiO3匹配良好,47°和59°附近明显存在第二相的峰,与正交相的CaTiO3结 构匹配相互。从图2的SEM图像可以看到,陶瓷样品表面致密,没有明显的孔洞结构。 EDS元素分析表明大的平滑晶粒是MgTi0.95Sn0.05O3,小的粗糙晶粒是Ca0.8Sr0.2TiO3。 表1给出了制备的MgTi0.95Sn0.05O3-0.06Ca0.8Sr0.2TiO3陶瓷的微波介电性能和密度。密 度为3.879g/cm3,相对介电常数εr为20.4,品质因数Qf为63,770GHz,损耗低,而 且谐振频率温度系数τf仅-1.8ppm/℃,具有优异的温度稳定性。
实施例2:
本发明所述的具有高品质因数的低介复相微波介质陶瓷材料,其特征在于在三方铁 钛矿MgTi0.95Sn0.05O3陶瓷中掺杂正交钙钛矿Ca0.8Sr0.2TiO3形成复相陶瓷,且陶瓷的组成表达式为MgTi0.95Sn0.05O3-xCa0.8Sr0.2TiO3,其中x=0.06。
原料粉体分成两组称取,第一组按照MgTi0.95Sn0.05O3中各元素的配比,称取原料Mg(OH)2·4MgCO3·5H2O 5.7054g、TiO2 15.1753g和SnO2 1.5067g,第二组按照Ca0.8Sr0.2TiO3中各元素的配比,称取原料CaCO3 8.0072g、SrCO3 2.8526g和TiO2 7.9870 g;
将称取的两组原料分开放入球磨罐中,以氧化锆作磨球,乙醇为球磨助剂,行星式球磨5h,转速为350r/min。然后将球磨的到的混合物烘干过筛,并利用模具干压, 得到直径15mm,厚度15~20mm的大块;
将两组大块放置于陶瓷板上,并在1200℃煅烧5h。然后取第一组大块16.5676g 和第二组大块1.1686g放入球磨罐,进行二次球磨,球磨时间为5h,接着烘干过筛得 到混合粉体;
混合粉体先利用模具预压成直径为12mm,厚度为6.5mm小圆柱,再进行冷等 静压成型,成型压力为200MPa;
将胚体放置在铺有相同组分粉体的刚玉瓷舟上,然后另取一个刚玉瓷舟盖住,放入炉子中进行烧结。烧结温度分别为1375℃和1450℃,保温时间4h,随炉冷却。
将烧结好的小圆柱依次用240目、400目、600目、1200目的砂纸打磨抛光,最 后超声清洗30min去除表面污渍。烘干后,利用矢量网络分析仪进行微波性能测试, 最后采用阿基米德排水法测量实际密度。
表1给出了在1375℃和1450℃制备的MgTi0.95Sn0.05O3-0.06Ca0.8Sr0.2TiO3陶瓷的微波介电性能和密度。升温后密度明显提升,从3.738g/cm3增加到3.872g/cm3。相对 介电常数εr均在20附近,品质因数Qf分别为74,735GHz和66,380GHz,损耗低,而 且谐振频率温度系数τf均在±5ppm/℃之内,具有优异的温度稳定性。
实施例3:
本发明所述的具有高品质因数的低介复相微波介质陶瓷材料,其特征在于在三方铁 钛矿MgTi0.95Sn0.05O3陶瓷中掺杂正交钙钛矿Ca0.8Sr0.2TiO3形成复相陶瓷,且陶瓷的组成表达式为MgTi0.95Sn0.05O3-xCa0.8Sr0.2TiO3,其中x=0.02。
原料粉体分成两组称取,第一组按照MgTi0.95Sn0.05O3中各元素的配比,称取原料Mg(OH)2·4MgCO3·5H2O 5.7054g、TiO2 15.1753g和SnO2 1.5067g,第二组按照Ca0.8Sr0.2TiO3中各元素的配比,称取原料CaCO3 8.0072g、SrCO3 2.8526g和TiO2 7.9870 g;
将称取的两组原料分开放入球磨罐中,以氧化锆作磨球,乙醇为球磨助剂,行星式球磨5h,转速为350r/min。然后将球磨的到的混合物烘干过筛,并利用模具干压, 得到直径15mm,厚度15~20mm的大块;
将两组大块放置于陶瓷板上,并在1200℃煅烧5h。然后取第一组大块16.7363g 和第二组大块0.3936g放入球磨罐,进行二次球磨,球磨时间为5h,接着烘干过筛得 到混合粉体;
混合粉体先利用模具预压成直径为12mm,厚度为1mm的小圆片和厚度为5.5 mm小圆柱,再进行冷等静压成型,成型压力为180MPa;
将胚体放置在铺有相同组分粉体的刚玉瓷舟上,然后另取一个刚玉瓷舟盖住,放入炉子中进行烧结。烧结温度为1425℃,保温时间4h,随炉冷却。
将烧结好的小圆片直接喷金处理,进行扫描电子显微镜观察。烧结的小圆柱依次用240目、400目、600目、1200目的砂纸打磨抛光,最后超声清洗30min去除表面 污渍。烘干后,利用矢量网络分析仪进行微波性能测试,最后采用阿基米德排水法测 量实际密度。
从图3可以看出,MgTi0.95Sn0.05O3-0.02Ca0.8Sr0.2TiO3在此温度烧结,存在不少孔洞, 其密度在表1中给出,仅3.645g/cm3。介电常数εr也较低,为16.4。由于掺杂的Ca0.8Sr0.2TiO3的量很少,品质因数Qf高,为151,580GHz,谐振频率温度系数τf为-41.3 ppm/℃,温度稳定性较差。
实施例4:
本发明所述的具有高品质因数的低介复相微波介质陶瓷材料,其特征在于在三方铁 钛矿MgTi0.95Sn0.05O3陶瓷中掺杂正交钙钛矿Ca0.8Sr0.2TiO3形成复相陶瓷,且陶瓷的组成表达式为MgTi0.95Sn0.05O3-xCa0.8Sr0.2TiO3,其中x=0.04。
原料粉体分成两组称取,第一组按照MgTi0.95Sn0.05O3中各元素的配比,称取原料Mg(OH)2·4MgCO3·5H2O 5.7054g、TiO2 15.1753g和SnO2 1.5067g,第二组按照Ca0.8Sr0.2TiO3中各元素的配比,称取原料CaCO3 8.0072g、SrCO3 2.8526g和TiO2 7.9870 g;
将称取的两组原料分开放入球磨罐中,以氧化锆作磨球,乙醇为球磨助剂,行星式球磨5h,转速为350r/min。然后将球磨的到的混合物烘干过筛,并利用模具干压, 得到直径15mm,厚度15~20mm的大块;
将两组大块放置于陶瓷板上,并在1200℃煅烧5h。然后取第一组大块16.8507g 和第二组大块0.7925g放入球磨罐,进行二次球磨,球磨时间为5h,接着烘干过筛得 到混合粉体;
混合粉体先利用模具预压成直径为12mm,厚度为6.5mm小圆柱,再进行冷等 静压成型,成型压力为220MPa;
将胚体放置在铺有相同组分粉体的刚玉瓷舟上,然后另取一个刚玉瓷舟盖住,放入炉子中进行烧结。烧结温度为1425℃,保温时间4h,随炉冷却。
将烧结好的小圆柱依次用240目、400目、600目、1200目的砂纸打磨抛光,最 后超声清洗30min去除表面污渍。烘干后,利用矢量网络分析仪进行微波性能测试, 最后采用阿基米德排水法测量实际密度。
表1给出了制备的MgTi0.95Sn0.05O3-0.04Ca0.8Sr0.2TiO3陶瓷的微波介电性能和密度。 其密度为3.852g/cm3,介电常数εr为19.0,品质因数Qf为98,090GHz,谐振频率温 度系数τf为-14.8ppm/℃。
是本发明方法实施例1、实施例2、实施例3和实施例4制备的陶瓷样品的微波介 电性能和实际密度。
Figure BDA0003626203220000071

Claims (10)

1.一种具有高品质因数的低介复相微波介质陶瓷,其特征在于在三方铁钛矿MgTi0.95Sn0.05O3陶瓷中掺杂正交钙钛矿Ca0.8Sr0.2TiO3形成复相陶瓷,且陶瓷的组成表达式为MgTi0.95Sn0.05O3-xCa0.8Sr0.2TiO3,其中x=0.02~0.06。
2.根据权利要求1所述具有高品质因数的低介复相微波介质陶瓷,其特征在于:所述MgTi0.95Sn0.05O3-xCa0.8Sr0.2TiO3陶瓷的微波介电常数εr为16.3~20.4,品质因数Qf为151,580~63,770GHz,谐振频率温度系数τf为-41.3~-1.8ppm/℃。
3.一种权利要求1所述的具有高品质因数的低介复相微波介质陶瓷材料的制备方法,其特征在于步骤如下:
步骤1:按照MgTi0.95Sn0.05O3中各元素的配比,称取原料Mg(OH)2·4MgCO3·5H2O、TiO2和SnO2为A组原料;
按照Ca0.8Sr0.2TiO3中各元素的配比,称取原料CaCO3、SrCO3和TiO2为B组原料;
步骤2:将两组原料进行湿法球磨、烘干和过筛,并干压得到块状原料;
步骤3:将两块状原料分别在1200℃煅烧;
步骤4:按照MgTi0.95Sn0.05O3-xCa0.8Sr0.2TiO3中MgTi0.95Sn0.05O3与Ca0.8Sr0.2TiO3的质量比将两种块体进行混合,然后进行二次湿法球磨、烘干和过筛,得到粉体;
步骤5:将步骤4中的粉体预压成型,再进行冷等静压成型得到胚体,成型压力为180~220MPa;
步骤6:将胚体放置在铺有步骤4的粉体的刚玉瓷舟上,然后另取一个刚玉瓷舟盖住,在1375~1450℃烧结,然后随炉冷却,即得到具有高品质因数的低介复相微波介质陶瓷材料。
4.根据权利要求3所述的方法,其特征在于:所述步骤2和步骤4中湿法球磨均以氧化锆作磨球,乙醇为球磨助剂,行星式球磨4~6h,转速为350r/min。
5.根据权利要求3所述的方法,其特征在于:所述步骤2中的块状原料直径15mm,厚度15~20mm。
6.根据权利要求3所述的方法,其特征在于:所述步骤3中煅烧时间为5h.。
7.根据权利要求3所述的方法,其特征在于:所述步骤6中烧结时间为4h。
8.根据权利要求3所述的方法,其特征在于:所述步骤5中预压成型圆片或圆柱。
9.根据权利要求8所述的方法,其特征在于:所述圆片直径为12mm,厚度为1~2mm。
10.根据权利要求8所述的方法,其特征在于:所述圆柱为直径为12mm,厚度为5.5~6.5mm。
CN202210477074.9A 2022-05-02 2022-05-02 一种具有高品质因数的低介复相微波介质陶瓷及制备方法 Withdrawn CN114933474A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210477074.9A CN114933474A (zh) 2022-05-02 2022-05-02 一种具有高品质因数的低介复相微波介质陶瓷及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210477074.9A CN114933474A (zh) 2022-05-02 2022-05-02 一种具有高品质因数的低介复相微波介质陶瓷及制备方法

Publications (1)

Publication Number Publication Date
CN114933474A true CN114933474A (zh) 2022-08-23

Family

ID=82865214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210477074.9A Withdrawn CN114933474A (zh) 2022-05-02 2022-05-02 一种具有高品质因数的低介复相微波介质陶瓷及制备方法

Country Status (1)

Country Link
CN (1) CN114933474A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116396067A (zh) * 2023-06-08 2023-07-07 常熟理工学院 一种近零温漂的黑滑石矿质微波介质陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101849470B1 (ko) * 2016-11-09 2018-04-17 한국세라믹기술원 저온 소결용 마이크로파 유전체 세라믹스 및 그 제조방법
CN110256066A (zh) * 2019-04-30 2019-09-20 天津大学 一种频率温度特性优异的中温烧结微波介质材料
CN110698193A (zh) * 2019-10-31 2020-01-17 西安交通大学 一种高品质因数k20复合微波介质陶瓷材料及其制备方法
CN110698192A (zh) * 2019-10-14 2020-01-17 天津大学 谐振频率温度系数近零的高q值微波介质陶瓷
CN111548147A (zh) * 2020-04-16 2020-08-18 天津大学 一种低温区低温漂的微波介质陶瓷

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101849470B1 (ko) * 2016-11-09 2018-04-17 한국세라믹기술원 저온 소결용 마이크로파 유전체 세라믹스 및 그 제조방법
CN110256066A (zh) * 2019-04-30 2019-09-20 天津大学 一种频率温度特性优异的中温烧结微波介质材料
CN110698192A (zh) * 2019-10-14 2020-01-17 天津大学 谐振频率温度系数近零的高q值微波介质陶瓷
CN110698193A (zh) * 2019-10-31 2020-01-17 西安交通大学 一种高品质因数k20复合微波介质陶瓷材料及其制备方法
CN111548147A (zh) * 2020-04-16 2020-08-18 天津大学 一种低温区低温漂的微波介质陶瓷

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAVED IQBAL等: "Mg(Ti0.95Sn0.05)O3-(Ca0.8Sr0.2)TiO3 ceramics: Phase, microstructure,", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116396067A (zh) * 2023-06-08 2023-07-07 常熟理工学院 一种近零温漂的黑滑石矿质微波介质陶瓷材料及其制备方法
CN116396067B (zh) * 2023-06-08 2023-09-22 常熟理工学院 一种近零温漂的黑滑石矿质微波介质陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
KR100365294B1 (ko) 저온소결 저손실 고주파유전체 세라믹스 조성물 및 그 제조방법
Huang et al. Characterization of extremely low loss dielectrics (Mg0. 95Zn0. 05) TiO3 at microwave frequency
CN1359358A (zh) 可低温烧结的低损耗介质陶瓷组合物及其制备方法
CN108358633B (zh) 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN114933474A (zh) 一种具有高品质因数的低介复相微波介质陶瓷及制备方法
CN114634352A (zh) 一种硅锗基低介微波介质陶瓷及其制备方法
WO2020209039A1 (ja) 誘電性無機組成物
Du et al. Phase evolution and microwave dielectric properties of ceramics with nominal composition Li 2x (Zn 0.95 Co 0.05) 2− x SiO 4 for LTCC applications
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN111943670B (zh) LiWVO6-K2MoO4基复合陶瓷微波材料及其制备方法
CN111825445B (zh) 一种高介电常数微波介质陶瓷材料、制备及其应用
CN113072373A (zh) 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法
JP3339989B2 (ja) 低誘電損失体
Kucheiko et al. Microwave Dielectric Properties of CaTiO3‐CaAl1/2Nb1/2O3 Ceramics Doped with Li3NbO4
Wang et al. Microwave dielectric properties of (1-x)(Mg0. 95Zn0. 05) TiO3–xCa0. 6La0. 8/3TiO3 ceramic system
Chen et al. Microwave dielectric properties and microstructures of La (Mg1/2Ti1/2) O3 with CuO-doped
CN104876568A (zh) 钒基温度稳定型超低温烧结微波介质陶瓷材料及其制备方法
CN110218089A (zh) 一种谐振频率温度系数近零的8层六方钙钛矿微波介质陶瓷及其制备方法
Qin et al. Effects of ZnO–B 2 O 3 addition on sintering behaviors and microwave dielectric properties of Ba 4 Sm 9.33 Ti 18 O 54 ceramics
Zhang et al. A novel temperature-stable (1− m) Li2TiO3–m Zn3Nb2O8 microwave dielectric ceramic
Huang et al. Microwave dielectric properties of (Mg0. 95Co0. 05) TiO3–(Na0. 5Nd0. 5) TiO3 ceramic system
CN116768616B (zh) 一种高Q值Li6Zn7Ti11O32基微波介质陶瓷材料及其制备方法
CN115108823B (zh) 一种镁铝尖晶石微波介质陶瓷材料及其制备方法
KR100339097B1 (ko) 마이크로파용 유전체 조성물 및 그 제조방법
CN116283290B (zh) 一种微波介质陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20220823