CN104007596B - 一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜及制备方法 - Google Patents

一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜及制备方法 Download PDF

Info

Publication number
CN104007596B
CN104007596B CN201410260193.4A CN201410260193A CN104007596B CN 104007596 B CN104007596 B CN 104007596B CN 201410260193 A CN201410260193 A CN 201410260193A CN 104007596 B CN104007596 B CN 104007596B
Authority
CN
China
Prior art keywords
film
silver
gold
golden
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410260193.4A
Other languages
English (en)
Other versions
CN104007596A (zh
Inventor
赵翠华
杜君莉
陈建华
李玉琼
梁天权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN201410260193.4A priority Critical patent/CN104007596B/zh
Publication of CN104007596A publication Critical patent/CN104007596A/zh
Application granted granted Critical
Publication of CN104007596B publication Critical patent/CN104007596B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明公开了一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜及制备方法。以仲丁醇铝、异丙醇、乙酰乙酸乙酯、蒸馏水、硝酸银、四水合氯金酸为原料,采用溶胶‑凝胶法合成化学计量比准确、成分均匀的前躯体溶胶,然后采用匀胶机在玻璃基片上进行涂膜,退火后得到薄膜。本发明优点:1.本发明的方法操作方便,制备周期短、节省能源、成本低、能够精确控制薄膜的化学计量比。2.采用本发明方法能够精确控制AgaAub/(Al2O3)(1‑a‑b)薄膜的化学计量比,银、金两种颗粒都以单质金属状态均匀分布在薄膜中,增加了光非线性吸收的范围,具有优良的非线性光学性质。

Description

一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄 膜及制备方法
技术领域
本发明属于金属纳米颗粒与金属氧化物复合材料领域,具体是一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜及制备方法。
背景技术
金属纳米颗粒分散氧化物复合薄膜是一种优良的三阶非线性光学材料。由于金属颗粒的表面等离子共振和局域场增强效应,使得复合薄膜在特定波长范围内具有较强的光吸收、极快的响应时间和非常高的非线性系数。这些显著的非线性光学性能使这类复合薄膜材料在光波分离器﹑光开关、光探测器、光调制器、光计算以及光纤通信方面具有潜在的应用价值,并且成为非线性光学研究领域的前沿课题。
金属纳米颗粒复合薄膜的非线性光学性质不仅依赖于金属纳米颗粒,而且还与基体有关。由于基体材料的折射率不同,选择不同的基体材料可以调节纳米金属复合薄膜的光学共振带。目前已报道的基体材料主要有SiO2、TiO2、CeO、In2O3、Lu2O3、Bi2O3、V2O5、NiO、BaO、Nd2O3、La2O3、BaTiO3及ZnO等。在这个领域研究最多的是一种纯金属颗粒分散氧化物薄膜,比如Au/SiO2,Ag/SiO2、Au/ZnO、Ag/NiO等。为了获得更好的非线性光学性能,一方面,人们通过优化复合薄膜中金属颗粒的大小、形状、分布、以及掺杂浓度等来实现;另一方面,人们尝试改变复合薄膜的研究体系。目前金属纳米颗粒非线性光学复合薄膜研究体系已由一元扩展到二元。但是所报道的二元体系金属纳米颗粒复合薄膜中,金属颗粒大多数以合金的形式存在。B.Prével等采用laser vaporization法制备了Au,Ag以及Au-Ag合金分散在多孔氧化铝基体上的复合薄膜,颗粒大小在2-6.7nm之间。AuN、(Au0.5Ag0.5)N和AgN吸收带分别在2.4eV、2.6eV和2.9eV处,即(Au0.5Ag0.5)N的吸收带在纯Au和纯Ag之间[B.Prével etal.Scripta materialia44(2001)1235-1238]。Shi H H.等采用凝胶凝-胶法制备了Au、Ag以合金颗粒的形式存在的AgxAu1-x/SiO2复合薄膜,薄膜在波长492nm处出现了表面等离子共振吸收峰,相对于Au/SiO2薄膜发生了蓝移(524nm),相对于Ag/SiO2薄膜发生了红移(400nm)[Shi H Z.et al.Journal of Applied Physics 87(2000)1572-1574]。P.Sangpour等通过射频溅射法研究了Au-Ag合金分散SiO2薄膜的合成。薄膜在Ar+H2的还原气氛中退火时,随着温度从400℃升高到800℃,光吸收峰从400nm红移到450nm。[P.Sangpour.et al.AppliedSurface Science253(2007)7438-7442]。G..Sural等采用化学沉积的方法成功制备了Ag-Au/SiO2和Ag-Au/PbO-SiO2薄膜,薄膜中Ag、Au以合金颗粒的形式存在,颗粒直径为8~35nm,这种薄膜只有一个吸收峰,吸收峰的位置在纯Ag(410nm)和纯Au(525nm)之间,并且随Ag、Au的摩尔比的变化发生移动[G.Sural.et al.Journal of Materials Science38(2003)1645-1651]。上述文献中,制备的银金分散氧化物复合薄膜中,银、金都以合金形式存在。近几年来,出现了以单质形式存在的二元金属纳米颗粒复合薄膜。在所报道的二元单质纳米颗粒复合薄膜中,Ag和Au纳米颗粒都是以层状的结构分布。研究者采用多靶磁控溅射法,制备出了具有层状结构的铜银和金银纳米颗粒分散氧化物光学薄膜,薄膜中铜与银或金与银都是以单质形式存在。[专利授权号分别为:ZL200510011733.6,ZL200510011554.2]。另外,采用溶胶凝胶法研究者也制备出了具有层状结构的银金纳米颗粒分散二氧化硅复合薄膜,薄膜中银和金都以单质形式存在[专利授权号分别为:ZL200910081922.9]。
尽管二元金属钠米颗粒以层状结构分散在氧化物中的复合薄膜也扩大了薄膜的光吸收范围,具有两个等离子共振吸收峰,但是由于在薄膜的制备过程中,银和金是分层涂覆的,因此不能精确控制薄膜的厚度,限制了其应用。另外,采用溶胶凝胶法制备层状结构的薄膜时,需要分别配制Ag和Au的母体溶胶,并且进行分层涂覆,增加了工艺的复杂性。迄今为止,Ag、Au两种金属以单质形式均匀分布的薄膜还未见报道。
发明内容
本发明的目的在于提供一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜及制备方法。采用溶胶凝胶法制备银、金纳米颗粒分散氧化铝光学薄膜,银、金颗粒分别以单质金属的形式均匀分散在氧化物基体中,复合薄膜在光吸收图谱中分别出现了银、金两个等离子共振吸收峰。
本发明解决上述技术问题的技术方案如下:
1.一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜,其化学成分组成通式为AgxAuy/(Al2O3)(1-x-y),其中x、y分别表示Ag、Au组成元素的摩尔分数,x的取值范围为0.02~0.7,y的取值范围为0.001~0.2,x+y的取值范围为0.02~0.9。
2.一种银、金二元单质金属纳米颗粒分散氧化物非线性光学薄膜的制备方法,是以仲丁醇铝、异丙醇、乙酰乙酸乙酯、蒸馏水、硝酸银、四水合氯金酸为原料,采用溶胶-凝胶法合成化学计量比准确、成分均匀的前躯体溶胶,然后采用匀胶机在玻璃基片上进行涂膜,退火后得到AgxAuy/(Al2O3)(1-x-y)复合薄膜。具体步骤为:
1)制备前躯体溶胶:首先将仲丁醇铝溶于异丙醇中,仲丁醇铝与异丙醇的摩尔比例为1:6.25~66.6,在室温下搅拌15~30分钟,加入乙酰乙酸乙酯,仲丁醇铝与乙酰乙酸乙酯的摩尔比例为1:1.5~22,在室温下搅拌0.5~1小时;加入去离子水,仲丁醇铝与去离子水的摩尔比例为1:1.25~33.3,在室温下搅拌1-6个小时,得到无色透明的氧化铝母体溶胶。然后按照AgaAub/(Al2O3)(1-a-b)化学计量比向母体溶胶中分别加入硝酸银和四水合氯酸,硝酸银和四水合氯酸的摩尔比例为0.001~0.0067:0.001~0.003,在室温下再搅拌1~3小时,得到褐色透明的AgaAub/(Al2O3)(1-a-b)前躯体溶胶。
2)制备薄膜:采用匀胶机在玻璃基片上进行涂膜。匀胶之前,将基片浸在丙酮中超声清洗,然后用蒸馏水冲洗干净,干燥后将步骤1)配制好的AgaAub/(Al2O3)(1-a-b)前躯体溶胶涂覆在基片上。匀胶时,匀胶机先以300rpm的速度运转10秒,再以3000rpm的速度运转30秒,每匀胶一次进行一次热分解处理,以除去薄膜中的水和有机物。热分解温度为120~180℃,时间为1~5分钟。样品冷却后进行下一次涂膜。涂膜结束后,将样品置于热处理炉中进行退火,退火温度为200~900℃,退火时间30分钟,最终得到银、金纳米颗粒分散氧化铝复合薄膜。
上述最终得到银、金纳米颗粒分散氧化铝复合薄膜,其中纳米银、金颗粒以单质金属的形式分散于氧化铝薄膜基体中,直径为:银颗粒直径为6~50nm,金颗粒直径为2~45nm,薄膜中银颗粒和金颗粒的吸收峰用紫外/可见分光光度计检测,图谱如图1所示,在400~430nm和520~550nm两个波段分别观察到银颗粒和金颗粒的吸收峰。
本发明的优点是:
1.本发明的方法操作方便,制备周期短、节省能源、成本低、能够精确控制薄膜的化学计量比。
2.采用本发明方法能够精确控制AgaAub/(Al2O3)(1-a-b)薄膜的化学计量比,银、金两种颗粒都以单质金属状态均匀分布在薄膜中,增加了光非线性吸收的范围,具有优良的非线性光学性质。
附图说明
图1为本发明一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜的紫外/可见光吸收图谱。
具体实施方式
下面结合实施例对本发明作进一步描述。以下各实施例得到的薄膜的光吸收图谱如图1所示,不同实施例得到的光吸收曲线是相似的,但是由于浓度和退火温度不同,Au和Ag的吸收峰强度和吸收波长会发生一点变化。
实施例1
一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜的制备:
将3.94272g(0.016摩尔)仲丁醇铝溶于7.638ml(0.1摩尔)异丙醇中,搅拌15分钟,加入2.5270ml(0.02摩尔)乙酰乙酸乙酯,搅拌30分钟,再加入0.36ml(0.02摩尔)蒸馏水,搅拌20分钟,得到无色透明的Al2O3母体溶胶,然后加入0.16987g(0.001摩尔)硝酸银和.041198g(0.001摩尔)四水合氯金酸,再次搅拌1小时,制得Ag0.1Au0.1/(Al2O3)0.8前驱体溶胶。甩胶之前,将基片浸在丙酮进行超声波清洗5分钟,然后用蒸馏水冲洗干净并干燥后,采用匀胶机在玻璃基片上进行涂膜。将Ag0.1Au0.1/(Al2O3)0.8前躯体溶胶滴到基片上,以300rpm的速度运转10秒后,再以3000rpm的速度运转30秒。匀胶后,将样品在180℃温度下热分解5分钟,样品冷却后进行下一次涂膜,每匀胶一次,都要进行热分解处理。涂膜结束后将样品置入热处理炉中退火30分钟,退火温度为200℃,最后得到Ag0.1Au0.1/(Al2O3)0.8复合光学薄膜。经测定,薄膜中Ag颗粒直径为6nm,Au颗粒直径为2nm,Ag和Au颗粒等离子共振吸收峰对应的波长分别为400nm和520nm。
实施例2
一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜的制备:
将2.11778g(0.009摩尔)仲丁醇铝溶于45.8298ml(0.6摩尔)异丙醇中,搅拌15分钟,加入25.2699ml(0.2摩尔)乙酰乙酸乙酯,搅拌30分钟,再加入5.4ml(0.3摩尔)蒸馏水,搅拌20分钟,得到无色透明的Al2O3母体溶胶,然后加入0.84935g(0.005摩尔)硝酸银和0.20599g(0.0005摩尔)四水合氯金酸,再次搅拌1小时,制得Ag0.5Au0.05/(Al2O3)0.45前驱体溶胶。甩胶之前,将基片浸在丙酮进行超声波清洗5分钟,然后用蒸馏水冲洗干净并干燥后,采用匀胶机在玻璃基片上进行涂膜。将Ag0.5Au0.05/(Al2O3)0.45前躯体溶胶滴到基片上,以300rpm的速度运转10秒后,再以3000rpm的速度运转30秒。匀胶后,将样品在180℃温度下热分解1分钟,样品冷却后进行下一次涂膜,每匀胶一次,都要进行热分解处理。涂膜结束后将样品置入热处理炉中退火30分钟,退火温度为400℃,最后得到Ag0.5Au0.05/(Al2O3)0.45复合光学薄膜。经测定,薄膜中Ag颗粒直径为20nm,Au颗粒直径为15nm,Ag和Au颗粒等离子共振吸收峰对应的波长分别为413nm和537nm。
实施例3
一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜的制备:
将5.0788g(0.0149摩尔)仲丁醇铝溶于50.9221ml(0.2摩尔)异丙醇中,搅拌30分钟,加入2.527ml(0.01摩尔)乙酰乙酸乙酯,搅拌60分钟,再加入1.44ml(0.04摩尔)蒸馏水,搅拌20分钟,得到无色透明的Al2O3母体溶胶,然后加入1.132g(0.0067摩尔)硝酸银和0.1236g(0.003摩尔)四水合氯金酸,再次搅拌3小时,制得Ag0.245Au0.01/(Al2O3)0.745前驱体溶胶。甩胶之前,将基片浸在丙酮进行超声波清洗5分钟,然后用蒸馏水冲洗干净并干燥后,采用匀胶机在玻璃基片上进行涂膜。将Ag0.245Au0.01/(Al2O3)0.745前躯体溶胶滴到基片上,以300rpm的速度运转10秒后,再以3000rpm的速度运转30秒。匀胶后,将样品在120℃温度下热分解1分钟,样品冷却后进行下一次涂膜,每匀胶一次,都要进行热分解处理。涂膜结束后将样品置入热处理炉中退火30分钟,退火温度为600℃,最后得到Ag0.245Au0.01/(Al2O3)0.745复合光学薄膜。经测定,薄膜中Ag颗粒直径为37nm,Au颗粒直径为24nm,Ag和Au颗粒等离子共振吸收峰对应的波长分别为425nm和542nm。
实施例4
一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜的制备
将2.95704g(0.012摩尔)仲丁醇铝溶于38.19153ml(0.5摩尔)异丙醇中,搅拌15分钟,加入12.635ml(0.1摩尔)乙酰乙酸乙酯,搅拌30分钟,再加入2.7ml(0.15摩尔)蒸馏水,搅拌20分钟,得到无色透明的Al2O3母体溶胶,然后加入0.50961g(0.003摩尔)硝酸银和0.41198g(0.001摩尔)四水合氯金酸,再次搅拌1小时,制得Ag0.3Au0.1/(Al2O3)0.6前驱体溶胶。甩胶之前,将基片浸在丙酮进行超声波清洗5分钟,然后用蒸馏水冲洗干净并干燥后,采用匀胶机在玻璃基片上进行涂膜。将Ag0.3Au0.1/(Al2O3)0.6前躯体溶胶滴到基片上,以300rpm的速度运转10秒后,再以3000rpm的速度运转30秒。匀胶后,将样品在180℃温度下热分解1分钟,样品冷却后进行下一次涂膜,每匀胶一次,都要进行热分解处理。涂膜结束后将样品置入热处理炉中退火30分钟,退火温度为600℃,最后得到Ag0.3Au0.1/(Al2O3)0.6复合光学薄膜。经测定,薄膜中Ag颗粒直径为41nm,Au颗粒直径为17nm,Ag和Au颗粒等离子共振吸收峰对应的波长分别为428nm和545nm。
实施例5
一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜的制备:
将2.4642g(0.01摩尔)仲丁醇铝溶于38.19153ml(0.5摩尔)异丙醇中,搅拌15分钟,加入12.635ml(0.1摩尔)乙酰乙酸乙酯,搅拌30分钟,再加入2.7ml(0.15摩尔)蒸馏水,搅拌20分钟,得到无色透明的Al2O3母体溶胶,然后加入0.50961g(0.003摩尔)硝酸银和0.82396g(0.002摩尔)四水合氯金酸,再次搅拌1小时,制得Ag0.3Au0.2/(Al2O3)0.5前驱体溶胶。甩胶之前,将基片浸在丙酮进行超声波清洗5分钟,然后用蒸馏水冲洗干净并干燥后,采用匀胶机在玻璃基片上进行涂膜。将Ag0.3Au0.2/(Al2O3)0.5前躯体溶胶滴到基片上,以300rpm的速度运转10秒后,再以3000rpm的速度运转30秒。匀胶后,将样品在180℃温度下热分解1分钟,样品冷却后进行下一次涂膜,每匀胶一次,都要进行热分解处理。涂膜结束后将样品置入热处理炉中退火30分钟,退火温度为900℃,最后得到Ag0.3Au0.2/(Al2O3)0.5复合光学薄膜。经测定,薄膜中Ag颗粒直径为50nm,Au颗粒直径为45nm,Ag和Au颗粒等离子共振吸收峰对应的波长分别为430nm和550nm。

Claims (3)

1.一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜的制备方法,其特征在于:以仲丁醇铝、异丙醇、乙酰乙酸乙酯、蒸馏水、硝酸银、四水合氯金酸为原料,采用溶胶-凝胶法合成化学计量比准确、成分均匀的前躯体溶胶,然后采用匀胶机在玻璃基片上进行涂膜,退火后得到AgxAuy/(Al2O3)(1-x-y)复合薄膜,具体步骤为:
1)制备前躯体溶胶:首先将仲丁醇铝溶于异丙醇中,仲丁醇铝与异丙醇的摩尔比例为1:6.25~66.6,在室温下搅拌15~30分钟,加入乙酰乙酸乙酯,仲丁醇铝与乙酰乙酸乙酯的摩尔比例为1:1.5~22,在室温下搅拌0.5~1小时,加入去离子水,仲丁醇铝与去离子水的摩尔比例为1:1.25~33.3,在室温下搅拌1-6个小时,得到无色透明的氧化铝母体溶胶;然后按照AgxAuy/(Al2O3)(1-x-y)化学计量比向母体溶胶中分别加入硝酸银和四水合氯酸,硝酸银和四水合氯酸的摩尔比例为0.001~0.0067:0.001~0.003,在室温下再搅拌1~3小时,得到褐色透明的AgxAuy/(Al2O3)(1-x-y)前躯体溶胶;
2)制备薄膜:采用匀胶机在玻璃基片上进行涂膜,匀胶之前,将基片浸在丙酮中超声清洗,然后用蒸馏水冲洗干净,干燥后将步骤1)配制好的AgxAuy/(Al2O3)(1-x-y)前躯体溶胶涂覆在基片上,匀胶时,匀胶机先以300rpm的速度运转10秒,再以3000rpm的速度运转30秒,每匀胶一次进行一次热分解处理,以除去薄膜中的水和有机物,热分解温度为120~180℃,时间为1~5分钟,样品冷却后进行下一次涂膜,涂膜结束后,将样品置于热处理炉中进行退火,退火温度为200~900℃,退火时间30分钟,最终得到银、金纳米颗粒分散氧化铝复合薄膜。
2.如权利要求1所述的一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜的制备方法,其特征在于,最终得到银、金纳米颗粒分散氧化铝复合薄膜,其中纳米银、金颗粒以单质金属的形式分散于氧化铝薄膜基体中,直径为:银颗粒直径为6~50nm,金颗粒直径为2~45nm;薄膜中银颗粒和金颗粒的吸收峰用紫外/可见分光光度计检测,在400~430nm和520~550nm两个波段分别观察到银颗粒和金颗粒的吸收峰。
3.一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜,其化学成分组成通式为AgxAuy/(Al2O3)(1-x-y),其中x、y分别表示Ag、Au组成元素的摩尔分数,x的取值范围为0.02~0.7,y的取值范围为0.001~0.2,x+y的取值范围为0.02~0.9;该光学薄膜是根据权利要求1的方法制备的产品。
CN201410260193.4A 2014-06-12 2014-06-12 一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜及制备方法 Expired - Fee Related CN104007596B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410260193.4A CN104007596B (zh) 2014-06-12 2014-06-12 一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410260193.4A CN104007596B (zh) 2014-06-12 2014-06-12 一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜及制备方法

Publications (2)

Publication Number Publication Date
CN104007596A CN104007596A (zh) 2014-08-27
CN104007596B true CN104007596B (zh) 2017-12-26

Family

ID=51368329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410260193.4A Expired - Fee Related CN104007596B (zh) 2014-06-12 2014-06-12 一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜及制备方法

Country Status (1)

Country Link
CN (1) CN104007596B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110037053B (zh) * 2019-05-13 2021-08-24 无锡市妇幼保健院 高效抗菌液及其制备方法
CN111168079B (zh) * 2020-01-15 2023-01-10 浙江工业大学 一种基于玻璃表面合成金属纳米颗粒的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101062840A (zh) * 2007-04-24 2007-10-31 北京科技大学 一种纳米银铜颗粒分散二氧化硅光学薄膜与制备方法
CN101396568A (zh) * 2007-09-25 2009-04-01 王新 医用创伤修复高分子材料敷料
CN101533199A (zh) * 2009-04-08 2009-09-16 北京科技大学 一种银、金纳米颗粒分散二氧化硅光学薄膜及制备方法
CN101561613A (zh) * 2009-06-03 2009-10-21 北京科技大学 一种纳米银颗粒分散氧化铝光学薄膜及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101062840A (zh) * 2007-04-24 2007-10-31 北京科技大学 一种纳米银铜颗粒分散二氧化硅光学薄膜与制备方法
CN101396568A (zh) * 2007-09-25 2009-04-01 王新 医用创伤修复高分子材料敷料
CN101533199A (zh) * 2009-04-08 2009-09-16 北京科技大学 一种银、金纳米颗粒分散二氧化硅光学薄膜及制备方法
CN101561613A (zh) * 2009-06-03 2009-10-21 北京科技大学 一种纳米银颗粒分散氧化铝光学薄膜及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
(Au,Ag,Cu)/SiO2二元合金分散复合薄膜非线性光吸收的Mie理论模拟;严丽平等;《无机化学学报》;20110630;第27卷(第6期);全文 *
Sol–Gel Synthesis and Characterization of Ag and Au Nanoparticles in SiO2, TiO2, and ZrO2 Thin Films;Mauro Epifani等;《Journal of the American Ceramic Society》;20001031;第83卷(第10期);全文 *
纳米金属微粒M-Al2O3介孔复合薄膜的光谱特性;梁燕萍等;《化学学报》;20041231;第62卷(第16期);全文 *

Also Published As

Publication number Publication date
CN104007596A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
Kumar et al. Plasmonic and nonlinear optical behavior of nanostructures in glass matrix for photonics application
Yu et al. Silica spheres coated with YVO4: Eu3+ layers via sol− gel process: a simple method to obtain spherical core− shell phosphors
Armelao et al. Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look
Som et al. Surface plasmon resonance and enhanced fluorescence application of single-step synthesized elliptical nano gold-embedded antimony glass dichroic nanocomposites
Fujii et al. Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells
Som et al. Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses
Manzani et al. Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles
Guo et al. Preparation of W/Zr co-doped VO2 with improved microstructural and thermochromic properties
Saidi et al. Spectroscopic properties of Dy3+ doped tellurite glass with Ag/TiO2 nanoparticles inclusion: Judd− Ofelt analysis
JP2002072264A (ja) 光制限材料
Kumar et al. Multifunctional properties of plasmonic Cu nanoparticles embedded in a glass matrix and their thermodynamic behavior
Yao et al. Long-lived multilayer coatings for smart windows: integration of energy-saving, antifogging, and self-healing functions
Moot et al. Designing Plasmon‐Enhanced Thermochromic Films Using a Vanadium Dioxide Nanoparticle Elastomeric Composite
CN104120394A (zh) 一种Ag/TiO2纳米复合变色材料制备方法
CN101533199B (zh) 一种银、金纳米颗粒分散二氧化硅光学薄膜及制备方法
CN104007596B (zh) 一种银、金二元单质金属纳米颗粒分散氧化铝非线性光学薄膜及制备方法
Evstropiev et al. Silica fibres activated by YAG: Nd3+ nanocrystals
Zhu et al. Plasmonic enhancement of the upconversion fluorescence in YVO4: Yb3+, Er3+ nanocrystals based on the porous Ag film
Li et al. In situ synthesis of highly dispersed VO2 (M) nanoparticles on glass surface for energy efficient smart windows
Som et al. Surface plasmon resonance in nano-gold antimony glass–ceramic dichroic nanocomposites: One-step synthesis and enhanced fluorescence application
Zhou et al. Copper nanoparticles embedded in natural plagioclase mineral crystals: in situ formation and third-order nonlinearity
Ferodolin et al. Plasmonic effect of bimetallic TiO2/Al2O3 nanoparticles in tellurite glass for surface-enhanced Raman scattering applications
VP et al. Surface plasmon assisted luminescence enhancement of Ag NP/NWs-doped SiO 2-TiO 2-ZrO 2: Eu 3+ ternary system
Lukong et al. Fabrication of vanadium dioxide thin films and application of its thermochromic and photochromic nature in self-cleaning: A review
Abdullahi et al. Intense up-conversion luminescence from Dy3+-doped multi-component telluroborate glass matrix: Role of CuO nanoparticles embedment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171226