CN107779849A - 窄带吸收银/二氧化钛薄膜全息材料及制备方法和应用 - Google Patents

窄带吸收银/二氧化钛薄膜全息材料及制备方法和应用 Download PDF

Info

Publication number
CN107779849A
CN107779849A CN201710981715.3A CN201710981715A CN107779849A CN 107779849 A CN107779849 A CN 107779849A CN 201710981715 A CN201710981715 A CN 201710981715A CN 107779849 A CN107779849 A CN 107779849A
Authority
CN
China
Prior art keywords
silver
titanium dioxide
thin film
holographic material
dioxide thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710981715.3A
Other languages
English (en)
Other versions
CN107779849B (zh
Inventor
付申成
王欣浓
张昕彤
刘益春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Northeast Normal University
Original Assignee
Northeast Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Normal University filed Critical Northeast Normal University
Priority to CN201710981715.3A priority Critical patent/CN107779849B/zh
Publication of CN107779849A publication Critical patent/CN107779849A/zh
Application granted granted Critical
Publication of CN107779849B publication Critical patent/CN107779849B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/166Process features with two steps starting with addition of reducing agent followed by metal deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1667Radiant energy, e.g. laser
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2437Non-metallic elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Holo Graphy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本发明窄带吸收银/二氧化钛薄膜全息材料及制备方法和应用,避光条件下,将二氧化钛薄膜浸渍于单宁酸溶液中,得到附着有单宁酸的二氧化钛薄膜;避光条件下,将附着有单宁酸的二氧化钛薄膜浸没在硝酸银溶液中,在30℃的水浴中浸泡10min,得到银/二氧化钛薄膜;可见激光照射下,将处理后的银/二氧化钛薄膜浸渍于硝酸银溶液中,得到激光与单宁酸共同作用的银/二氧化钛薄膜,即为所述银/二氧化钛薄膜全息材料。本发明提供的全息材料为银/二氧化钛薄膜材料,在可见激光和单宁酸的共同作用下可以快速地获得高效的窄带的银纳米粒子等离子体吸收,用来实现短波光的快速、高效的全息光存储。通过偏振通道分割彩色信息,实现彩色全息图像重现。

Description

窄带吸收银/二氧化钛薄膜全息材料及制备方法和应用
技术领域
本发明窄带吸收银/二氧化钛薄膜全息材料及制备方法和应用,属于光学信息存储材料制备领域。
背景技术
能源的高效利用是目前解决的关键问题。作为一种重要的能源,光能的转化已经在光催化,太阳能电池,生物技术和数据存储领域引起了广泛的关注。近年来,大容量的光存储已经成为信息技术的重要需求,可通过全息技术来实现。提高全息存储的速率和效率一直是应用中的热点问题,可以通过优化记录介质的吸收性能来实现。贵金属纳米粒子由于它们的局域表面等离子体共振特性而被用作高效的光电转换介质。光生电子在由贵金属纳米粒子和半导体构成的纳米复合体系中转移,可被用于高性能的纳米器件。在TiO2纳米多孔薄膜中沉积Ag纳米粒子具有优异的热稳定性和颜色调节能力。Ag/TiO2纳米复合薄膜具有与照射光呈现相同的颜色能力,其光致变色行为是与Ag纳米粒子的尺寸和形状相关。在单色光照射下Ag纳米粒子的多样性阻碍了单色光的溶解。虽然紫外还原法、介孔模板法和溶胶-凝胶法得到了广泛的应用,但尺寸均一的贵金属纳米颗粒仍然很难得到,而尺寸均一的贵金属纳米粒子对等离子体在光能量转换中的应用至关重要。
综上,亟需提供一种新方法来改善等离子体纳米粒子较低的单色光灵敏度,以获得高效的全息存储和信息再现,发挥其在光信息处理中的重要作用。
发明内容
本发明的目的是提供窄带吸收银/二氧化钛薄膜全息材料及制备方法和应用,本发明提供的全息材料为银/二氧化钛薄膜全息材料,在可见激光和单宁酸的共同作用下可以快速地获得高效的窄带的银纳米粒子等离子体吸收,用来实现单色光波的快速、高效的全息光存储,通过偏振通道分割彩色信息,实现彩色全息图像重现。
本发明所提供的窄带吸收银/二氧化钛薄膜全息材料的制备方法,包括如下步骤:
步骤一、避光条件下,将二氧化钛薄膜浸渍于单宁酸溶液中,得到附着有单宁酸的二氧化钛薄膜;
步骤二、避光条件下,将步骤一中得到的附着有单宁酸的二氧化钛薄膜浸没在硝酸银溶液中,在30℃的水浴中浸泡10min,得到银/二氧化钛薄膜;
步骤三、可见激光照射下,将步骤二处理后的银/二氧化钛薄膜浸渍于硝酸银溶液中,得到激光与单宁酸共同作用的银/二氧化钛薄膜,即为所述银/二氧化钛薄膜全息材料。
上述的制备方法中,步骤一中,所述单宁酸溶液中,单宁酸的摩尔浓度可为0.002mol/L~0.004mol/L;
所述单宁酸溶液呈墨绿色状;
需要避光保存所述单宁酸溶液。
上述的制备方法中,步骤一中,所述浸渍的条件如下:
温度为20℃~28℃;
时间为1h~5h;
所述浸渍结束后,采用空气吹干所述二氧化钛薄膜;
经步骤一得到附着单宁酸的浅黄色的二氧化钛薄膜。
上述的制备方法中,步骤二中,所述硝酸银溶液的溶剂为水与乙醇的混合液;
所述乙醇与所述水的体积比为1:(1~100),具体为1:1;
所述硝酸银溶液中,硝酸银的摩尔浓度为0.1mol/L~0.5mol/L,具体为0.1mol/L。
上述的制备方法中,步骤三中,所述可见激光照射的条件如下:
激光波长为400nm~700nm,具体为405nm;功率为10mw~50mw,具体为30mw;
时间为1min~30min,具体为1min,3min,5min,7min,10min和15min;
所述可见激光照射结束后,直接用镊子将所述银/二氧化钛薄膜全息材料取出,利用纯净水对其进行漂洗,采用空气吹干后,双层包裹置于黑暗条件下,避光保存,备用;
双层包裹的内层用擦镜纸包裹,外层用锡纸包裹。
上述的制备方法中,采用提拉浸渍法制备所述二氧化钛薄膜;
所述提拉浸渍法的条件如下:
采用的混合溶液由二氧化钛溶液、造孔剂溶液与乙醇混合得到;
所述二氧化钛溶液由TiO2溶胶分散于水中经搅拌均匀得到,如TiO2溶胶10mL原液与20mL纯净水混合;
所述造孔剂溶液采用P123(PEO20-PPO70-PEO20)嵌段共聚物的水溶液,如将1.6gP123高分子凝固态溶于15mL水中,长时间(约2h~3h)磁力搅拌至均匀溶解,至此得到造孔剂溶液;
所述二氧化钛溶液与所述造孔剂溶液的总体积与乙醇的体积比为3:2;
提膜速度为2cm/s~5cm/s,具体为2cm/s;
停留时间为5s~10s,具体为8s;
二氧化钛薄膜提出后依次进行红外灯照射和烘烤,如进行红外灯照射2min~3min,然后置于120℃的烘箱中烘5min,重复3次所述提拉膜,红外灯照射及烘箱烘烤的步骤。
上述的制备方法中,所述提拉浸渍法后,还包括对所述二氧化钛薄膜进行退火的步骤;
所述退火的温度为450℃~500℃;
经所述退火处理后将所述二氧化钛薄膜取出置于室内冷却至室温,最终得到稳定无色透明、疏松多孔的二氧化钛薄膜。
上述方法制备得到的银/二氧化钛薄膜全息材料也属于本发明的保护范围。
上述方法制备得到的银/二氧化钛薄膜全息材料进行吸收光谱测试与全息存储测试应用,
(a)采用紫外-可见吸收光谱仪测试所述银/二氧化钛薄膜全息材料;
(b)采用银/二氧化钛薄膜全息材料为存储介质,进行蓝光的全息存储。
上述方法制备得到的银/二氧化钛薄膜全息材料进行彩色全息再现应用,
(a)通过偏振通道分割彩色信息,得到两幅以上全息图,且每幅全息图的颜色一致;
(b)将步骤(a)中各幅全息图在所制备的银/二氧化钛薄膜全息材料的同一点通过使用正交圆偏振装置顺序记录,通过引进具有不同颜色和圆偏振态的读出光来实现复合全息图的彩色再现。
通过上述设计方案,本发明可以带来如下有益效果:
本发明基于可见激光和单宁酸的共同作用,制备出银/二氧化钛薄膜全息材料,与现有方法制备的银/二氧化钛薄膜吸收光谱图相比,本发明方法所制备的银/二氧化钛薄膜全息材料具有更强的窄带吸收,可以快速地获得高效的窄带的银纳米粒子等离子体吸收,与现有方法制备的银/二氧化钛薄膜的蓝光全息存储的光栅生长动力学曲线图相比,本发明方法所制备的银/二氧化钛薄膜全息材料适用于蓝光的快速、高效的全息存储。通过偏振通道分割彩色信息,得到两幅以上全息图,且每幅全息图的颜色一致;再将各幅全息图在本发明提供的方法制备的银/二氧化钛薄膜全息材料的同一点通过使用正交圆偏振装置顺序记录,通过引进具有不同颜色和圆偏振态的读出光来实现复合全息图的彩色再现。
附图说明
下面结合附图说明和具体实施方式对本发明作进一步说明:
图1为本发明制备银/二氧化钛薄膜全息材料的制备流程图。
图2对照实验基于单宁酸溶液单独作用还原的银/二氧化钛薄膜的吸收光谱图。
图3对照实验基于激光单独作用还原的银/二氧化钛薄膜的吸收光谱图。
图4为本发明所制备的银/二氧化钛薄膜全息材料吸收光谱图。
图5为发明所制备的银/二氧化钛薄膜全息材料和对照实验的吸收光谱对比图。
图6为本发明所制备的银/二氧化钛薄膜全息材料和对照实验的全息动力学曲线。
图7为本发明所制备银/二氧化钛薄膜全息材料进行彩色全息的装置示意图和彩色全息再现图(分别为图7(a)、图7(b)及图7(c))。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
按照图1所示的流程图制备银/二氧化钛薄膜全息材料。
步骤一、制备二氧化钛薄膜
取TiO2溶胶10mL原液与20mL纯净水放入烧杯中,磁力搅拌至混合均匀,配制出二氧化钛溶液。取P123(PEO20-PPO70-PEO20)嵌段共聚物凝固态1.6g置于另一烧杯中,加入15mL纯净水,长时间(约2h)磁力搅拌至均匀溶解为液态,至此得到造孔剂溶液。将二氧化钛溶液和造孔剂溶液混合,磁力搅拌1h后至混合均匀,取出30mL,而后加入20mL乙醇,保证两者的体积比为3:2即可。将上述得到的TiO2/P123混合溶液置于烧杯中利用提膜机在玻璃衬底上提膜。提膜速度为2cm/s,停留时间为8s。薄膜提出后马上用红外灯照2min~3min,之后放入120℃烘箱烘5min,使二氧化钛薄膜能够固化在玻璃衬底上,重复3次提膜烘烤后,放入电炉加热(温度为500℃)进行退火处理。500℃下P123完全分解挥发,TiO2会围绕其周围形成一个空洞,最终形成利于后续Ag粒子生长的环境,经过退火处理后将二氧化钛薄膜取出置于室内冷却至室温,最终得到稳定无色透明、疏松多孔的二氧化钛薄膜。
步骤二、配制pH值为8.5的单宁酸溶液
在室温下,称取分子量为1701.2的单宁酸0.1361g置于烧杯中,而后加入40mL纯净水,磁力搅拌至均匀溶解,配制出0.009mol/L的碳酸钾溶液,磁力搅拌至均匀溶解,配制成单宁酸溶液和碳酸钾溶液的混合液;通过pH计测定混合液的pH值,调节pH值至8.5,溶液变成墨绿色,稍后将溶液避光保存。
步骤三、制备附着有单宁酸的二氧化钛薄膜
在室温下,将步骤一得到的二氧化钛薄膜浸没在步骤二配制的单宁酸溶液中2h,用锡纸覆盖于培养皿上,使二氧化钛薄膜在避光条件下浸泡,后用镊子将二氧化钛薄膜取出,将其用空气进行吹干,得到附着有单宁酸的淡黄色透明的二氧化钛薄膜。
步骤四、配制硝酸银溶液
称取0.85g的硝酸银固体颗粒,将硝酸银固体颗粒溶入25mL纯净水中置于磁力搅拌器上进行搅拌,搅拌均匀后,将25mL乙醇加入其中,得到透明的硝酸银溶液,其中硝酸银的摩尔浓度为0.1mol/L。
步骤五、水浴加热方法得到银/二氧化钛薄膜
将步骤三中得到的附着有单宁酸的二氧化钛薄膜浸没在经步骤四所配制的硝酸银溶液中,在30℃的水浴中加热10min,二氧化钛薄膜由淡黄色透明变为浅棕色的银/二氧化钛薄膜。
步骤六、可见激光还原法高效的窄带的银/二氧化钛薄膜
将步骤五中得到银/二氧化钛薄膜浸渍于步骤四所配制的硝酸银溶液中,可将激光照(30mW)不同时间促使高浓度银离子的还原,结束后立即用镊子将其取出,利用纯净水对其进行漂洗,将其用空气进行吹干后,得到棕色银/二氧化钛薄膜,即为银/二氧化钛薄膜全息材料,将银/二氧化钛薄膜全息材料采用双层包裹置于黑暗条件下,避光保存,备用;其中双层包裹的内层为擦镜纸包裹,外层为锡纸包裹。
上述方法制备得到的银/二氧化钛薄膜全息材料进行吸收光谱测试与全息存储测试应用,
对银/二氧化钛薄膜全息存储材料进行吸收光谱测试与全息存储测试
(a)利用紫外-可见吸收光谱仪测试经上述步骤得到的银/二氧化钛薄膜全息材料,单宁酸单独作用还原的银/二氧化钛薄膜和激光单独作用还原的银/二氧化钛薄膜的吸收光谱,采用洛伦兹模型对吸收光谱进行拟合,吸收峰与单峰宽的比值R用来表示吸收带的性质;具体请见图2、图3、图4及图5,图2、图3、图4及图5为本发明及对照实验制备的银/二氧化钛薄膜的吸收光谱图和洛伦兹拟合结果。在该图像中,观测吸收曲线的形状及分布,验证本发明制备的银/二氧化钛薄膜全息材料具有强的窄带吸收。
(b)采用以上步骤中得到的银/二氧化钛薄膜全息材料为存储介质,进行蓝光的全息存储。如图6所示,图6为基于本发明制备的银/二氧化钛薄膜全息材料的蓝光全息存储的光栅生长动力学曲线图。此曲线图证实了,本发明提供的方法制备的银/二氧化钛薄膜全息材料适用于蓝光的快速、高效的全息存储。
上述方法制备得到的银/二氧化钛薄膜全息材料进行彩色全息再现应用,通过偏振通道分割彩色信息,得到两幅以上全息图,且每幅全息图的颜色一致;将各幅全息图在所制备的银/二氧化钛薄膜全息材料的同一点通过使用正交圆偏振装置顺序记录,通过引进具有不同颜色和圆偏振态的读出光来实现复合全息图的彩色再现。
如图7所示(详见图7(a)、图7(b)及图7(c)),采用473nm激光作为写入光,物光为右旋圆偏振光,参考光为左旋圆偏振光时记录花形状的图案,物光为左旋圆偏振光,参考光为右旋圆偏振光时记录叶形状的图案。采用532nm和671nm激光作为读出光,偏振态分别右旋圆偏振光和左旋圆偏振光,同时读出红色花和绿色叶的全息图。使用彩色数字相机用于再现彩色全息图。

Claims (10)

1.窄带吸收银/二氧化钛薄膜全息材料制备方法,其特征在于,包括如下步骤:
步骤一、避光条件下,将二氧化钛薄膜浸渍于单宁酸溶液中,得到附着有单宁酸的二氧化钛薄膜;
步骤二、避光条件下,将步骤一中得到的附着有单宁酸的二氧化钛薄膜浸没在硝酸银溶液中,在30℃的水浴中浸泡10min,得到银/二氧化钛薄膜;
步骤三、可见激光照射下,将经步骤二处理后的银/二氧化钛薄膜浸渍于硝酸银溶液中,得到激光与单宁酸共同作用的银/二氧化钛薄膜,即为所述银/二氧化钛薄膜全息材料。
2.根据权利要求1所述的窄带吸收银/二氧化钛薄膜全息材料制备方法,其特征在于:步骤一中,所述单宁酸溶液中,单宁酸的摩尔浓度为0.002mol/L~0.004mol/L。
3.根据权利要求1所述的窄带吸收银/二氧化钛薄膜全息材料制备方法,其特征在于:步骤一中,所述浸渍的条件如下:
温度为20℃~28℃;
时间为1h~5h;
所述浸渍结束后,采用空气吹干所述附着有单宁酸的二氧化钛薄膜。
4.根据权利要求1-3中任一项所述的窄带吸收银/二氧化钛薄膜全息材料制备方法,其特征在于:步骤二中,所述硝酸银溶液的溶剂为水与乙醇的混合液;
所述乙醇与所述水的体积比为1:(1~100);
所述硝酸银溶液中,硝酸银的摩尔浓度为0.1mol/L~0.5mol/L。
5.根据权利要求4所述的窄带吸收银/二氧化钛薄膜全息材料制备方法,其特征在于:步骤三中,所述可见激光照射的条件如下:
激光波长为400nm~700nm,功率为10mw~50mw;
时间为1min~30min;
所述可见激光照射结束后,直接用镊子将所述银/二氧化钛薄膜全息存储材料取出,利用纯净水对其进行漂洗,采用空气吹干后,双层包裹置于黑暗条件下,避光保存,备用。
6.根据权利要求5所述的窄带吸收银/二氧化钛薄膜全息材料制备方法,其特征在于:采用提拉浸渍法制备所述二氧化钛薄膜;
所述提拉浸渍法的条件如下:
提膜速度为2cm/s~5cm/s;
停留时间为5s~10s;
二氧化钛薄膜提出后依次进行红外灯照射和烘烤。
7.根据权利要求6所述的窄带吸收银/二氧化钛薄膜全息材料制备方法,其特征在于:所述提拉浸渍法后,还包括对所述二氧化钛薄膜进行退火的步骤:
所述退火的温度为450℃~500℃。
8.根据权利要求7所述窄带吸收银/二氧化钛薄膜全息材料制备方法制备的银/二氧化钛薄膜全息材料。
9.银/二氧化钛薄膜全息材料进行吸收光谱测试与全息存储测试应用,其特征在于,采用权利要求8所述的银/二氧化钛薄膜全息材料进行测试应用:
(a)采用紫外-可见吸收光谱仪测试所述银/二氧化钛薄膜全息存储材料;
(b)采用银/二氧化钛薄膜全息材料为存储介质,进行蓝光的全息存储。
10.银/二氧化钛薄膜全息材料进行彩色全息再现应用,其特征在于,该彩色全息再现应用采用权利要求8所述的银/二氧化钛薄膜全息材料,
(a)通过偏振通道分割彩色信息,得到两幅以上全息图,且每幅全息图的颜色一致;
(b)将步骤(a)中各幅全息图在所制备的银/二氧化钛薄膜全息材料的同一点通过使用正交圆偏振装置顺序记录,通过引进具有不同颜色和圆偏振态的读出光来实现复合全息图的彩色再现。
CN201710981715.3A 2017-10-20 2017-10-20 窄带吸收银/二氧化钛薄膜全息材料及制备方法和应用 Active CN107779849B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710981715.3A CN107779849B (zh) 2017-10-20 2017-10-20 窄带吸收银/二氧化钛薄膜全息材料及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710981715.3A CN107779849B (zh) 2017-10-20 2017-10-20 窄带吸收银/二氧化钛薄膜全息材料及制备方法和应用

Publications (2)

Publication Number Publication Date
CN107779849A true CN107779849A (zh) 2018-03-09
CN107779849B CN107779849B (zh) 2019-01-11

Family

ID=61435028

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710981715.3A Active CN107779849B (zh) 2017-10-20 2017-10-20 窄带吸收银/二氧化钛薄膜全息材料及制备方法和应用

Country Status (1)

Country Link
CN (1) CN107779849B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346110A (zh) * 2018-10-29 2019-02-15 东北师范大学 应用于彩色全息存储的碳基纳米复合薄膜及其制造方法
CN111069624A (zh) * 2019-12-30 2020-04-28 东北师范大学 一种偏振敏感且抗紫外线擦除的银纳米结构制备方法及应用
CN111547760A (zh) * 2020-05-11 2020-08-18 东北师范大学 氧化物衬底原位生长银纳米棒的制备方法及应用
CN112980424A (zh) * 2021-02-04 2021-06-18 东北师范大学 低功率写入下的快速光致变色全息存储材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810031A (zh) * 2015-05-12 2015-07-29 东北师范大学 用于蓝光全息存储的银/二氧化钛薄膜材料的制备方法
CN106981295A (zh) * 2017-05-12 2017-07-25 东北师范大学 一种可抗紫外线擦除的全息存储材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810031A (zh) * 2015-05-12 2015-07-29 东北师范大学 用于蓝光全息存储的银/二氧化钛薄膜材料的制备方法
CN106981295A (zh) * 2017-05-12 2017-07-25 东北师范大学 一种可抗紫外线擦除的全息存储材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QIAN QIAO等: "Formation of holographic fringes on photochromic Ag_TiO2 nanocomposite films", 《APPLIED PHYSICS LETTERS》 *
SHENCHENG FU等: "Polarization-dependent and rewritable holographic gratings in AgTiO2 nanocomposite films", 《OPTICSCOMMUNICATIONS》 *
孙世宇: "Ag/TiO2纳米复合薄膜的偏振全息储存以及Ag纳米粒子光致变色影响因素研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346110A (zh) * 2018-10-29 2019-02-15 东北师范大学 应用于彩色全息存储的碳基纳米复合薄膜及其制造方法
CN111069624A (zh) * 2019-12-30 2020-04-28 东北师范大学 一种偏振敏感且抗紫外线擦除的银纳米结构制备方法及应用
CN111069624B (zh) * 2019-12-30 2023-02-03 东北师范大学 一种偏振敏感且抗紫外线擦除的银纳米结构制备方法及应用
CN111547760A (zh) * 2020-05-11 2020-08-18 东北师范大学 氧化物衬底原位生长银纳米棒的制备方法及应用
CN111547760B (zh) * 2020-05-11 2022-08-09 东北师范大学 氧化物衬底原位生长银纳米棒的制备方法及应用
CN112980424A (zh) * 2021-02-04 2021-06-18 东北师范大学 低功率写入下的快速光致变色全息存储材料的制备方法
CN112980424B (zh) * 2021-02-04 2023-12-26 东北师范大学 低功率写入下的快速光致变色全息存储材料的制备方法

Also Published As

Publication number Publication date
CN107779849B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN107779849B (zh) 窄带吸收银/二氧化钛薄膜全息材料及制备方法和应用
CN104810031B (zh) 用于蓝光全息存储的银/二氧化钛薄膜材料的制备方法
Parola et al. Optical properties of hybrid organic‐inorganic materials and their applications
Naoi et al. TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior
Chen et al. Synthesis and performance of ZnO quantum dots water-based fluorescent ink for anti-counterfeiting applications
Aldeek et al. Enhanced photostability from CdSe (S)/ZnO core/shell quantum dots and their use in biolabeling
Tatsuma Plasmonic photoelectrochemistry: functional materials based on photoinduced reversible redox reactions of metal nanoparticles
CN109346110B (zh) 应用于彩色全息存储的碳基纳米复合薄膜及其制造方法
CN110452403B (zh) 一种柔性纳米复合全息存储薄膜、薄膜制备方法及应用
CN106981295B (zh) 一种可抗紫外线擦除的全息存储材料及其制备方法
US7972539B2 (en) Process for producing metallic-nanoparticle inorganic composite and metallic-nanoparticle inorganic composite
JP6065528B2 (ja) 遷移金属酸化物及び水溶性高分子化合物を含有する複合膜
Channei et al. Cerium dioxide thin films using spin coating
Bicchieri et al. Newly Developed Nano‐Calcium Carbonate and Nano‐Calcium Propanoate for the Deacidification of Library and Archival Materials
Wei et al. Three‐Dimensional Structures of Nanoporous NiO/ZnO Nanoarray Films for Enhanced Electrochromic Performance
Fu et al. Grading patterning perovskite nanocrystal-polymer composite films for robust multilevel information encryption and decryption
Xie et al. Hydrogen activity tuning of Pt-doped WO3 photonic crystal
Zhang et al. Thermally Enhanced Visible‐Light Photochromism of Phosphomolybdic Acid–Polyvinylpyrrolidone Hybrid Films
CN105932164A (zh) 硫处理提高钙钛矿膜稳定性的方法
CN107758726A (zh) 一种可用于深紫外极弱光探测高纯纳米结构ZnGa2O4的制备方法
CN112980424B (zh) 低功率写入下的快速光致变色全息存储材料的制备方法
CN102516579A (zh) 聚乙烯醇嵌裹银纳米颗粒复合薄膜的制备方法
CN101544475B (zh) 一种弱激发光致变色MoO3空心微球薄膜的制备方法
CN104007596B (zh) 一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜及制备方法
CN108182952B (zh) 提高衍射效率的复合全息存储薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant