CN111509095A - 复合式基板及其制造方法 - Google Patents

复合式基板及其制造方法 Download PDF

Info

Publication number
CN111509095A
CN111509095A CN201910961971.5A CN201910961971A CN111509095A CN 111509095 A CN111509095 A CN 111509095A CN 201910961971 A CN201910961971 A CN 201910961971A CN 111509095 A CN111509095 A CN 111509095A
Authority
CN
China
Prior art keywords
aluminum nitride
nitride layer
substrate
composite substrate
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910961971.5A
Other languages
English (en)
Other versions
CN111509095B (zh
Inventor
黄嘉彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW108131160A external-priority patent/TWI736962B/zh
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN111509095A publication Critical patent/CN111509095A/zh
Application granted granted Critical
Publication of CN111509095B publication Critical patent/CN111509095B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开一种复合式基板及其制造方法,其中该复合式基板包括一基板及一氮化铝层。基板的上表面包括多个纳米图案化凹陷,这些纳米图案化凹陷彼此分离。氮化铝层配置于基板的上表面上,其中氮化铝层的膜厚小于3.5微米,且氮化铝层的缺陷密度小于或等于5×109/cm2

Description

复合式基板及其制造方法
技术领域
本发明涉及一种基板,且特别是涉及一种复合式基板。
背景技术
在发光二极管的外延制作工艺中,若欲在基板上成长N型及P型三五族半导体层以及量子阱层等半导体层,则需要解决基板(例如蓝宝石基板(sapphire substrate))与上述半导体层的晶格常数有差异的问题。晶格常数的差异会导致外延缺陷,进而影响了发光二极管的发光效率。为了解决上述晶格常数差异的问题,一般会在成长上述半导体层之前,先形成晶格常数差异较小的缓冲层。
另一方面,为了提升发光二极管的量子效率图案化蓝宝石基板(patternedsapphire substrate,PSS)被发层出来,以通过基板上的凸出图案的光散射来提升光取出率。此时,若采用氮化铝层来作为缓冲层,则由于铝原子的活性高及且表面迁移率(surfacemobility)低,导致氮化铝层的差排密度高、缝合厚度高、表面粗糙或龟裂等问题。
发明内容
本发明的一实施例提出一种复合式基板,包括一基板及一氮化铝层。基板的上表面包括多个纳米图案化凹陷,这些纳米图案化凹陷彼此分离。氮化铝层配置于基板的上表面上,其中氮化铝层的膜厚小于3.5微米,且氮化铝层的缺陷密度小于或等于5×109/cm2
本发明的一实施例提出一种复合式基板的制造方法,包括:制备一基板,基板的上表面包括多个纳米图案化凹陷,这些纳米图案化凹陷彼此分离;在基板的上表面上形成一第一氮化铝层;在第一氮化铝层上形成一平坦化层;逐渐移除平坦化层的材料,其中当逐渐移除平坦化层的材料至平坦化层的底部时,也会同时逐渐移除了部分的第一氮化铝层,以使第一氮化铝层平坦化;以及在已平坦化的第一氮化铝层上形成一第二氮化铝层,其中第二氮化铝层的背对基板的上表面的方均根粗糙度小于3纳米。
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附的附图作详细说明如下。
附图说明
图1A及图2至图5为本发明的一实施例的复合式基板的制作流程的剖面示意图;
图1B为图1A中的基板的上视示意图;
图6A是关于图5的复合式基板的三种不同样品在第二氮化铝层成长后的(002)X射线回摆曲线图;
图6B是关于图5的复合式基板的三种不同样品在第二氮化铝层成长后的(102)X射线回摆曲线图;
图7是关于复合式基板的三种不同样品在第二氮化铝层成长后的拉曼光谱图;
图8是关于图7的复合式基板的三种不同样品在第二氮化铝层成长后的(102)X射线回摆曲线半高宽对翘曲度图;
图9是本发明的另一实施例的复合式基板的剖面示意图。
符号说明
100、100a:复合式基板
110、110a:基板
112、112a、142:上表面
113:交界线
114:纳米图案化凹陷
120、121:第一氮化铝层
130:平坦化层
140:第二氮化铝层
150:氮化铝层
H:深度
T1、T2、T3:膜厚
W:宽度
具体实施方式
图1A及图2至图5为本发明的一实施例的复合式基板的制作流程的剖面示意图,而图1B为图1A中的基板的上视示意图。本实施例的复合式基板的制造方法包括下列步骤。首先,参照图1A与图1B,制备一基板110,基板110的上表面112包括多个纳米图案化凹陷114,这些纳米图案化凹陷114彼此分离。在本实施例中,基板110例如为蓝宝石基板,这些纳米图案化凹陷114的深度H是落在150纳米至1.5微米的范围内,较佳是100纳米至1微米,更佳是200纳米至500纳米。且这些纳米图案化凹陷的宽度W是落在200纳米至1.5微米的范围内,较佳是300纳米至800纳米,更佳是400纳米至600纳米。在本实施例中,这些纳米图案化凹陷114的形成方法例如是将尚未加工的蓝宝石基板的上表面以湿蚀刻的方式制作出这些纳米图案化凹陷114,因此蚀刻液会顺着多个不同的晶面蚀刻蓝宝石基板,并在相邻两晶面之间产生晶面的交界线113。在本实施例中,纳米图案化凹陷114的多个晶面呈现倒角锥形(例如是三个晶面呈现倒三角锥形),而多条(例如至少三条,本实施例中是以三条为例)交界线113交会于倒三角锥形的最底部的顶点。在本实施例中,纳米图案化凹陷114的侧壁呈倒角锥形,且纳米图案化凹陷114的底部呈尖端状。然而,在其他实施例中,这些纳米图案化凹陷114的形成方法也可以是干式蚀刻,则此方法所形成的纳米图案化凹陷114就没有上述的交界线113。
在本实施例中,这些纳米图案化凹陷114在基板110的上表面112上呈周期性排列。然而,在其他实施例中,这些纳米图案化凹陷114也可以呈不规则排列。
接着,参照图2,在基板110的上表面112上形成一第一氮化铝层120。第一氮化铝层120的形成方法可以是金属有机化学气相沉积法(metal organic chemical vapordeposition,MOCVD)、溅镀(sputtering)或氢化物气相外延法(hydride vapor phaseepitaxy,HVPE)。在本实施例中,第一氮化铝层120的膜厚T1大于纳米图案化凹陷114的深度H。
然后,再参照图3,在第一氮化铝层120上形成一平坦化层130,平坦化层130在覆盖第一氮化铝层120后,平坦化层130的上表面会较第一氮化铝层120的上表面平坦。在本实施例中,平坦化层130的材料例如是旋涂式玻璃。然而,在其他实施例中,平坦化层130的材料也可以是聚合物。
之后,参照图4,逐渐移除平坦化层130的材料,其中当逐渐移除平坦化层130的材料至平坦化层130的底部时,也会同时逐渐移除了部分的第一氮化铝层120,以使第一氮化铝层120平坦化,而形成上表面较为平坦的第一氮化铝层121。在本实施例中,逐渐移除平坦化层130的材料的方法为干蚀刻,例如是感应耦合等离子体(inductively coupledplasma,ICP)蚀刻法,而蚀刻条件可以经选择,而使对平坦化层130的蚀刻速率实质上相同于对第一氮化铝层121的蚀刻速率,如此当将所有的平坦化层130的材料蚀刻完毕后,此时部分的第一氮化铝层120便会被蚀刻到,以使平坦化层130的上表面形貌转移至第一氮化铝层121的上表面,而形成较为平坦的第一氮化铝层121。然而,在其他实施例中,逐渐移除平坦化层130的材料的方法也可以是机械研磨(mechanical polishing)。
此外,在逐渐移除平坦化层130的材料之后,可对已平坦化的第一氮化铝层121作退火(annealing)处理,例如是进行1500℃以上的高温退火处理。高温退火处理可引发第一氮化铝层121的再结晶,大幅降低第一氮化铝层121膜内的差排密度。
此后,请参照图5,在已平坦化的第一氮化铝层121上形成一第二氮化铝层140,例如是利用金属有机气相沉积法来形成第二氮化铝层140。由于第二氮化铝层140是在已平坦化的第一氮化铝层121上形成,因此第二氮化铝层140的背对基板110的上表面142的方均根粗糙度(root mean square roughness)小于3纳米。由于第二氮化铝层140是在上表面较为平坦的第一氮化铝层121上形成,因此第二氮化铝层140的缝合厚度可以较小。在本实施例中,第一氮化铝层121加上第二氮化铝层140所形成的氮化铝层150的膜厚T2小于3.5微米。此外,由于第二氮化铝层140是在上表面较为平坦的第一氮化铝层121上形成,所以氮化铝层150中可以不具有孔洞或较小的孔洞,且氮化铝层150的缺陷密度小于或等于5×109/cm2,而具有良好的结晶品质。氮化铝层150中具有较小的孔洞是指氮化铝层150内部具有多个孔洞,而每一孔洞在平行于基板110的横向与垂直于基板110的纵向的至少一方向上的尺寸小于50纳米。
在本实施例中,在图5的步骤后所形成的氮化铝层150配置于基板110的上表面112上,氮化铝层150的背对基板110的上表面(也就是第二氮化铝层140的上表面142)的方均根粗糙度小于3纳米。如此一来,即形成包含基板110与氮化铝层150的复合式基板100。复合式基板100可供发光二极管的N型半导体层、量子阱层及P型半导体层形成于其上,且有助于提升N型半导体层、量子阱层及P型半导体层的结晶品质。
在本实施例中,在第一氮化铝层121上形成第二氮化铝层140时,可在第二氮化铝层140中掺杂硅,以调控残余应力。在本实施例中,第二氮化铝层140中的硅的掺杂浓度大于2×1017/cm3并且小于5×1019/cm3
在本实施例的复合式基板100及其制造方法中,由于在基板110的上表面112采用了彼此分离的多个纳米图案化凹陷114,也就是采用了具有下凹式纳米图案的纳米图案化基板来取代传统具有上凸式纳米图案的图案化基板,因此可大幅降低氮化铝外延的先天管芯缝合难度。此外,在本实施例中,形成纳米图案化凹陷114的方法可以是湿蚀刻法,如此有助于提升氮化铝直接于其上的外延品质。再者,通过形成平坦化层130后再逐渐移除平坦化层130的材料的方法以使第一氮化铝层121的表面平坦化,以及通过对已平坦化的第一氮化铝层121作退火处理,可进一步提升氮化铝层150的晶体品质、降低缝合难度,并扩展复合式基板100的设计空间。
图6A是关于图5的复合式基板的三种不同样品在第二氮化铝层成长后的(002)X射线回摆曲线图(X-ray rocking curve),而图6B是关于图5的复合式基板的三种不同样品在第二氮化铝层成长后的(102)X射线回摆曲线图。请参照图4、图5、图6A与图6B,此处采用了样品A、样品B及样品C来验证本实施例的结晶品质。样品A是指在基板110上形成第一氮化铝层121,但第一氮化铝层121没有经过退火处理,且第一氮化铝层121的膜厚T3为300纳米的样品。样品B是指在基板110上形成第一氮化铝层121,且第一氮化铝层121有经过退火处理,且第一氮化铝层121的膜厚T3为300纳米的样品。样品C是指在基板110上形成第一氮化铝层121,且第一氮化铝层121有经过退火处理,且第一氮化铝层121的膜厚T3为600纳米的样品。当样品A、样品B及样品C上尚未形成第二氮化铝层140时,其(002)X射线回摆曲线的半高宽分别是50角秒(arcsec)、30角秒及70角秒,而其(102)X射线回摆曲线的半高宽分别是大于2000角秒、392角秒及371角秒。于样品A、样品B及样品C上形成第二氮化铝层140后的(002)X射线回摆曲线及(102)X射线回摆曲线则分别如图6A与图6B所绘示。样品A、样品B及样品C形成第二氮化铝层140后,其(002)X射线回摆曲线的半高宽分别是420角秒(arcsec)、216角秒及144角秒,而其(102)X射线回摆曲线的半高宽分别是560角秒、400角秒及280角秒。在本实施例中,氮化铝层150的(002)X射线回摆曲线的半高宽小于150角秒,且氮化铝层150的(102)X射线回摆曲线的半高宽小于350角秒。由以上实验数据可验证,退火处理可在成长第二氮化铝层140之前,有效提升第一氮化铝层121的晶体品质,足够的第一氮化铝层121的厚度有助于进一步提升第二氮化铝层140的晶体品质。在本实施例中,最终复合式基板100的氮化铝层150的(102)X射线回摆曲线的半高宽可达260角秒,换算差排密度约4×108/cm2
图7是三种不同样品在第二氮化铝层140成长后的拉曼光谱图。请参照图4、图5与图7,图7中的样品X是指在基板110上形成第一氮化铝层121,但第一氮化铝层121没有经过退火处理,在第一氮化铝层121上成长没有掺杂硅的第二氮化铝层140,样品Y是指在基板110上形成第一氮化铝层121,但第一氮化铝层121有经过退火处理,在第一氮化铝层121上成长没有掺杂硅的第二氮化铝层140,样品Z是指在基板110上形成第一氮化铝层121,但第一氮化铝层121有经过退火处理,于第一氮化铝层121上成长有掺杂硅的第二氮化铝层140。图7中的样品X、Y及Z的氮化铝层150的厚度分别为2.11微米、2.12微米及2.13微米,图7中的样品X、Y及Z的翘曲度(warpage)分别是20.3微米、60.8微米及46.4微米,而图7中的样品X、Y及Z的拉曼光谱的E2高模态(E2 high mode)的频移分别为658.9/cm、661.7/cm及659.6/cm。由拉曼光谱的频移,可根据文献对应得知图7中的样品X、Y及Z的应力分别为-1GPa、-1.96GPa及-1.24GPa,而根据翘曲度可通过史东纳方程式(Stoney equation)分别计算出图7中的样品X、Y及Z的应力分别为-0.54GPa、-1.61GPa及-1.22GPa。
图8是关于图7的复合式基板的三种不同样品X、Y及Z在第二氮化铝层140成长后的(102)X射线回摆曲线半高宽对翘曲度图。图8中的样品X、Y及Z的翘曲度(warpage)分别是20.3微米、60.8微米及46.4微米。样品X、样品Y及样品Z形成第二氮化铝层140后,其(102)X射线回摆曲线的半高宽分别是521角秒、259角秒及254角秒。由上述实验数据可知,高温退火处理有效的提升结晶品质,但残余的热压缩应变造成在第二氮化铝层140成长后的大的晶片翘曲,而采用在第二氮化铝层140掺杂硅的方法可以平冲此应变,同时保持良好的结晶品质。
图9是本发明的另一实施例的复合式基板的剖面示意图。请参照图9,本实施例的复合式基板100a与图5的复合式基板100类似,但两者的主要差异如下所述。本实施例的复合式基板100a的基板110a的上表面112a为一平坦表面,而不具有如图5的纳米图案化凹陷114。此外,本实施例的复合式基板100a的制造方法是直接在基板110a的上表面112a上形成氮化铝层150,且氮化铝层150中掺杂有硅,以有效调控残余应力。本实施例的基板110a的材质相同于图5的基板110的材质,而本实施例的氮化铝层150的形成方法可以是金属有机化学气相沉积法。
综上所述,在本发明的实施例的复合式基板及其制造方法中,由于在基板的上表面采用了彼此分离的多个纳米图案化凹陷,也就是采用了具有下凹式纳米图案的纳米图案化基板来取代传统具有上凸式纳米图案的图案化基板,因此可大幅降低氮化铝外延的先天管芯缝合难度。此外,在本发明的实施例中,形成纳米图案化凹陷的方法可以是湿蚀刻法,如此有助于提升氮化铝直接于其上的外延品质。再者,在本发明的实施例中,通过形成平坦化层后再逐渐移除平坦化层的材料的方法以使第一氮化铝层的表面平坦化,以及通过对已平坦化的第一氮化铝层作退火处理,可进一步提升氮化铝层的晶体品质、降低缝合难度,并扩展复合式基板的设计空间。
虽然结合以上实施例公开了本发明,然而其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,可作些许的更动与润饰,故本发明的保护范围应当以附上的权利要求所界定的为准。

Claims (20)

1.一种复合式基板,其特征在于,该复合式基板包括:
基板,其上表面包括多个纳米图案化凹陷,该多个纳米图案化凹陷彼此分离;以及
氮化铝层,配置于该基板的该上表面上,其中该氮化铝层的膜厚小于3.5微米,且该氮化铝层的缺陷密度小于或等于5×109/cm2
2.如权利要求1所述的复合式基板,其中该氮化铝层的背对该基板的上表面的方均根粗糙度小于3纳米。
3.如权利要求1所述的复合式基板,其中该氮化铝层的(002)X射线回摆曲线的半高宽小于150角秒。
4.如权利要求1所述的复合式基板,其中且该氮化铝层的(102)X射线回摆曲线的半高宽小于350角秒。
5.如权利要求1所述的复合式基板,其中该多个纳米图案化凹陷的深度是落在150纳米至1.5微米的范围内。
6.如权利要求1所述的复合式基板,其中该多个纳米图案化凹陷的宽度是落在200纳米至1.5微米的范围内。
7.如权利要求1所述的复合式基板,其中该多个纳米图案化凹陷在该基板的该上表面上呈周期性排列。
8.如权利要求1所述的复合式基板,其中该氮化铝层中具有多个孔洞,每一孔洞在平行于该基板的横向与垂直于该基板的纵向的至少一方向上的尺寸小于50纳米。
9.如权利要求1所述的复合式基板,其中该氮化铝层包括第一氮化铝层以及位于该第一氮化铝层上的第二氮化铝层,且该第二氮化铝层中掺杂有硅。
10.如权利要求9所述的复合式基板,其中该第二氮化铝层中的硅的掺杂浓度大于2×1017/cm3并且小于5×1019/cm3
11.如权利要求1所述的复合式基板,其中该多个纳米图案化凹陷的侧壁呈倒角锥形。
12.如权利要求11所述的复合式基板,其中至少三条交界线交会于该倒角锥形的最底部的顶点。
13.一种复合式基板的制造方法,包括:
制备基板,该基板的上表面包括多个纳米图案化凹陷,该多个纳米图案化凹陷彼此分离;
在该基板的该上表面上形成第一氮化铝层;
在该第一氮化铝层上形成平坦化层;
逐渐移除该平坦化层的材料,其中当逐渐移除该平坦化层的材料至该平坦化层的底部时,也会同时逐渐移除了部分的该第一氮化铝层,以使该第一氮化铝层平坦化;以及
在已平坦化的该第一氮化铝层上形成第二氮化铝层,其中该第二氮化铝层的背对该基板的上表面的方均根粗糙度小于3纳米。
14.如权利要求13所述的复合式基板的制造方法,还包括:
在逐渐移除该平坦化层的材料之后,对已平坦化的该第一氮铝层作退火处理。
15.如权利要求13所述的复合式基板的制造方法,其中该平坦化层的材料包括聚合物或旋涂式玻璃。
16.如权利要求13所述的复合式基板的制造方法,其中逐渐移除该平坦化层的材料的方法为干蚀刻或机械研磨。
17.如权利要求13所述的复合式基板的制造方法,其中该第二氮化铝层中掺杂有硅,且该第二氮化铝层中的硅的掺杂浓度大于2×1017/cm3并且小于5×1019/cm3
18.如权利要求13所述的复合式基板的制造方法,其中该多个纳米图案化凹陷是通过湿蚀刻所形成。
19.如权利要求13所述的复合式基板的制造方法,其中该第一氮化铝层加上该第二氮化铝层整体的膜厚小于3.5微米。
20.如权利要求13所述的复合式基板的制造方法,其中该多个纳米图案化凹陷的深度是落在150纳米至1.5微米的范围内,且该多个纳米图案化凹陷的宽度是落在200纳米至1.5微米的范围内。
CN201910961971.5A 2019-01-31 2019-10-11 复合式基板及其制造方法 Active CN111509095B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962799717P 2019-01-31 2019-01-31
US62/799,717 2019-01-31
TW108131160A TWI736962B (zh) 2019-01-31 2019-08-30 複合式基板及其製造方法
TW108131160 2019-08-30

Publications (2)

Publication Number Publication Date
CN111509095A true CN111509095A (zh) 2020-08-07
CN111509095B CN111509095B (zh) 2022-01-04

Family

ID=71837415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910961971.5A Active CN111509095B (zh) 2019-01-31 2019-10-11 复合式基板及其制造方法

Country Status (2)

Country Link
US (1) US11220743B2 (zh)
CN (1) CN111509095B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242460A (zh) * 2020-09-29 2021-01-19 苏州紫灿科技有限公司 一种具有Si掺杂插入层的AlN复合薄膜及其外延生长方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162865A1 (en) * 2020-02-11 2021-08-19 Lam Research Corporation Carrier ring designs for controlling deposition on wafer bevel/edge

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070259534A1 (en) * 2006-05-08 2007-11-08 Tokyo Electron Limited In-situ formation of oxidized aluminum nitride films
US20120076968A1 (en) * 2001-07-06 2012-03-29 Freiberger Compound Materials Gmbh Method and apparatus for fabricating crack-free group iii nitride semiconductor materials
CN103700579A (zh) * 2012-09-27 2014-04-02 丰田合成株式会社 用于制造第ⅲ族氮化物半导体的方法
CN103824919A (zh) * 2012-11-15 2014-05-28 财团法人工业技术研究院 发光二级管
CN105390375A (zh) * 2015-11-03 2016-03-09 安徽三安光电有限公司 图形化蓝宝石衬底及发光二极管的制作方法
CN106233429A (zh) * 2014-04-16 2016-12-14 耶鲁大学 获得平坦的半极性氮化镓表面的方法
US20180047557A1 (en) * 2016-06-24 2018-02-15 Quora Technology, Inc. Polycrystalline ceramic substrate and method of manufacture
CN107910415A (zh) * 2017-11-22 2018-04-13 闽南师范大学 一种短波紫外发光芯片的制造方法
CN108269887A (zh) * 2016-12-30 2018-07-10 北京大学 一种基于图形化蓝宝石衬底和预溅射技术的AlN薄膜的制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3758390B2 (ja) * 1998-12-14 2006-03-22 パイオニア株式会社 窒化物半導体発光素子及びその製造方法
US7897490B2 (en) * 2005-12-12 2011-03-01 Kyma Technologies, Inc. Single crystal group III nitride articles and method of producing same by HVPE method incorporating a polycrystalline layer for yield enhancement
TWI304278B (en) 2006-06-16 2008-12-11 Ind Tech Res Inst Semiconductor emitting device substrate and method of fabricating the same
US8853086B2 (en) 2011-05-20 2014-10-07 Applied Materials, Inc. Methods for pretreatment of group III-nitride depositions
US9653313B2 (en) 2013-05-01 2017-05-16 Sensor Electronic Technology, Inc. Stress relieving semiconductor layer
WO2013033841A1 (en) 2011-09-06 2013-03-14 Trilogy Environmental Systems Inc. Hybrid desalination system
US9324560B2 (en) 2011-09-06 2016-04-26 Sensor Electronic Technology, Inc. Patterned substrate design for layer growth
US10032956B2 (en) 2011-09-06 2018-07-24 Sensor Electronic Technology, Inc. Patterned substrate design for layer growth
US9806228B2 (en) 2011-10-10 2017-10-31 Sensor Electronic Technology, Inc. Patterned layer design for group III nitride layer growth
US9397260B2 (en) 2011-10-10 2016-07-19 Sensor Electronic Technology, Inc. Patterned layer design for group III nitride layer growth
US10153396B2 (en) 2011-10-10 2018-12-11 Sensor Electronic Technology, Inc. Patterned layer design for group III nitride layer growth
EP2992562B1 (en) 2013-05-01 2024-07-03 Sensor Electronic Technology Inc. Stress relieving semiconductor layer
TWI577630B (zh) 2016-04-08 2017-04-11 Crystalwise Tech Inc A substrate for an ultraviolet light emitting diode, and a method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120076968A1 (en) * 2001-07-06 2012-03-29 Freiberger Compound Materials Gmbh Method and apparatus for fabricating crack-free group iii nitride semiconductor materials
US20070259534A1 (en) * 2006-05-08 2007-11-08 Tokyo Electron Limited In-situ formation of oxidized aluminum nitride films
CN103700579A (zh) * 2012-09-27 2014-04-02 丰田合成株式会社 用于制造第ⅲ族氮化物半导体的方法
CN103824919A (zh) * 2012-11-15 2014-05-28 财团法人工业技术研究院 发光二级管
CN106233429A (zh) * 2014-04-16 2016-12-14 耶鲁大学 获得平坦的半极性氮化镓表面的方法
CN105390375A (zh) * 2015-11-03 2016-03-09 安徽三安光电有限公司 图形化蓝宝石衬底及发光二极管的制作方法
US20180047557A1 (en) * 2016-06-24 2018-02-15 Quora Technology, Inc. Polycrystalline ceramic substrate and method of manufacture
CN108269887A (zh) * 2016-12-30 2018-07-10 北京大学 一种基于图形化蓝宝石衬底和预溅射技术的AlN薄膜的制备方法
CN107910415A (zh) * 2017-11-22 2018-04-13 闽南师范大学 一种短波紫外发光芯片的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242460A (zh) * 2020-09-29 2021-01-19 苏州紫灿科技有限公司 一种具有Si掺杂插入层的AlN复合薄膜及其外延生长方法

Also Published As

Publication number Publication date
CN111509095B (zh) 2022-01-04
US20200248304A1 (en) 2020-08-06
US11220743B2 (en) 2022-01-11

Similar Documents

Publication Publication Date Title
US10879065B2 (en) III-V compound semiconductors in isolation regions and method forming same
JP5954944B2 (ja) 半導体基板上での逆相境界の無いiii−v化合物半導体材料およびその製造方法
US9356191B2 (en) Epitaxial layer wafer having void for separating growth substrate therefrom and semiconductor device fabricated using the same
KR20120079393A (ko) 반도체 발광소자의 제조방법
JP6234787B2 (ja) 基板再生方法及び再生基板
TWI736962B (zh) 複合式基板及其製造方法
JP2017119624A (ja) 半導体デバイス用基板
KR102071034B1 (ko) 질화물 기판 제조 방법
CN111509095B (zh) 复合式基板及其制造方法
TWI397618B (zh) 氮化物半導體模板及其製作方法
JP2019206467A (ja) 複数のイオン注入を用いた窒化ガリウム基板の製造方法
KR20050062832A (ko) 발광 소자용 질화물 반도체 템플레이트 제조 방법
TW201904018A (zh) 在磊晶膜生長期間晶圓彎曲的減少
JP5174052B2 (ja) 低欠陥密度を有するエピタキシャル構造の製造方法
JP4826373B2 (ja) 単結晶ウェハの製造方法
US20150079769A1 (en) Semiconductor device and method of manufacturing the same
JP2015097265A (ja) Iii−v族材料の選択エリア成長用のエピ基板およびiii−v族材料をシリコン基板上に製造する方法
KR20180070781A (ko) 질화물 반도체 기판의 형성 방법 및 반도체 소자의 제조 방법
TWI733574B (zh) 複合式基板與發光二極體
KR20100020936A (ko) 파티션화된 기판 상에 제작되는 반도체 소자용 고품질 경계부 형성 방법
TWI427699B (zh) Iii族氮化物半導體層、iii族氮化物半導體元件及其製造方法
US9859108B2 (en) Substrate regeneration method and regenerated substrate
TWI457985B (zh) Semiconductor structure with stress absorbing buffer layer and manufacturing method thereof
CN114583020A (zh) 一种光电器件外延结构的制备方法、外延结构及光电器件
KR20140077477A (ko) 기판 분리를 위한 공동을 갖는 에피 웨이퍼 및 그것을 제조하는 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant