CN111521656A - 一种高灵敏度高稳定性掺硼金刚石微电极及其制备方法和应用 - Google Patents

一种高灵敏度高稳定性掺硼金刚石微电极及其制备方法和应用 Download PDF

Info

Publication number
CN111521656A
CN111521656A CN202010390589.6A CN202010390589A CN111521656A CN 111521656 A CN111521656 A CN 111521656A CN 202010390589 A CN202010390589 A CN 202010390589A CN 111521656 A CN111521656 A CN 111521656A
Authority
CN
China
Prior art keywords
boron
layer
doped diamond
microelectrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010390589.6A
Other languages
English (en)
Other versions
CN111521656B (zh
Inventor
魏秋平
周科朝
马莉
朱睿童
杨万林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202010390589.6A priority Critical patent/CN111521656B/zh
Publication of CN111521656A publication Critical patent/CN111521656A/zh
Application granted granted Critical
Publication of CN111521656B publication Critical patent/CN111521656B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/277Diamond only using other elements in the gas phase besides carbon and hydrogen; using other elements besides carbon, hydrogen and oxygen in case of use of combustion torches; using other elements besides carbon, hydrogen and inert gas in case of use of plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/26Acidic compositions for etching refractory metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/08Etching of refractory metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • Immunology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种高灵敏度高稳定性掺硼金刚石微电极及其制备方法及应用。所述掺硼金刚石微电极包括基底电极以及封装基底电极的绝缘封装层;所述基底电极包括金属丝衬底、电极工作层;所述电极工作层包覆于金属丝衬底表面,所述电极工作层为表面修饰有金属纳米颗粒的多孔掺硼金刚石层,所述多孔掺硼金刚石层中sp2相的质量百分含量≤1%。所述绝缘封装层由封装内层与封装外层组成,所述封装内层为粘合剂,封装外层为薄壁毛细玻璃管。相比传统的平板电极,本发明的掺硼金刚石微电极因为极小的工作面积具有响应快速、灵敏度高以及信噪比高的特点,能满足多种痕量物质的电化学检测。本电极可广泛应用于电化学生物传感器、重金属、有机物废水的检测等领域。

Description

一种高灵敏度高稳定性掺硼金刚石微电极及其制备方法和 应用
技术领域
本发明涉及一种高灵敏度高稳定性掺硼金刚石微电极及其制备方法和应用,属于微电极制备技术领域。
背景技术
硼掺杂金刚石薄膜电极(BDD)具有很高的机械强度,化学惰性和优异的电化学性能,如在水溶液中具有很宽的电位窗口、较高的析氧过电位和较低的背景电流,在相同的电流密度下能高效率地产生羟基自由基,从而使有机物能快速被去除,表面具有抗中毒抗污染能力,可以在强腐蚀介质中长期稳定的工作。即使在高电化学负荷,经过电流密度在2~10A cm2上千小时的电化学反应,也没有明显被侵蚀的迹象。金刚石薄膜具有硬度和强度方面的高优质性能,可以耐受超声空化效应对电极表面的强波冲击,在高强度环境中显示了较长的使用寿命。随着化学气相沉积CVD人工合成多晶金刚石薄膜涂层技术以及硼掺杂P型半导体研究的不断发展,使得CVD金刚石薄膜的电阻率降为0.01~100Ω·cm,是一种导电良好的电极材料。研究表明该电极在电氧化削减有机污染物方面和高灵敏度有机物的分析和探测方面将显示广阔的应用前景。
但同时硼掺杂金刚石电极也存在着电催化活性低、选择性及灵敏性差、难以大规模生产等缺点,从而限制了其应用。
发明内容
针对现有技术的不足,本发明的第一个目的在于提供一种具有极低背景电流、高信噪比,高灵敏度高稳定性掺硼金刚石微电极。
本发明的第二个目的在于提供一种高灵敏度高稳定性掺硼金刚石微电极的制备方法。
本发明的第三个目的在于提供一种高灵敏度高稳定性掺硼金刚石微电极的应用。
为了实现上述目的,本发明采用如下技术方案:
本发明一种高灵敏度高稳定性掺硼金刚石微电极,包括基底电极以及封装基底电极的绝缘封装层;所述基底电极包括金属丝衬底、电极工作层;所述电极工作层包覆于金属丝衬底表面,所述电极工作层为表面修饰有金属纳米颗粒的多孔掺硼金刚石层,所述多孔掺硼金刚石层中sp2相(石墨相)的质量百分含量≤1%。
作为优选,本发明一种高灵敏度高稳定性掺硼金刚石微电极,所述多孔掺硼金刚石层中sp2相(石墨相)的质量百分含量≤0.5%。
发明人发现,通过将多孔掺硼金刚石层的sp2相完全清除,可以进一步减小微电极背景电流,获得更高的信噪比。
本发明一种高灵敏度高稳定性掺硼金刚石微电极,所述多孔掺硼金刚石层中,按原子比计,B/C≥8000ppm;优选的,B/C为26666~40000ppm。
在本发明中采用重掺杂B,从而可获得更大的电极灵敏度。
本发明一种高灵敏度高稳定性掺硼金刚石微电极,所述多孔掺硼金刚石层的厚度≤15μm。
本发明一种高灵敏度高稳定性掺硼金刚石微电极,所述金属丝衬底材料选自铌丝、钨丝、钽丝中的一种。
本发明一种高灵敏度高稳定性掺硼金刚石微电极,所述金属丝衬底材料的直径为30~100um,且其具有直径≤20μM的端部。
本发明一种高灵敏度高稳定性掺硼金刚石微电极,所述金属纳米颗粒选自铁、铜、铂、银、金颗粒中的至少一种。
本发明一种高灵敏度高稳定性掺硼金刚石微电极,所述绝缘封装层由封装内层与封装外层组成,所述封装内层为粘合剂,封装外层为薄壁毛细玻璃管。
本发明一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,包括如下步骤:
步骤一:金属丝衬底预处理
将金属丝衬底置于碱溶液中采用电化学刻蚀,获得含尖端直径≤20μM尖锥状的金属丝衬底,然后再进行清洗、烘干后,竖直悬挂浸入纳米金刚石粉悬浊液中超声处理,获得吸附有纳米金刚石粉的金属丝衬底;
步骤二、电极工作层的制备
采用热丝气相沉积法的方法于步骤一所得金属丝衬底上沉积掺硼金刚石薄膜,然后采用磁控溅射法在掺硼金刚石层表面溅射金属镍,然后置于氢气气氛下第一次热处理将掺硼金刚石层表面刻蚀成多孔结构,再采用酸性溶液去除孔内镍颗粒,然后再通过电化学极化处理清除掺硼金刚石层表面的sp2相获得多孔硼掺杂金刚石层,最后再采用磁控溅射法于多孔硼掺杂金刚石层溅射金属层,并进行第二次热处理获得表面修饰有金属纳米颗粒的多孔掺硼金刚石层即得基底电极;
步骤三、绝缘封装层制备
将薄壁毛细玻璃管作为绝缘外层,将步骤二所得基底电极在体视显微镜辅助下插入绝缘外层中,露出电极工作层一端,而电极工作层的另一端用导电银胶固定在铜线上,最后将粘合剂滴注于薄壁毛细玻璃管的端口,粘合剂由于毛细现象在微电极及绝缘外层中瞬间冲满,形成绝缘层内层,完成封装。
本发明一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,步骤一中,所述碱溶液为NaOH溶液,所述NaOH溶液的浓度为0.5~2M。
本发明一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,步骤一中,所述电化学刻蚀的电流为10~500mA;先将金属丝衬底进行整体均匀刻蚀2~10min,然后再进行非均匀刻蚀1~8min,从而形成含尖端直径≤20μM尖锥状的金属丝衬底。
本发明一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,步骤一中,所述清洗的过程为:先将经电化学刻蚀的金属丝衬底浸入氢氟酸溶液中2~15min,再依次浸入丙酮、纯水中超声清洗各2~15min。
氢氟酸溶液清洗以去除金属丝表面的氧化层,并在丙酮和超纯水中清先前面所用溶剂。
本发明一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,步骤二中,热丝气相沉积法的工艺参数为:沉积压强维持在3~4kPa,金属丝衬底温度为600~850℃,通入气氛的质量流量比为CH4:H2:B2H6=2:98:0.8~1.2,沉积时间为4~12h。
本发明一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,步骤二中,溅射金属镍的工艺参数为:通入氩气调节气压为0.5~1Pa,溅射电流200~300mA,溅射时间15~30s。
在热处理过程中,金属镍在高温下球化,在金刚石表面表成弥散分布的金属纳米球或微米球点阵,掺硼金刚石中的碳原子在高温下不断固溶到金属球点阵中,通过氢气刻蚀金属点阵中碳原子过饱和固溶时析出的固体碳,使金属镍不断向掺硼金刚石内部运动,在掺硼金刚石表面形成大量的微孔。通过调节管式炉热处理的温度、气氛、时间调控孔的大小、形状、分布。
本发明一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,步骤二中,所述第一次热处理的工艺参数为:气压维持在10~20kpa,热处理的温度为800~1000℃,热处理的时间为2~3h,通过气氛的质量流量比为H2:Ar=1~1.5。
本发明一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,步骤二中,所述酸性溶液为硝酸。
本发明一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,步骤二中,所述电化学极化处理工艺参数为:以Ag/AgCI作为对比电极,0.1-0.3M H2S04溶液为电解质,在100~500mV/s的电化学扫描速度,在-1.3~2.7V的电压下进行循环,共100~200个周期。
发明人意外的发现,在采用硝酸清理镍颗粒的过程中,将无可避免的残留一部份sp2相,而残留的sp2相将增大背景电流,然而对于微电极来说,相对于普通的电极具有更高的灵敏度,但是由于微电极尺寸小,得到的电流信号很微弱,如果背景信号一大很容易把需要的信号掩盖掉,因此巧妙的采用电极极化的处理方法,完整的清除多孔重掺硼金刚石膜层中的残留的sp2杂质相,从而进一步减少微电极背景电流(背景电流几乎为0),获得更高的信噪比。
本发明一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,步骤二中,所述金属层的金属选自金属铁、铜、铂、银、金中的至少一种。
本发明一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,步骤二中,溅射金属层的工艺参数为:通入氩气调节气压为3~7Pa,溅射电流10~30mA,溅射时间30s~120s。
本发明一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,步骤二中,第二次热处理的工艺参数为:气压维持在10~20kpa,热处理的温度为800~1000℃,热处理的时间为2~3h,通过气氛的质量流量比为H2:Ar=1~1.5。
修饰金属通过管式炉热处理发生迁移和团聚,在多孔重掺硼金刚石表面上迁移并沉入孔洞中,在相对低能的孔洞中停止并团聚。修饰金属将处于低能量状态并被孔洞固定,与多孔重掺硼金刚石表面形成有效连接界面,使掺硼金刚石材料优异的稳定性与修饰金属良好的电催化活性得以充分结合。
本发明一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,步骤三中,所述薄壁毛细玻璃管是利用微电极拉制仪将薄壁玻璃管拉细制得。
在本发明中,步骤三所用粘合剂采用现有技术中具有绝缘、电化学惰性、低粘度、低固化收缩率要求的胶水均可。
作为优选,本发明一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,步骤三中,所述粘合剂选自α-氰基丙烯酸酯粘合剂。
本发明一种高灵敏度高稳定性掺硼金刚石微电极的应用,将所述掺硼金刚石微电极用于电化学检测,优选为痕量物质的电化学检测。
有益效果:
本发明的掺硼金刚石微电极构建了一种有效连接界面,使掺硼金刚石材料优异的稳定性与金属良好的电催化活性得以充分结合,结合微电极尺寸效应,通过重掺杂及sp2相的去除,获得更高灵敏度和更低的背景信号。相比传统的平板电极,本发明的掺硼金刚石微电极极小的工作面积具有响应快速、检测限低以及信噪比高的特点,能满足多种痕量物质的电化学检测。
具体实施方式
实施例1
步骤一:金属丝衬底预处理
将钨丝衬底置于0.5MNaOH溶液中于100mA电流电化学刻蚀10min(非锥形刻蚀120s),形成尖端直径小于20μM尖锥状的钨丝,然后再进行清洗、烘干后,竖直悬挂浸入纳米金刚石粉悬浊液中超声处理,获得吸附有纳米金刚石粉的金属丝衬底;
步骤二、电极工作层的制备
采用热丝气相沉积法的方法在步骤一所得金属丝衬底上沉积掺硼金刚石薄膜,热丝气相沉积法工艺参数为:腔体压强维持在3kPa,基体温度600℃,气氛比例为CH4:H2:B2H6=2:98:0.8,沉积时间4h。
然后采用采用磁控溅射法在掺硼金刚石层表面溅射金属镍;通入氩气调节气压为0.5Pa左右,溅射电流200mA,溅射时间15s;
然后置于氢气气氛下第一次热处理将掺硼金刚石层表面刻蚀成多孔结构,第一次热处理工艺参数为:气压维持在10kpa,氩气流量50sccm,氢气流量50sccm,基底温度800℃,热处理时2h;
再采用硝酸性溶液去除孔内镍颗粒,然后再通过电化学极化处理清除掺硼金刚石层表面的sp2相获得多孔硼掺杂金刚石电层,
电化学极化处理工艺参数为:以100mV/s的速度,在-1.3~2.7Vvs.Ag/AgCI的电压进行循环,共100个周期。电解质为0.1M H2S04溶液,
最后再采用磁控溅射法于多孔硼掺杂金刚石电层溅射不固溶碳原子的金属金层,溅射工艺为:通入氩气调节气压为3Pa左右,溅射电流10mA,溅射时间30s。
并进行第二次热处理获得修饰有金属金纳米颗粒的多孔掺硼金刚石层即得基底电极;
第二次热处理的工艺参数为:气压维持在10kpa,氩气流量50sccm,氢气流量50sccm,基底温度800℃,热处理时间2h。
步骤三、绝缘封装层制备
利用微电极拉制仪将薄壁玻璃管拉细作为绝缘外层,将第二步制备金属修饰的多孔重掺硼金刚石微电极在体视显微镜辅助下插入绝缘外层,露出微电极尖端,用1mL注射器吸取少量α-氰基丙烯酸酯粘合剂滴注在绝缘外层尾端,胶水由于毛细现象在微电极及绝缘外层中瞬间冲满,形成绝缘层内层,完成封装。
经检测,本实施例1所得掺硼金刚石微电极电化学电势窗口高达2.8V,背景电流10-9A;用于DA检测:在0.05-100μM浓度范围内具有良好的线性响应,检测灵敏度高达2.89×104nA·μM-1·cm-2,检测限低至80nM(S/N=3)
实施例2
将钨丝衬底置于1MNaOH溶液中于200mA电流电化学刻蚀5min(非锥形刻蚀80s),形成尖端直径小于20μM尖锥状的钨丝,然后再进行清洗、烘干后,竖直悬挂浸入纳米金刚石粉悬浊液中超声处理,获得吸附有纳米金刚石粉的金属丝衬底;
步骤二、电极工作层的制备
采用热丝气相沉积法的方法步骤一所得金属丝衬底上沉积掺硼金刚石薄膜,热丝气相沉积法工艺参数为:腔体压强维持在3.5kPa,基体温度700℃,气氛比例为CH4:H2:B2H6=2:98:1,沉积时间6h。
然后采用采用磁控溅射法在掺硼金刚石层表面溅射金属镍;通入氩气调节气压为0.7Pa左右,溅射电流250mA,溅射时间20s;
然后置于氢气气氛下第一次热处理将掺硼金刚石层表面刻蚀成多孔结构,第一次热处理工艺参数为:气压维持在15kpa,氩气流量50sccm,氢气流量40sccm,基底温度800℃,热处理时间2.5h;
再采用硝酸性溶液去除孔内镍颗粒,然后再通过电化学极化处理清除掺硼金刚石层表面的sp2相获得多孔硼掺杂金刚石层,
电化学极化处理工艺参数为:以100mV/s的速度,在-1.3~2.7Vvs.Ag/AgCI的电压进行循环,共100个周期。电解质为0.2M H2S04溶液,
最后再采用磁控溅射法于多孔硼掺杂金刚石电层溅射金属铁层,溅射工艺为:通入氩气调节气压为5.0Pa左右,溅射电流15mA,溅射时间80s。
并进行第二次热处理获得修饰有金属铁纳米颗粒的多孔掺硼金刚石层即得基底电极;
第二次热处理的工艺参数为:气压维持在15kpa,氩气流量50sccm,氢气流量40sccm,基底温度800℃,热处理时间2.5h。
步骤三、绝缘封装层制备
利用微电极拉制仪将薄壁玻璃管拉细作为绝缘外层,将第二步制备金属修饰的多孔重掺硼金刚石微电极在体视显微镜辅助下插入绝缘外层,露出微电极尖端,用1mL注射器吸取少量α-氰基丙烯酸酯粘合剂滴注在绝缘外层尾端,胶水由于毛细现象在微电极及绝缘外层中瞬间冲满,形成绝缘层内层,完成封装。
经检测,本实施例2所得掺硼金刚石微电极的电化学电势窗口高达2.6V,背景电流10-9A;用多巴胺DA检测:在0.05-100μM浓度范围内具有良好的线性响应,检测灵敏度高达0.5×104nA·μM-1·cm-2,检测限低至60nM(S/N=3)
实施列3:
将钨丝衬底置于2MNaOH溶液中于500mA电流电化学刻蚀2min(非锥形刻蚀20s),形成尖端直径小于20μM尖锥状的钨丝,然后再进行清洗、烘干后,竖直悬挂浸入纳米金刚石粉悬浊液中超声处理,获得吸附有纳米金刚石粉的金属丝衬底;
步骤二、电极工作层的制备
采用热丝气相沉积法的方法步骤一所得金属丝衬底上沉积掺硼金刚石薄膜,热丝气相沉积法工艺参数为:腔体压强维持在4kPa,基体温度850℃,气氛比例为CH4:H2:B2H6=2:98:1.2,沉积时间12h。
然后采用采用磁控溅射法在掺硼金刚石层表面溅射金属镍;通入氩气调节气压为1Pa左右,溅射电流200mA,溅射时间15s;
然后置于氢气气氛下第一次热处理将掺硼金刚石层表面刻蚀成多孔结构,第一次热处理工艺参数为:气压维持在20kpa,氩气流量50sccm,氢气流量35sccm,基底温度800℃,热处理时间3h;
再采用硝酸性溶液去除孔内镍颗粒,然后再通过电化学极化处理清除掺硼金刚石层表面的sp2相获得多孔硼掺杂金刚石电层,
电化学极化处理工艺参数为:以100mV/s的速度,在-1.3~2.7Vvs.Ag/AgCI的电压进行循环,共100个周期。电解质为0.3M H2S04溶液,
最后再采用磁控溅射法于多孔硼掺杂金刚石电层溅射金属银层,溅射工艺为:通入氩气调节气压为7Pa左右,溅射电流30mA,溅射时间120s。
并进行第二次热处理获得面修饰有金属银纳米颗粒的多孔掺硼金刚石层即得基底电极;
第二次热处理的工艺参数为:气压维持在20kpa,氩气流量50sccm,氢气流量35sccm,基底温度800℃,热处理时间3h。
步骤三、绝缘封装层制备
利用微电极拉制仪将薄壁玻璃管拉细作为绝缘外层,将第二步制备金属修饰的多孔重掺硼金刚石微电极在体视显微镜辅助下插入绝缘外层,露出微电极尖端,用1mL注射器吸取少量α-氰基丙烯酸酯粘合剂滴注在绝缘外层尾端,胶水由于毛细现象在微电极及绝缘外层中瞬间冲满,形成绝缘层内层,完成封装。
经检测,本实施例3所得掺硼金刚石微电极的电化学电势窗口高达2.7V,背景电流2X10-9A。
对比例1
其他条件均与实施例1相同,仅是只采用硝酸去除镍颗粒,而不再采用电极化去除sp2相。
电化学电势窗口降低至2.3V,背景电流10-6A;用于DA检测:在0.05-100μM浓度范围内具有良好的线性响应,检测灵敏度为1.35×104nA·μM-1·cm-2,检测最低限为200nM(S/N=3)
对比例2
其他条件均与实施例1相同,仅是掺硼浓度降低,CH4:H2:B2H6=2:98:0.4。
电化学电势窗口高达3V,背景电流10-9A用于DA检测:在0.05-100μM浓度范围内具有良好的线性响应,检测灵敏度高达2.3×102nA·μM-1·cm-2,检测限低至120nM(S/N=3)。

Claims (10)

1.一种高灵敏度高稳定性掺硼金刚石微电极,其特征在于:包括基底电极以及封装基底电极的绝缘封装层;所述基底电极包括金属丝衬底、电极工作层;所述电极工作层包覆于金属丝衬底表面,所述电极工作层为表面修饰有金属纳米颗粒的多孔掺硼金刚石层,所述多孔掺硼金刚石层中sp2相的质量百分含量≤1%。
2.根据权利要求1所述的一种高灵敏度高稳定性掺硼金刚石微电极,其特征在于:所述多孔掺硼金刚石层中,按原子比计,B/C≥8000ppm;所述多孔掺硼金刚石层的厚度≤15μm;所述金属纳米颗粒选自铁、铜、铂、银、金颗粒中的至少一种。
3.根据权利要求1所述的一种高灵敏度高稳定性掺硼金刚石微电极,其特征在于:所述金属丝衬底材料选自铌丝、钨丝、钽丝中的一种;所述金属丝衬底材料的直径为30~100um,且其具有直径≤20μM的端部。
4.根据权利要求1所述的一种高灵敏度高稳定性掺硼金刚石微电极,其特征在于:所述绝缘封装层由封装内层与封装外层组成,所述封装内层为粘合剂,封装外层为薄壁毛细玻璃管。
5.制备如权利要求1-4任意一项所述的一种高灵敏度高稳定性掺硼金刚石微电极的方法,其特征在于,包括如下步骤:
步骤一:金属丝衬底预处理
将金属丝衬底置于碱溶液中采用电化学刻蚀,获得含尖端直径≤20μM尖锥状的金属丝衬底,然后再进行清洗、烘干后,竖直悬挂浸入纳米金刚石粉悬浊液中超声处理,获得吸附有纳米金刚石粉的金属丝衬底;
步骤二、电极工作层的制备
采用热丝气相沉积法的方法在步骤一所得金属丝衬底上沉积掺硼金刚石薄膜,然后采用磁控溅射法在掺硼金刚石层表面溅射金属镍,然后置于氢气气氛下第一次热处理将掺硼金刚石层表面刻蚀成多孔结构,再采用酸性溶液去除孔内镍颗粒,然后再通过电化学极化处理清除掺硼金刚石层表面的sp2相获得多孔硼掺杂金刚石电层,最后再采用磁控溅射法于多孔硼掺杂金刚石层溅射金属层,并进行第二次热处理获得表面修饰有金属纳米颗粒的多孔掺硼金刚石层即得基底电极;
步骤三、绝缘封装层制备
将薄壁毛细玻璃管作为绝缘外层,将步骤二所得基底电极在体视显微镜辅助下插入绝缘外层中,露出电极工作层一端,而电极工作层的另一端用导电银胶固定在铜线上,最后将粘合剂滴注于薄壁毛细玻璃管的端口,粘合剂由于毛细现象在微电极及绝缘外层中瞬间冲满,形成绝缘层内层,完成封装。
6.根据权利要求5所述的一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,其特征在于,步骤一中,所述碱溶液为NaOH溶液,所述NaOH溶液的浓度为0.5~2M;步骤一中,所述电化学刻蚀的电流为10~500mA,先将金属丝衬底进行整体均匀刻蚀2~10min,然后再进行非均匀刻蚀1~8min,从而形成含尖端直径≤20μM尖锥状的金属丝衬底。
7.根据权利要求5所述的一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,其特征在于,步骤二中,热丝气相沉积法的工艺参数为:沉积压强维持在3~4kPa,金属丝衬底温度为600~850℃,通入气氛的质量流量比为CH4:H2:B2H6=2:98:0.8~1.2,沉积时间为4~12h;
步骤二中,溅射金属镍的工艺参数为:通入氩气调节气压为0.5~1Pa,溅射电流200~300mA,溅射时间15~30s;
步骤二中,所述第一次热处理的工艺参数为:气压维持在10~20kpa,热处理的温度为800~1000℃,热处理的时间为2~3h,通入气氛的质量流量比为H2:Ar=1~1.5。
8.根据权利要求5所述的一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,其特征在于,步骤二中,所述酸性溶液为硝酸;
步骤二中,所述电化学极化处理工艺参数为:以Ag/AgCI作为对比电极,0.1-0.3MH2S04溶液为电解质,在100~500mV/s的电化学扫描速度,在-1.3~2.7V的电压下进行循环,共100~200个周期;
步骤二中,所述金属层的金属选自金属铁、铜、铂、银、金中的至少一种;
步骤二中,溅射金属层的工艺参数为:通入氩气调节气压为3~7Pa,溅射电流为10~30mA,溅射时间为30s~120s;
步骤二中,第二次热处理的工艺参数为:气压维持在10~20kpa,热处理的温度为800~1000℃,热处理的时间为2~3h,通过气氛的质量流量比为H2:Ar=1~1.5。
9.根据权利要求5所述的一种高灵敏度高稳定性掺硼金刚石微电极的制备方法,其特征在于,步骤三中,所述薄壁毛细玻璃管是利用微电极拉制仪将薄壁玻璃管拉细制得;步骤三中,所述粘合剂选自α-氰基丙烯酸酯粘合剂。
10.根据权利要求1-4任意一项所述的一种高灵敏度高稳定性掺硼金刚石微电极的应用,其特征在于,将所述掺硼金刚石微电极用于电化学检测。
CN202010390589.6A 2020-05-11 2020-05-11 一种高灵敏度高稳定性掺硼金刚石微电极及其制备方法和应用 Active CN111521656B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010390589.6A CN111521656B (zh) 2020-05-11 2020-05-11 一种高灵敏度高稳定性掺硼金刚石微电极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010390589.6A CN111521656B (zh) 2020-05-11 2020-05-11 一种高灵敏度高稳定性掺硼金刚石微电极及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111521656A true CN111521656A (zh) 2020-08-11
CN111521656B CN111521656B (zh) 2021-08-27

Family

ID=71908814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010390589.6A Active CN111521656B (zh) 2020-05-11 2020-05-11 一种高灵敏度高稳定性掺硼金刚石微电极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111521656B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948266A (zh) * 2020-08-18 2020-11-17 中国地质大学(北京) 自支撑硼掺杂金刚石电化学传感器及制备方法和应用
CN113186510A (zh) * 2021-04-28 2021-07-30 昆明理工大学 一种金属强化多孔金刚石膜及其制备方法
CN113897675A (zh) * 2021-09-15 2022-01-07 湖南新锋先进材料科技有限公司 一种掺杂金刚石颗粒及其制备方法与应用
CN117074488A (zh) * 2023-10-17 2023-11-17 北京科技大学 用于高温熔盐体系测试的超微电极及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887038A (zh) * 2016-04-15 2016-08-24 天津理工大学 一种掺硼金刚石刻蚀的方法
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN106971864A (zh) * 2017-04-24 2017-07-21 天津理工大学 一种基于纳米多孔掺硼金刚石电极的超级电容器的制备方法
CN110643972A (zh) * 2019-09-29 2020-01-03 哈尔滨工业大学 一种金纳米粒子修饰掺硼金刚石电极的制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887038A (zh) * 2016-04-15 2016-08-24 天津理工大学 一种掺硼金刚石刻蚀的方法
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN106971864A (zh) * 2017-04-24 2017-07-21 天津理工大学 一种基于纳米多孔掺硼金刚石电极的超级电容器的制备方法
CN110643972A (zh) * 2019-09-29 2020-01-03 哈尔滨工业大学 一种金纳米粒子修饰掺硼金刚石电极的制备方法及应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DONGTIAN MIAO等: "Study on degradation performance and stability of high temperature etching boron-doped diamond electrode", 《APPLIED SURFACE SCIENCE》 *
WEI DAI等: "Amperometric biosensor based on nanoporous nickel/boron-dopeddiamond film for electroanalysis of l-alanine", 《SENSORS AND ACTUATORS B: CHEMICAL》 *
胡靖源等: "镍催化多孔掺硼金刚石薄膜电极的制备及其电化学氧化降解染料废水实验研究", 《矿冶工程》 *
郭曜华等: "硼掺杂金刚石微电极的制备及其多巴胺电化学检测应用", 《矿冶工程》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948266A (zh) * 2020-08-18 2020-11-17 中国地质大学(北京) 自支撑硼掺杂金刚石电化学传感器及制备方法和应用
CN113186510A (zh) * 2021-04-28 2021-07-30 昆明理工大学 一种金属强化多孔金刚石膜及其制备方法
CN113897675A (zh) * 2021-09-15 2022-01-07 湖南新锋先进材料科技有限公司 一种掺杂金刚石颗粒及其制备方法与应用
CN117074488A (zh) * 2023-10-17 2023-11-17 北京科技大学 用于高温熔盐体系测试的超微电极及其制备方法和应用
CN117074488B (zh) * 2023-10-17 2024-04-09 北京科技大学 用于高温熔盐体系测试的超微电极及其制备方法和应用

Also Published As

Publication number Publication date
CN111521656B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
CN111521656B (zh) 一种高灵敏度高稳定性掺硼金刚石微电极及其制备方法和应用
US20050220988A1 (en) Depositing metal particles on carbon nanotubes
CN105734606B (zh) 一种spe水电解用超薄膜电极的结构及其制备和应用
CN111579612B (zh) 一种基于金属修饰多孔掺硼金刚石电极的非酶生物传感器及其制备方法和应用
CN103643219A (zh) 一种以多孔钛为基体的掺硼金刚石薄膜电极的制备方法
US20230183102A1 (en) Boron-doped Diamond Electrode with Ultra-high Specific Surface Area, and Preparation Method Therefor and Application Thereof
CN108277462B (zh) 一种脉冲电沉积制备磁性金属纳米管的方法
CN106770574B (zh) 一种多壁碳纳米管修饰碳纤维微电极及其制备方法
US9676034B2 (en) Method of manufacturing powder having high surface area
CN107703196B (zh) 一种石墨烯-滤纸的制备方法及其作为自支撑的柔性电极的应用
CN102335613B (zh) 一种分级孔金铜合金整体式催化剂及其制备方法
CN111593347A (zh) 一种柔性复合薄膜材料及其制备方法
CN104651899A (zh) 一种用于碳纳米管生长的金属基底的阳极化工艺
KR101608584B1 (ko) 수산화기―풍부 그래핀 산화물을 전기화학적 환원하여 얻어진 그래핀 박막, 및 이를 이용한 요산 검출방법
CN101265602A (zh) 一种自支撑通孔氧化铝膜的制备方法
CN103406129B (zh) 基于表面多孔结构的丝网整体催化剂的制备方法
CN106645077B (zh) 热点尺寸小于5nm的SERS活性基底的制备方法
CN112481660A (zh) 一种有序金属纳米线阵列的制备方法
Rassaei et al. Carbon nanofiber–polystyrene composite electrodes for electroanalytical processes
CN112479154A (zh) 一种有序金属纳米针尖阵列的制备方法
CN110492118B (zh) 一种纳米碳/金属复合生物电极及其制备方法和应用
CN110098059B (zh) 长寿命高稳定性固态电极箔及其生产方法
Ng et al. Electrochemical preparation and characterization of a gold nanoparticles graphite electrode: Application to myricetin antioxidant analysis
JP2008138282A (ja) アルカリ電解用陽極
CN108034968A (zh) 一种抑制微放电效应的纳米碗贵金属涂层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant