CN111547760B - 氧化物衬底原位生长银纳米棒的制备方法及应用 - Google Patents
氧化物衬底原位生长银纳米棒的制备方法及应用 Download PDFInfo
- Publication number
- CN111547760B CN111547760B CN202010391485.7A CN202010391485A CN111547760B CN 111547760 B CN111547760 B CN 111547760B CN 202010391485 A CN202010391485 A CN 202010391485A CN 111547760 B CN111547760 B CN 111547760B
- Authority
- CN
- China
- Prior art keywords
- zno
- silver
- solution
- growth
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/001—General methods for coating; Devices therefor
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/006—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
- C03C17/008—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/08—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/14—Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0065—Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/26—Apparatus or processes specially adapted for the manufacture of record carriers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/26—Apparatus or processes specially adapted for the manufacture of record carriers
- G11B7/266—Sputtering or spin-coating layers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/16—Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/29—Mixtures
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/11—Deposition methods from solutions or suspensions
- C03C2218/111—Deposition methods from solutions or suspensions by dipping, immersion
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24304—Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24308—Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24318—Non-metallic elements
- G11B2007/2432—Oxygen
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24318—Non-metallic elements
- G11B2007/24322—Nitrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- Geochemistry & Mineralogy (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
氧化物衬底原位生长银纳米棒的制备方法及应用涉及全息存储技术领域,解决了不具备简单快速的制备银纳米棒的方法的问题,步骤包括:制备ZnO纳米线;制备浓度为0.14~0.16mol/L的AgNO3溶液;将ZnO纳米线避光浸泡在AgNO3溶液中,待ZnO纳米线表面吸附Ag+后通过光照还原Ag+直至ZnO纳米线表面生长出银纳米棒。所制备的银纳米棒能够作为全息存储材料的应用,填补了全息存储领域的空白。本发明的制备方法实现了ZnO纳米线表面银纳米棒的成功制备,得到了规则的、稳定的、取向特征明显、不易变形的银纳米棒,实现了在银/ZnO纳米线体系且不引入其他物质的前提下实现全息存储。且制备方法简单、快速、成本低、光源选择简单、利于实际应用。
Description
技术领域
本发明涉及全息存储技术领域,具体涉及氧化物衬底原位生长银纳米棒的制备方法及应用。
背景技术
随着信息社会的发展,数据化信息呈现爆炸式增长,目前,全球的数据信息总量已经达到ZB(1012GB)量级。然而在这庞大的数据信息中,有80%的数据信息几乎不被访问或查看,我们称之为“冷数据”。如何长期、低能耗的存储这日益增长的海量数据信息,尤其是冷数据,是我们目前面临的严峻的挑战。相对于磁存储、光盘存储等“比特式”的存储方式来说,“数据页式”的三维全息存储方式具有高存储密度、高传输速率、低能源消耗及长寿命的优点,是最有前景的下一代数据存储方式。
存储材料的性能与全息存储领域的发展紧密相关。近年来,贵金属纳米粒子以其独特的局域表面等离子体共振效应在本领域发挥着重要的作用。相对于昂贵的金(Au)来说,更具价格优势的银(Ag)成为人们的重点研究对象。银纳米棒对激发光的波长和偏振态具有极强的分辨本领,能够利用波长复用和偏振复用来进一步提高材料的存储密度。传统制备银纳米棒是使用晶种法,这种方法制备的纳米棒晶体结晶性好,但是其生长周期长,生长工艺复杂,生长设备昂贵。目前,常用的制备银纳米棒的方法主要是固态模板法和溶液法,但是固态模板法本身生长工艺复杂,生产成本高;溶液法的生长周期极大地受到温度的影响,而温度的改变会产生更多的影响因素。也有报道(Optics Express,2019年27卷11991页)在随机多孔氧化物衬底上利用紫外光与可见光共同辐照形成类棒状的银纳米结构,但其取向特征不明显,而且光源选择较复杂,不利于实际应用。因此,如何更简单、快速的制备银纳米棒仍然存在诸多的困难。
发明内容
为了解决上述问题,本发明提供氧化物衬底原位生长银纳米棒的制备方法及应用。
本发明为解决技术问题所采用的技术方案如下:
氧化物衬底原位生长银纳米棒的制备方法,包括如下步骤:
S1、制备ZnO纳米线;
S2、制备浓度为0.14~0.16mol/L的AgNO3溶液;
S3、将ZnO纳米线避光浸泡在AgNO3溶液中,待ZnO纳米线表面吸附Ag+后通过光照还原Ag+直至ZnO纳米线表面生长出银纳米棒。
采用所述的氧化物衬底原位生长银纳米棒的制备方法所制备的银纳米棒。
氧化物衬底原位生长银纳米棒的制备方法所制备的银纳米棒的应用,作为偏振复用全息存储材料的应用。
本发明的有益效果是:
1、本发明的氧化物衬底原位生长银纳米棒的制备方法基于ZnO纳米线和AgNO3溶液,通过与S3的结合以及AgNO3溶液的浓度范围的设计,实现了ZnO纳米线表面银纳米棒的成功制备,得到了规则的、稳定的、取向特征明显、不易变形的银纳米棒,实现了在银/ZnO纳米线体系且不引入其他物质的前提下实现全息存储。
2、本发明的制备方法简单、快速、成本低、光源选择简单、利于实际应用。
3、制备的银纳米棒/ZnO纳米线复合结构为规则的、稳定的、取向特征明显、不易变形、能够用于偏振复用全息存储领域的材料,实现了银/ZnO纳米线体系用于全息存储,填补了全息存储领域的空白。
附图说明
图1为本发明的氧化物衬底原位生长银纳米棒的制备方法流程图。
图2为本发明制备方法得到在ZnO纳米线表面的银纳米棒的扫描电镜图。
图3为本发明制备方法得到的银纳米棒的吸收光谱测试结果图。
图4为使用0.2mol/L AgNO3溶液得到的Ag/ZnO纳米线表面的扫描电镜图。
图5为使用0.2mol/L AgNO3溶液在ZnO纳米线表面得到的银粒子的吸收光谱测试结果图。
图6为本发明制备方法得到的银纳米棒的正交线偏振全息动力学测试图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
氧化物衬底原位生长银纳米棒的制备方法,如图1,包括如下步骤:
S1、制备ZnO纳米线。
采用两步水热法,通过控制水热生长时间,生长出所需长度的ZnO纳米线。
S1.1、制备生长ZnO纳米线所需的种子溶液,具体过程为:将0.56g二水乙酸锌、10mL甲醇和98.5μL乙醇胺三者放入烧杯中,磁力搅拌90min使三者混合均匀,得到生长ZnO纳米线所需的种子溶液。
S1.2、制备生长ZnO纳米线所需的生长溶液,具体过程为:将5.634g六水合硝酸锌、2.655g乌洛托品和1.818g聚乙烯亚胺(PEI)置于大烧杯中,加入500mL超纯水,长时间磁力搅拌直到均匀溶解,得到生长ZnO纳米线所需的生长溶液。
S1.3、取种子溶液制备ZnO种子层,具体过程为:将玻璃衬底放置在旋涂仪上,使用移液枪吸取50μL种子溶液滴在干净的玻璃衬底上进行旋涂,旋涂速度为1500r/min,旋涂时间为30s,得到表面涂有种子溶液的玻璃衬底。将表面涂有种子溶液的玻璃衬底放置在热盘上进行退火,退火温度是300℃,退火时间为30-40min,退火后的玻璃衬底上形成一层ZnO种子层,得到具有一层ZnO种子层的玻璃衬底,以便可以进行ZnO纳米线的垂直生长。
S1.4、将ZnO种子层置于生长液中进行水热生长得到ZnO纳米线。具体过程为:将具有一层ZnO种子层的玻璃衬底浸泡在含有生长溶液的反应釜中进行水热生长,控制水热生长温度90-100℃,生长时间为60min,生长结束后,将反应釜散热60min后取出玻璃衬底,得到具有ZnO纳米线的玻璃衬底,将取出的具有ZnO纳米线的玻璃衬底用超纯水进行冲洗,冲洗干净后,使用吹尘枪进行吹干,最终得到了ZnO纳米线,ZnO纳米线长度为300nm左右。
S2、制备浓度范围为0.14~0.16mol/L的AgNO3溶液。
将1.275g的AgNO3粉末加入烧杯中,加入48ml的超纯水,磁力搅拌30min,再加入2ml的无水乙醇,接着磁力搅拌30min,最后得到浓度为0.15mol/L的AgNO3溶液。AgNO3溶液的浓度范围为0.14~0.16mol/L,优选的是0.15mol/L。
S3、将ZnO纳米线浸泡在AgNO3溶液中,待ZnO纳米线表面吸附Ag+后通过光照还原Ag+直至ZnO纳米线表面生长出银纳米棒。
S3.1、使用紫外灯辐照ZnO纳米线。具体过程为:使用360nm的紫外灯对S1制备的ZnO纳米线进行预辐照,照射30min,从而提高氧化锌表面的亲水性。
S3.2、将ZnO纳米线避光浸没在AgNO3溶液中,使ZnO纳米线表面吸附Ag+。具体过程为:将S3.1辐照后的ZnO纳米线放入培养皿中,向培养皿中加入AgNO3溶液直至没过样品ZnO纳米线,无光照的条件下浸泡60min,使得样品ZnO纳米线表面吸附一定量的Ag+,之后将表面吸附有Ag+的ZnO纳米线从AgNO3溶液中取出,进行干燥,干燥采用吹尘枪(吹15s)吹干表面吸附有Ag+的ZnO纳米线,即吹干表面吸附有Ag+的ZnO纳米线的玻璃衬底。
S3.3、通过光照还原ZnO纳米线表面上的Ag+,直至在ZnO纳米线的表面生长出银纳米棒。具体过程为:将表面吸附有Ag+的ZnO纳米线样品放在266nm的激光下进行还原,还原时间是20min,最终在ZnO纳米线的表面生长出银纳米棒,即对吸附在ZnO纳米线上的Ag+进行还原,在ZnO纳米线上在位生长出银纳米棒,形成了银纳米棒/ZnO纳米线复合结构,银纳米棒制备完成。银纳米棒的长径比约为2.5:1。
本实施方式中AgNO3溶液浓度为0.15mol/L,制备得到的银纳米棒的扫描电镜图如图2所示,可以看出玻璃衬底表面得到的银呈现纳米棒的结构。使用分光光度计,对制备的银纳米棒的吸收光谱测试结果如图3所示。图3在短波和长波处各展现出一个吸收峰,光敏感强度和波长范围有效提升,近红外区域的吸光度明显增强,证明本发明的制备方法在ZnO纳米线的表面得到了纳米棒结构,双峰分别表示的是横轴和纵轴的共振吸收峰,有利于波长复用全息存储密度的提升。AgNO3溶液浓度为0.15mol/L得到的是银呈现纳米棒的结构,而当AgNO3溶液浓度为0.2mol/L时(即不改变本实施方式的S1和S3,仅S2中得到的AgNO3溶液浓度为0.2mol/L),最终在ZnO纳米线的表面得到的是不规则的银纳米粒子,其扫描电镜图所示如图4;同时使用分光光度计得到的不规则的银纳米粒子/ZnO纳米线结构进行了吸收光谱的测试,得到结果如图5所示,图5中可以看出在整个波长范围内未有明显的吸收峰出现,说明表面形成的是较大的银纳米粒子,而非纳米棒结构。
采用本发明制备得到的银纳米棒/ZnO纳米线复合结构的正交线偏振全息动力学测试图如图6,图6中衍射效率快速升高,可知制备的银纳米棒/ZnO纳米线复合结构可实现偏振全息存储,能够用于偏振复用的单点多重全息存储中。
本发明氧化物衬底原位生长银纳米棒的制备方法基于ZnO纳米线和AgNO3溶液,通过与S3的结合、以及AgNO3溶液的浓度范围的设计,实现了ZnO纳米线表面银纳米棒的成功制备,得到了规则的、稳定的、取向特征明显、不易变形的银纳米棒,实现了在银/ZnO纳米线体系且不引入其他物质的前提下实现偏振复用全息存储,填补了全息存储领域的空白。同时制备方法简单、快速、成本低、光源选择简单、利于实际应用。
Claims (6)
1.氧化物衬底原位生长银纳米棒的制备方法所制备的银纳米棒的应用,其特征在于,作为偏振复用全息存储材料的应用;
氧化物衬底原位生长银纳米棒的制备方法,包括如下步骤:
S1、制备ZnO纳米线;
S2、制备浓度为0.14~0.16mol/L的AgNO3溶液;
S3、将ZnO纳米线避光浸泡在AgNO3溶液中,待ZnO纳米线表面吸附Ag+后通过光照还原Ag+直至ZnO纳米线表面生长出银纳米棒。
2.如权利要求1所述的氧化物衬底原位生长银纳米棒的制备方法所制备的银纳米棒的应用,其特征在于,所述S3具体过程为:
S3.1、使用紫外灯辐照ZnO纳米线;
S3.2、将ZnO纳米线避光浸没在AgNO3溶液中,使ZnO纳米线表面吸附Ag+;
S3.3、通过光照还原ZnO纳米线表面上的Ag+,直至在ZnO纳米线的表面生长出银纳米棒。
3.如权利要求2所述的氧化物衬底原位生长银纳米棒的制备方法所制备的银纳米棒的应用,其特征在于,在S3.1中所述紫外灯对S1制备得到的ZnO纳米线辐照30min;在S3.2中将ZnO纳米线避光浸没在AgNO3溶液中60min,将表面吸附有Ag+的ZnO纳米线从AgNO3溶液中取出并进行干燥;在S3.3中采用紫外光照射表面吸附有Ag+的ZnO纳米线20min。
4.如权利要求1所述的氧化物衬底原位生长银纳米棒的制备方法所制备的银纳米棒的应用,其特征在于,所述AgNO3溶液的浓度为0.15mol/L。
5.如权利要求1所述的氧化物衬底原位生长银纳米棒的制备方法所制备的银纳米棒的应用,其特征在于,所述S1包括如下步骤:
S1.1、制备用于生长ZnO纳米线的种子溶液;
S1.2、制备用于生长ZnO纳米线的生长溶液;
S1.3、取种子溶液制备ZnO种子层;
S1.4、将ZnO种子层置于生长溶液中进行水热生长得到ZnO纳米线。
6.如权利要求5所述的氧化物衬底原位生长银纳米棒的制备方法所制备的银纳米棒的应用,其特征在于,所述S1.3具体过程为:将玻璃衬底放置在旋涂仪上,使用移液枪吸取种子溶液滴在干净的玻璃衬底上进行旋涂,得到表面涂有种子溶液的玻璃衬底;将表面涂有种子溶液的玻璃衬底放在热盘上进行退火,退火温度是300℃,退火时间为30-40min,退火后得到具有一层ZnO种子层的玻璃衬底;所述S1.4具体过程为:将具有一层ZnO种子层的玻璃衬底浸泡在含有生长液的反应釜中进行水热生长,水热生长温度为90-100℃,生长时间为60min,生长结束后,将反应釜散热60min后取出玻璃衬底,得到具有ZnO纳米线的玻璃衬底,将取出的具有ZnO纳米线的玻璃衬底用超纯水进行冲洗,冲洗后使用吹尘枪进行吹干,得到了ZnO纳米线。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010391485.7A CN111547760B (zh) | 2020-05-11 | 2020-05-11 | 氧化物衬底原位生长银纳米棒的制备方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010391485.7A CN111547760B (zh) | 2020-05-11 | 2020-05-11 | 氧化物衬底原位生长银纳米棒的制备方法及应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111547760A CN111547760A (zh) | 2020-08-18 |
CN111547760B true CN111547760B (zh) | 2022-08-09 |
Family
ID=72001627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010391485.7A Active CN111547760B (zh) | 2020-05-11 | 2020-05-11 | 氧化物衬底原位生长银纳米棒的制备方法及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111547760B (zh) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1174868A2 (en) * | 2000-07-21 | 2002-01-23 | Target Technology Company, LLC. | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium |
CN1426055A (zh) * | 2001-12-12 | 2003-06-25 | 株式会社日立制作所 | 信息记录介质和用于制造该信息记录介质的方法 |
CN1483852A (zh) * | 2002-08-08 | 2004-03-24 | ��ʽ�������Ƹ��� | Ag基合金薄膜及Ag基合金薄膜形成用溅射靶 |
CN101220509A (zh) * | 2007-09-13 | 2008-07-16 | 中国计量学院 | 一种氧化锌纳米晶须的低温水热制备方法 |
CN103765513A (zh) * | 2011-06-09 | 2014-04-30 | 凯斯西储大学 | 光学信息存储介质 |
CN104810031A (zh) * | 2015-05-12 | 2015-07-29 | 东北师范大学 | 用于蓝光全息存储的银/二氧化钛薄膜材料的制备方法 |
CN105336501A (zh) * | 2015-11-24 | 2016-02-17 | 石河子大学 | 纳米银和二氧化钛协同修饰氧化锌纳米线阵列及制备方法 |
CN107604341A (zh) * | 2017-07-24 | 2018-01-19 | 哈尔滨师范大学 | 一种基于光场辐照发光和光电化学性能的Ag和ZnO复合纳米线材料及其制备方法 |
CN107779849A (zh) * | 2017-10-20 | 2018-03-09 | 东北师范大学 | 窄带吸收银/二氧化钛薄膜全息材料及制备方法和应用 |
CN111069624A (zh) * | 2019-12-30 | 2020-04-28 | 东北师范大学 | 一种偏振敏感且抗紫外线擦除的银纳米结构制备方法及应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9164480B2 (en) * | 2006-12-14 | 2015-10-20 | General Electric Company | Holographic data storage device and method of making |
-
2020
- 2020-05-11 CN CN202010391485.7A patent/CN111547760B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1174868A2 (en) * | 2000-07-21 | 2002-01-23 | Target Technology Company, LLC. | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium |
CN1426055A (zh) * | 2001-12-12 | 2003-06-25 | 株式会社日立制作所 | 信息记录介质和用于制造该信息记录介质的方法 |
CN1483852A (zh) * | 2002-08-08 | 2004-03-24 | ��ʽ�������Ƹ��� | Ag基合金薄膜及Ag基合金薄膜形成用溅射靶 |
CN101220509A (zh) * | 2007-09-13 | 2008-07-16 | 中国计量学院 | 一种氧化锌纳米晶须的低温水热制备方法 |
CN103765513A (zh) * | 2011-06-09 | 2014-04-30 | 凯斯西储大学 | 光学信息存储介质 |
CN104810031A (zh) * | 2015-05-12 | 2015-07-29 | 东北师范大学 | 用于蓝光全息存储的银/二氧化钛薄膜材料的制备方法 |
CN105336501A (zh) * | 2015-11-24 | 2016-02-17 | 石河子大学 | 纳米银和二氧化钛协同修饰氧化锌纳米线阵列及制备方法 |
CN107604341A (zh) * | 2017-07-24 | 2018-01-19 | 哈尔滨师范大学 | 一种基于光场辐照发光和光电化学性能的Ag和ZnO复合纳米线材料及其制备方法 |
CN107779849A (zh) * | 2017-10-20 | 2018-03-09 | 东北师范大学 | 窄带吸收银/二氧化钛薄膜全息材料及制备方法和应用 |
CN111069624A (zh) * | 2019-12-30 | 2020-04-28 | 东北师范大学 | 一种偏振敏感且抗紫外线擦除的银纳米结构制备方法及应用 |
Non-Patent Citations (2)
Title |
---|
Photoinduced reversible changes in morphology of plasmonic Ag nanorods on TiO2 and application to versatile photochromismw;Emiko Kazuma et al.;《Chem. Commun》;20111207;第48卷(第12期);第1733-1735页 * |
氧化锌纳米线阵列的制备、改性及其能研究;王腾;《万方学位论文数据库》;20150730;第1-80页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111547760A (zh) | 2020-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumari et al. | A brief review on transition metal ion doped ZnO nanoparticles and its optoelectronic applications | |
CN1297505C (zh) | 涂有复合薄膜的基体,其制备方法和应用 | |
Zhao et al. | Influence of water content in mixed solvent on surface morphology, wettability, and photoconductivity of ZnO thin films | |
He et al. | Sm-doping effect on optical and electrical properties of ZnO films | |
CN106398208B (zh) | 一种光敏复合薄膜材料及其制备方法和应用 | |
CN101381599A (zh) | 纳米wo3光致变色粉体及其制备方法 | |
CN113649584B (zh) | 一种激光诱导形貌可控的金或金复合纳米结构的生长方法及其应用 | |
CN109346110B (zh) | 应用于彩色全息存储的碳基纳米复合薄膜及其制造方法 | |
Zuo et al. | Double-sided ZnO nanorod arrays on single-crystal Ag holed microdisks with enhanced photocataltytic efficiency | |
CN107779849B (zh) | 窄带吸收银/二氧化钛薄膜全息材料及制备方法和应用 | |
CN110777561B (zh) | 一种金属纳米颗粒-聚合物复合材料及其制备方法与应用 | |
CN111547760B (zh) | 氧化物衬底原位生长银纳米棒的制备方法及应用 | |
Kayani et al. | Investigation of structural, optical and magnetic characteristics of Co3O4 thin films | |
Sun et al. | DNA-based fabrication of density-controlled vertically aligned ZnO nanorod arrays and their SERS applications | |
CN1166725C (zh) | 固态基底表面有序排布纳米颗粒的方法 | |
CN103232172A (zh) | 大面积制备二氧化钛纳米中空球有序薄膜的方法 | |
CN110252297B (zh) | 一种金纳米颗粒-氧化锌纳米帽阵列及其制备方法 | |
Amereh et al. | Sunlight-active hierarchical Ag@ insulator@ ZnO core-shell array based on natural diatoms for environmental remediation | |
He | Novel Li@ ZnWO4 nanocomposite materials with enhanced photoactivity for degradation of MB | |
CN111774053A (zh) | 一种制备镝掺杂纳米片钨酸铋光催化剂的方法 | |
CN112376020B (zh) | 激光诱导纳米单元生长形成取向、手性和复杂结构的方法 | |
CN115557712B (zh) | 金银钯三元纳米晶/聚苯乙烯微纳米二级结构复合材料及其制备方法和其太阳能蒸发器 | |
CN118767827A (zh) | 一种等离激元材料、包含该等离激元材料的太阳光吸收体及其制备和应用 | |
Maswanganye et al. | Strain induced by temperature evolution of mesoporous ZnO nanopowders and its effect on structural, optical and electrical impedance properties | |
My et al. | The Enhancement of Visible Absorption of Cu Doped ZnO Nanorods on Patterned Substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |