CN111774053A - 一种制备镝掺杂纳米片钨酸铋光催化剂的方法 - Google Patents

一种制备镝掺杂纳米片钨酸铋光催化剂的方法 Download PDF

Info

Publication number
CN111774053A
CN111774053A CN202010641215.7A CN202010641215A CN111774053A CN 111774053 A CN111774053 A CN 111774053A CN 202010641215 A CN202010641215 A CN 202010641215A CN 111774053 A CN111774053 A CN 111774053A
Authority
CN
China
Prior art keywords
solution
photocatalyst
bismuth tungstate
dysprosium
reaction kettle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010641215.7A
Other languages
English (en)
Inventor
郝宇
王瑞琪
徐龙君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Chongqing Vocational Institute of Engineering
Original Assignee
Chongqing University
Chongqing Vocational Institute of Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University, Chongqing Vocational Institute of Engineering filed Critical Chongqing University
Priority to CN202010641215.7A priority Critical patent/CN111774053A/zh
Publication of CN111774053A publication Critical patent/CN111774053A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种制备镝掺杂纳米片钨酸铋光催化剂的方法,其属于无机催化材料技术领域。本发明先将Bi(NO3)3·5H2O、Dy(NO3)3·5H2O固体溶解于稀硝酸溶液,再将Na2WO4·2H2O水溶液缓慢滴入稀硝酸溶液中,然后用NaOH溶液调节反应液pH值形成前驱体悬浊液并转入反应釜,再通过水热法制备出了镝掺杂纳米片钨酸铋光催化剂(Dy3+/Bi2WO6)。本发明方法制备工艺简单、使用设备少、能耗低。制备的Dy3+/Bi2WO6光催化活性高,在模拟太阳光氙灯照射下,用0.1g磁性复合光催化剂降解100mL浓度为10mg/L的罗丹明B溶液,105min对罗丹明B的降解率达到99.8%。本发明制备出的产品可广泛用于光催化降解有机污染物领域。

Description

一种制备镝掺杂纳米片钨酸铋光催化剂的方法
技术领域
本发明涉及一种制备镝掺杂纳米片钨酸铋光催化剂(Dy3+/Bi2WO6)的方法,属于无机催化剂技术领域。
背景技术
Bi2WO6具有特殊的层状结构,是Aurivillius家族中最简单氧化物之一,具有光催化活性。Bi2WO6属于正交晶型,是由萤石状的(Bi2O2)n 2+层和钙钛矿状的(WO4)n 2-层沿(100)晶面方向交错叠合而构成的层状化合物。制备Bi2WO6常见的几种方法有:高温固相法、液相合成法、溶胶凝胶法、微乳液法、(微波辅助)水热法、非晶态络合物法等。Bi2WO6半导体催化剂存在一些缺点,如光生载流子的再结合率较高,主要响应紫外光,对可见光有响应微弱。基于此,科研工作者开始了对Bi2WO6光催化剂的改性工作,常见的改性方法有离子掺杂、形貌调控、贵金属负载、构筑异质结等。
目前,对Bi2WO6的研究主要集中在如何提高其光催化活性方面,用稀土元素镝(Dy)掺杂改性Bi2WO6光催化剂活性的研究鲜有报道。如“Applied Catalysis B:Environmental”2009年第92卷中的“Enhanced photocatalytic activity of Bi2WO6 loaded with Agnanoparticles under visible light irradiation”(对比文件1),采用醇热法(乙二醇)制备得到银纳米颗粒负载的Bi2WO6光催化剂,该方法的不足之处在于:(1)合成过程在纯有机溶剂(乙二醇)系统中进行,存在安全隐患,未反应的乙二醇将随水洗过程进入废水中而增加了环境污染源;(2)使用贵金属银,并用纯乙二醇作为溶剂,成本高;(3)通过对E.coli和S.epidermidis灭活效果评价光催化剂的活性,未开展对废水中有机物的降解特性研究。
又如“稀土”2015年35卷第1期“Gd3+、Dy3+掺杂Bi2WO6的合成及光催化脱硫活性的研究”(对比文件2),采用水热法制备了Gd3+、Dy3+掺杂的Bi2WO6光催化剂。该方法的不足之处在于:(1)制备Dy3+掺杂Bi2WO6时,以钨酸铵、硝酸镝、硫脲等为主要原料,酸性环境下可能产生有毒气体硫化氢,同时产生含氨氮的废水(氨氮属于国家水体污染总量控制指标);(2)脱硫效率不高,掺杂后效率提高不明显(开展的是脱出模拟汽油中硫的实验),当汽油中硫初始浓度为586μg/g(0.586mg/g)时,光照3h下,Bi2WO6和Dy3+掺杂Bi2WO6的脱硫率分别约为86%和89%(文中未给出数据,从其中的图5初略估算)。
发明内容
本发明的目的是针对Bi2WO6光催化活性不佳、可见光响应差的问题,提出一种镝对Bi2WO6光掺杂改性制备Dy3+/Bi2WO6光催化剂的方法,制备方法简单、成本低。制备的Dy3+/Bi2WO6光催化剂在模拟太阳光照射下具有较高的光催化效率。
本发明Dy3+/Bi2WO6光催化剂的制备方法如下:
称取4mmol的Bi(NO3)3·5H2O固体于烧杯中,按摩尔比1%-10%称取Dy(NO3)3·5H2O放入扇贝柱,加入40mL浓度为1mol/L的稀硝酸溶液,超声溶解得到无色透明溶液A;称取2mmol的Na2WO4·2H2O于另一烧杯中,加入20mL去离子水充分溶解得到无色透明溶液B;在地磁力搅拌的作用下,将溶液B液缓慢逐滴加入溶液A中,得到白色前驱体悬浊液C;用2mol/L的NaOH溶液精确调节悬浊液C的pH为4.0,继续磁力搅拌1h后,将悬浊液C转移至100mL高压不锈钢反应釜内衬中,将反应釜放入恒温烘箱,160℃下反应时间24h;反应结束,取出反应釜自然冷却至室温,过滤,滤饼用蒸馏水和无水乙醇各洗涤三次后,放入烘箱中,60℃下烘干即得到Dy3+/Bi2WO6光催化剂。
本发明采用上述技术方案,主要有以下效果:
(1)本发明方法制备的Dy3+/Bi2WO6光催化剂具有较高的光催化活性,在模拟太阳光氙灯照射下,0.1g磁性Dy3+/Bi2WO6光催化剂分散于100mL浓度为10mg/L的罗丹明B溶液中,光照105min后对罗丹明B的降解率达到99.8%,远高于未掺杂的Bi2WO6(86.7%)。
(2)本发明方法制备的Dy3+/Bi2WO6光催化剂的带隙为3.28eV(低于未掺杂Bi2WO6的3.40eV),增强了其可见光的响应性;Dy3+/Bi2WO6光催化剂的比表面积为25.2m2/g(大于未掺杂Bi2WO6的21.4m2/g),其制备操作简单,所需设备少,能耗低。
附图说明
图1为Bi2WO6、Dy3+/Bi2WO6的X射线衍射图谱。
图2为Bi2WO6、Dy3+/Bi2WO6的扫描电子显微镜图。
图3为Bi2WO6、Dy3+/Bi2WO6的RhB降解曲线图。
图4为Bi2WO6、Dy3+/Bi2WO6的荧光光谱图。
具体实施方式
下面结合具体实施方式,进一步说明本发明。
实施例1
一种制备Dy3+/Bi2WO6光催化剂的方法,具体步骤如下:
称取4mmol的Bi(NO3)3·5H2O固体于烧杯中,按摩尔比1%称取Dy(NO3)3·5H2O放入扇贝柱,加入40mL浓度为1mol/L的稀硝酸溶液,超声溶解得到无色透明溶液A;称取2mmol的Na2WO4·2H2O于另一烧杯中,加入20mL去离子水充分溶解得到无色透明溶液B;在地磁力搅拌的作用下,将溶液B液缓慢逐滴加入溶液A中,得到白色前驱体悬浊液C;用2mol/L的NaOH溶液精确调节悬浊液C的pH为4.0,继续磁力搅拌1h后,将悬浊液C转移至100mL高压不锈钢反应釜内衬中,将反应釜放入恒温烘箱,160℃下反应时间24h;反应结束,取出反应釜自然冷却至室温,过滤,滤饼用蒸馏水和无水乙醇各洗涤三次后,放入烘箱中,60℃下烘干即得到Dy3+/Bi2WO6光催化剂。
实施例2
一种制备Dy3+/Bi2WO6光催化剂的方法,具体步骤如下:
称取4mmol的Bi(NO3)3·5H2O固体于烧杯中,按摩尔比3%称取Dy(NO3)3·5H2O放入扇贝柱,加入40mL浓度为1mol/L的稀硝酸溶液,超声溶解得到无色透明溶液A;称取2mmol的Na2WO4·2H2O于另一烧杯中,加入20mL去离子水充分溶解得到无色透明溶液B;在地磁力搅拌的作用下,将溶液B液缓慢逐滴加入溶液A中,得到白色前驱体悬浊液C;用2mol/L的NaOH溶液精确调节悬浊液C的pH为4.0,继续磁力搅拌1h后,将悬浊液C转移至100mL高压不锈钢反应釜内衬中,将反应釜放入恒温烘箱,160℃下反应时间24h;反应结束,取出反应釜自然冷却至室温,过滤,滤饼用蒸馏水和无水乙醇各洗涤三次后,放入烘箱中,60℃下烘干即得到Dy3+/Bi2WO6光催化剂。
实施例3
一种制备Dy3+/Bi2WO6光催化剂的方法,具体步骤如下:
称取4mmol的Bi(NO3)3·5H2O固体于烧杯中,按摩尔比5%称取Dy(NO3)3·5H2O放入扇贝柱,加入40mL浓度为1mol/L的稀硝酸溶液,超声溶解得到无色透明溶液A;称取2mmol的Na2WO4·2H2O于另一烧杯中,加入20mL去离子水充分溶解得到无色透明溶液B;在地磁力搅拌的作用下,将溶液B液缓慢逐滴加入溶液A中,得到白色前驱体悬浊液C;用2mol/L的NaOH溶液精确调节悬浊液C的pH为4.0,继续磁力搅拌1h后,将悬浊液C转移至100mL高压不锈钢反应釜内衬中,将反应釜放入恒温烘箱,160℃下反应时间24h;反应结束,取出反应釜自然冷却至室温,过滤,滤饼用蒸馏水和无水乙醇各洗涤三次后,放入烘箱中,60℃下烘干即得到Dy3+/Bi2WO6光催化剂。
实施例4
一种制备Dy3+/Bi2WO6光催化剂的方法,具体步骤如下:
称取4mmol的Bi(NO3)3·5H2O固体于烧杯中,按摩尔比7%称取Dy(NO3)3·5H2O放入扇贝柱,加入40mL浓度为1mol/L的稀硝酸溶液,超声溶解得到无色透明溶液A;称取2mmol的Na2WO4·2H2O于另一烧杯中,加入20mL去离子水充分溶解得到无色透明溶液B;在地磁力搅拌的作用下,将溶液B液缓慢逐滴加入溶液A中,得到白色前驱体悬浊液C;用2mol/L的NaOH溶液精确调节悬浊液C的pH为4.0,继续磁力搅拌1h后,将悬浊液C转移至100mL高压不锈钢反应釜内衬中,将反应釜放入恒温烘箱,160℃下反应时间24h;反应结束,取出反应釜自然冷却至室温,过滤,滤饼用蒸馏水和无水乙醇各洗涤三次后,放入烘箱中,60℃下烘干即得到Dy3+/Bi2WO6光催化剂。
实施例5
一种制备Dy3+/Bi2WO6光催化剂的方法,具体步骤如下:
称取4mmol的Bi(NO3)3·5H2O固体于烧杯中,按摩尔比10%称取Dy(NO3)3·5H2O放入扇贝柱,加入40mL浓度为1mol/L的稀硝酸溶液,超声溶解得到无色透明溶液A;称取2mmol的Na2WO4·2H2O于另一烧杯中,加入20mL去离子水充分溶解得到无色透明溶液B;在地磁力搅拌的作用下,将溶液B液缓慢逐滴加入溶液A中,得到白色前驱体悬浊液C;用2mol/L的NaOH溶液精确调节悬浊液C的pH为4.0,继续磁力搅拌1h后,将悬浊液C转移至100mL高压不锈钢反应釜内衬中,将反应釜放入恒温烘箱,160℃下反应时间24h;反应结束,取出反应釜自然冷却至室温,过滤,滤饼用蒸馏水和无水乙醇各洗涤三次后,放入烘箱中,60℃下烘干即得到Dy3+/Bi2WO6光催化剂。
实验结果
实施例3制备的Dy3+/Bi2WO6光催化剂对罗丹明B的催化降解活性最佳。为了方便对比,制备了Bi2WO6样品。Bi2WO6制备方法为实施例3中不加入Dy(NO3)3·5H2O4
Bi2WO6、Dy3+/Bi2WO6的X射线衍射图谱如图1所示。可见,Dy3+离子掺杂不改变Bi2WO6的晶体结构,即不同掺杂量的样品其特征衍射峰的位置均一致。样品在衍射角2θ=28.3°、32.9°、47.2°、56.0°、58.9°、68.8°、76.5°、79.0°处的特征衍射峰分别与(131)、(200)、(202)、(133)、(262)、(193)、(402)、(462)晶面相对应,所有衍射峰均对应于正交相的Bi2WO6(JCPDSNo.39-0256),晶胞参数为
Figure BDA0002571552350000051
Dy3+/Bi2WO6的晶粒尺寸为16.2nm,小于Bi2WO6的21nm。
Bi2WO6、Dy3+/Bi2WO6的扫描电子显微镜图如图2所示。纯Bi2WO6(图2a)是由分散性良好、不规则且表面光滑的纳米薄片积聚而成,纳米片直径介于250-300nm之间,厚度大约在25-30nm之间;Dy3+/Bi2WO6(图2b)样品也呈现不规则纳米片状,但纳米片尺寸介于150-200nm,厚度约为15nm,且表面不光滑,分散性较差;Dy3+离子掺杂不会改变Bi2WO6的微观形貌,但会抑制Bi2WO6晶体的生长,导致晶粒尺寸变小。
Bi2WO6、Dy3+/Bi2WO6的RhB降解曲线如图3所示。可见,Dy3+/Bi2WO6样品的曲线下降最快,在105min时,其降解率达到99.8%,远高于未掺杂Bi2WO6(86.9%)。
Bi2WO6、Dy3+/Bi2WO6的荧光光谱图如图4所示。可以看出,两者的PL光谱曲线相似,但Dy3+掺杂Bi2WO6的荧光发射峰强度明显低于纯相的Bi2WO6,导致Bi2WO6纳米片表面产生更多缺陷位点或氧空位,使得光生电子容易迁移至这些新位点,进而降低了光生载流子的复合几率;较低的光生载流子结合率意味着更高的光催化活性,这与光催化测试结果是一致的。

Claims (2)

1.一种制备镝掺杂纳米片钨酸铋光催化剂的方法,其特征在于包括以下步骤:
称取4mmol的Bi(NO3)3·5H2O固体于烧杯中,按摩尔比1%-10%称取Dy(NO3)3·5H2O放入扇贝柱,加入40mL浓度为1mol/L的稀硝酸溶液,超声溶解得到无色透明溶液A;称取2mmol的Na2WO4·2H2O于另一烧杯中,加入20mL去离子水充分溶解得到无色透明溶液B;在地磁力搅拌的作用下,将溶液B液缓慢逐滴加入溶液A中,得到白色前驱体悬浊液C;用2mol/L的NaOH溶液精确调节悬浊液C的pH为4.0,继续磁力搅拌1h后,将悬浊液C转移至100mL高压不锈钢反应釜内衬中,将反应釜放入恒温烘箱,160℃下反应时间24h;反应结束,取出反应釜自然冷却至室温,过滤,滤饼用蒸馏水和无水乙醇各洗涤三次后,放入烘箱中,60℃下烘干即得到镝掺杂纳米片钨酸铋光催化剂。
2.根据权利要求1所述的镝掺杂纳米片钨酸铋光催化剂的制备方法,其特征在于以水热法制备,提高了钨酸铋的光催化活性。
CN202010641215.7A 2020-07-06 2020-07-06 一种制备镝掺杂纳米片钨酸铋光催化剂的方法 Pending CN111774053A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010641215.7A CN111774053A (zh) 2020-07-06 2020-07-06 一种制备镝掺杂纳米片钨酸铋光催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010641215.7A CN111774053A (zh) 2020-07-06 2020-07-06 一种制备镝掺杂纳米片钨酸铋光催化剂的方法

Publications (1)

Publication Number Publication Date
CN111774053A true CN111774053A (zh) 2020-10-16

Family

ID=72758959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010641215.7A Pending CN111774053A (zh) 2020-07-06 2020-07-06 一种制备镝掺杂纳米片钨酸铋光催化剂的方法

Country Status (1)

Country Link
CN (1) CN111774053A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573420A (zh) * 2022-03-21 2022-06-03 青岛科技大学 一种利用热释电场提高Bi2WO6催化剂光催化转化二氧化碳为甲醇的策略

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872774A (zh) * 2011-07-11 2013-01-16 张�林 二氧化钛(壳)-掺杂物(核)复合材料及其制备方法
CN104383914A (zh) * 2014-10-27 2015-03-04 延安大学 一种Eu3+掺杂γ-Bi2MoO6光催化剂及其制备方法
CN108479759A (zh) * 2018-04-24 2018-09-04 吉林建筑大学 一种可见光响应型镧掺杂钨酸铋催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872774A (zh) * 2011-07-11 2013-01-16 张�林 二氧化钛(壳)-掺杂物(核)复合材料及其制备方法
CN104383914A (zh) * 2014-10-27 2015-03-04 延安大学 一种Eu3+掺杂γ-Bi2MoO6光催化剂及其制备方法
CN108479759A (zh) * 2018-04-24 2018-09-04 吉林建筑大学 一种可见光响应型镧掺杂钨酸铋催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
甄延忠等: "Gd3+、Dy3+掺杂Bi2WO6的合成及光催化脱硫活性的研究", 《稀土》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573420A (zh) * 2022-03-21 2022-06-03 青岛科技大学 一种利用热释电场提高Bi2WO6催化剂光催化转化二氧化碳为甲醇的策略

Similar Documents

Publication Publication Date Title
Singh et al. Highly sensitive gas sensor based on Er-doped SnO2 nanostructures and its temperature dependent selectivity towards hydrogen and ethanol
Patial et al. Tunable photocatalytic activity of SrTiO3 for water splitting: strategies and future scenario
Gu et al. Manipulating the defect structure (VO) of In2O3 nanoparticles for enhancement of formaldehyde detection
Ghiyasiyan-Arani et al. Effect of Li2CoMn3O8 nanostructures synthesized by a combustion method on montmorillonite K10 as a potential hydrogen storage material
Liu et al. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation
Sun et al. Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation
Chen et al. Magnetic recyclable lanthanum-nitrogen co-doped titania/strontium ferrite/diatomite heterojunction composite for enhanced visible-light-driven photocatalytic activity and recyclability
Bai et al. High-efficiency TiO2/ZnO nanocomposites photocatalysts by sol–gel and hydrothermal methods
CN108311164B (zh) 一种铁改性光催化材料及其制备方法和应用
Li et al. Enhanced photocatalytic activity of Fe2O3 decorated Bi2O3
Li et al. Synthesis of La doped Bi 2 WO 6 nanosheets with high visible light photocatalytic activity
Zhang et al. Synthesis of Er3+/Zn2+ co-doped Bi2WO6 with highly efficient photocatalytic performance under natural indoor weak light illumination
Ansari et al. Effect of cobalt doping on structural, optical and redox properties cerium oxide nanoparticles
Das et al. Narrow band gap reduced TiO2-B: Cu nanowire heterostructures for efficient visible light absorption, charge separation and photocatalytic degradation
Arul Hency Sheela et al. Structural, Morphological and Optical Properties of ZnO, ZnO: Ni 2+ and ZnO: Co 2+ Nanostructures by Hydrothermal Process and Their Photocatalytic Activity
Wang et al. Synthesis and their photocatalytic properties of Ni-doped ZnO hollow microspheres
Xia et al. Optimal rare-earth (La, Y and Sm) doping conditions and enhanced mechanism for photocatalytic application of ceria nanorods
Hou et al. One-step synthesis of OH-TiO2/TiOF2 nanohybrids and their enhanced solar light photocatalytic performance
Kumar et al. B-doped SnO2 nanoparticles: a new insight into the photocatalytic hydrogen generation by water splitting and degradation of dyes
Zhang et al. Preparation and photocatalytic application of AgBr modified Bi 2 WO 6 nanosheets with high adsorption capacity
CN107486213B (zh) 一种中空BiVO4微米片光催化剂的制备方法
Sheikhsamany et al. Synthesis of BaTi0. 85Zr0. 15O3/ZIF-8 nanocomposite with the photocatalytic capability for degradation of tetracycline
Deng et al. Hydrothermal Synthesis of Bi‐Doped WO3⋅ 0.5 H2O Material with Tetragonal Pyramid‐Like Structure and Its Enhanced Photocatalytic Activity
Sharma et al. Photocatalytic studies of Zn-doped and (Y, Zn)-co-doped CeO2/CdS heterostructures for the removal of crystal violet dye
Moreno et al. The relationship between photoluminescence emissions and photocatalytic activity of CeO2 nanocrystals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201016