CN111497229A - 3d成型装置及其成型槽 - Google Patents

3d成型装置及其成型槽 Download PDF

Info

Publication number
CN111497229A
CN111497229A CN201910099978.0A CN201910099978A CN111497229A CN 111497229 A CN111497229 A CN 111497229A CN 201910099978 A CN201910099978 A CN 201910099978A CN 111497229 A CN111497229 A CN 111497229A
Authority
CN
China
Prior art keywords
annular wall
forming
silica gel
membrane
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910099978.0A
Other languages
English (en)
Inventor
赵伟淳
郭宗桦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwei International Stereo Printing Technology Co ltd
Kinpo Electronics Inc
XYZ Printing Inc
Original Assignee
Sanwei International Stereo Printing Technology Co ltd
Kinpo Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwei International Stereo Printing Technology Co ltd, Kinpo Electronics Inc filed Critical Sanwei International Stereo Printing Technology Co ltd
Priority to CN201910099978.0A priority Critical patent/CN111497229A/zh
Priority to US16/456,989 priority patent/US20200247051A1/en
Publication of CN111497229A publication Critical patent/CN111497229A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

本发明提供一种快速成型的3D成型装置,其包含一成型槽、一成型平台、一升降机构及一光源模块。成型槽包含一底座、一环壁及一硅胶膜,底座围设形成一开放腔室,环壁设置在底座上,硅胶膜水平配置且固定在环壁的底缘,硅胶膜封闭环壁的底部且露出在开放腔室内。成型平台悬设在成型槽的上方且向下对应环壁围设的范围内配置。升降机构连接成型平台以相对于硅胶膜升降移动成型平台。光源模块对应成型平台的位置设置在硅胶膜下方以穿透硅胶膜投射光线至成型平台与硅胶膜之间。

Description

3D成型装置及其成型槽
技术领域
本发明有关于3D成型装置,特别是一种快速成型的3D成型装置。
背景技术
光固化成形机(stereolithography;SLA 3D printer)的成形原理是通过紫外光照射一水槽内盛装的成形液(光固化树脂;UV resin)的特定区域使该区域固化成一切层,重复前述步骤在已固化的切层上继续固化另一切层,由此层叠堆积成成品。一般的光固化成形机依其紫外光的照射方向区分为由上向下照设的上照式成形机以及由下向上照设的下照式成形机。
本发明是关于下照式成形机,下照式成形机的水槽需为可透光,置在水槽下方的紫外光源方能穿透水槽照射水槽内盛装的成形液。下照式的成形机包含设在水槽上方的一成形平台,成形平台降下沉入成形液并与水槽的底部维持微小间距,紫外光照射成形平台范围内的特定区域使该区域内成形平台与水槽底部之间的成形液固化成一切层。接着,成形平台上移将前述切层上升使此切层与水槽的底部之间形成微小间距以供固化另一切层。切层容易黏结水槽的底部,致使成形平台无法快速上移。因此水槽的底部一般覆盖特殊的覆层使得切层容易脱离。现有的下照式的水槽大部分使用氟素薄膜(即铁氟龙)或硅化物膜作为水槽底部的覆层。
铁氟龙抗张力性强,一般以玻璃板作为水槽底部支撑于铁氟龙膜的下方以绷紧铁氟龙。当一层切固化完成后,平台往上移动时,因为层切与铁氟龙之间有结合力,造成铁氟龙被拉起,因此必须上下作动使对象脱离铁氟龙,造成打印时间大幅的增加,无法快速打印。
硅化物质软,一般以压克力板作为水槽底部,将硅化物原液倒在压克力板上固化后形成硅化物膜。硅化物可以本身可以吸收/渗透氧气,在打印过程中氧气会释放到水槽里面而在硅化物的表面形成一层氧抑制层,氧抑制层使固化的切层与硅化物黏着力下降而易于脱离。美国麻省理工学院(MIT)的Dr.Doyle group对此进行了一系列的研究,在2006年4月于Nature Materials Letters发表首篇关于利用氧抑制层达成快速固化光固化树脂的成果。接着在2008年10月于Macromolecules发表一模拟计算方法用于判断大气中的氧经由聚二甲基硅氧烷(PDMS)扩散进入设备后的分布。
Dr.Doyle group在2013年9月于Lab on a Chip发表“Synthesis of biomimeticoxygen-carrying compartmentalized microparticles using flow lithography”一文,记载于Lab on a Chip 13.24(2013):4765-4774)。此论文提到在光固化树脂中加入氟碳化物(PFC),可以让氧气溶于氟碳化物。实验发现,当含量越高,氧抑制层的厚度也会越厚氟碳化物使固化的精度变差,且固化时间变长。其研究发现,在水槽中灌入惰性气体,可使固化精度越高。惰性气体可以使氟碳化物的含氧量降低,固化后的精度会更好,当水槽中的氧气浓度降低,氧抑制层的厚度也会降低。此论文探讨氧浓度对抑制层厚度和固化高度的影响,但没有使用高浓度氧,而是用大气,所以氧浓度最高的状况为21%。
Dr.Doyle group在2014年7月于Soft Material发表一个利用氧浓度来控制打印质量的文章。2014年10月于Lab on a Chip发表“Stop Flow Lithography inPerfluoropolyether(PFPE)Microfluidic Channels”一文,记载于Lab on a Chip 14.24(2014):4680-4687。此文记载了利用全氟聚醚(PFPE)取代聚二甲基硅氧烷(PDMS),聚二甲基硅氧烷易与有机溶剂反应,但全氟聚醚较软且透氧度较低。
US2013/0295212A1提出了通过氧抑制层避免固化层黏着在PDMS上的技术方案。因为抑制光固化树脂固化需要持续消耗氧气与光固化树脂进行化学反应,所以每层切层固化后必须将硅化物暴露在空气之中,使硅化物可以重新吸收氧气。例如US2013/0295212A1的做法是再各层切层的固化程序之间,用刮刀将硅化物表面的光固化树脂暂时刮除,使硅化物的至少一部分暴露在空气中以重新吸收氧气,这种方式造成打印时间大幅的增加。
为了达成快速打印,氧气必须从水槽下方渗透进胶槽。玻璃以及压克力材质本身并不能透氧,所以氧气无法从下方渗透进胶槽。Carbon 3D公司的专利CN105122135A及WO2014126837A3皆记载了通过在氟素膜下方加压输入氧气,使得氧气渗透氟素膜而在氟素膜上方表面上形成一个特定厚度的死区,在死区中成形液无法固化使得切层不接触氟素膜而能够快速打印。但对薄膜加压易使薄膜膨胀弯曲,水槽中的成形液量变化也会致使成形液重力与加压气压平衡改变而使得薄膜表面弯曲,一旦薄膜不平整则切层也无法维持平整,切层层叠后将使得成品变形。
发明内容
本发明提供一种快速成型的3D成型装置及其成型槽。
于本发明实施例中,成型槽包含一底座、一环壁及一硅胶膜,该底座围设形成一开放腔室,该环壁设置在该底座上,该硅胶膜水平配置且固定在该环壁的底缘,该硅胶膜封闭该环壁的底部且露出在该开放腔室内,该硅胶膜设置有一扩张支架,该扩张支架对应该环壁围设的范围内配置,该扩张支架沿垂直于该硅胶膜的方向推抵该硅胶膜的多处而扩张拉平该硅胶膜。
于本发明实施例中,成型槽中的扩张支架容置在环壁之内且向下凸出环壁的底缘而向下推抵硅胶膜。扩张支架设置在环壁的下方,且向上延伸穿入环壁而向上推抵硅胶膜。硅胶膜的外缘被夹持在环壁的底缘与扩张支架之间。扩张支架容置在底座的开放腔室内。扩张支架为环状且扩张支架的侧面开设有多个通孔。
于本发明实施例中,成型槽中的硅胶膜的外缘固定于环壁的底缘。底座包含一夹环,夹环与环壁相互穿套,且硅胶膜的外缘被夹持在环壁的底缘与夹环之间。
于本发明实施例中,3D成型装置包含前述的成型槽、一成型平台、一升降机构及一光源模块。成型平台悬设在成型槽的上方且向下对应环壁围设的范围内配置。升降机构连接成型平台以相对于硅胶膜升降移动成型平台。光源模块对应成型平台的位置设置在硅胶膜下方以穿透硅胶膜投射光线至成型平台与硅胶膜之间。于本发明实施例中,3D成型装置中的扩张支架容置在环壁之内且向下凸出环壁的底缘而向下推抵硅胶膜。扩张支架设置在环壁的下方,且向上延伸穿入环壁而向上推抵硅胶膜。硅胶膜的外缘被夹持在环壁的底缘与扩张支架之间。扩张支架容置在底座的开放腔室内。扩张支架为环状且扩张支架的侧面开设有多个通孔。
于本发明实施例中,3D成型装置中的硅胶膜的外缘固定于环壁的底缘。底座包含一夹环,夹环与环壁相互穿套,且硅胶膜的外缘被夹持在环壁的底缘与夹环之间。
于本发明实施例中,3D成型装置更包含连通开放腔室的一供氧模块。光源模块设置在底座下方且底座为可透光。光源模块设置在开放腔室内。
附图说明
图1及图2为本发明较佳实施例的3D成型装置的示意图。
图3为本发明较佳实施例的3D成型装置的使用状态示意图。
图4为本发明较佳实施例的3D成型装置中的扩张支架的另一配置方式示意图。
图5为本发明较佳实施例的3D成型装置中的硅胶膜的另一配置方式示意图。
图6为本发明较佳实施例的3D成型装置中的光源模块的另一配置方式示意图。
其中,附图标记:
10 成形液
20 切层
100 成型槽
110 底座
111 开放腔室
112 夹环
120 环壁
130 硅胶膜
140 扩张支架
141 通孔
200 成型平台
300 升降机构
400 光源模块
500 供氧模块
具体实施方式
参阅图1至图3,本发明的较佳实施例提供一种快速成型的3D成型装置,其包含一成型槽100、一成型平台200、一升降机构300及一光源模块400。
成形槽用于盛装成形液10,一般而言,成形液10为光固化树脂,成形液10能够被紫外光照射而固化。于本实施例中,成型槽100包含一底座110、一环壁120及一硅胶膜130,底座110内部围设形成一开放腔室111,环壁120承载设置在底座110上,硅胶膜130水平配置且固定在环壁120的底缘。具体而言硅胶膜130的外缘固定于环壁120的底缘,硅胶膜130通过封闭环壁120的底部且硅胶膜130的底面露出在开放腔室111之内而能够接触氧气。
底座110可以选择性地更包含一夹环112,夹环112与环壁120相互穿套,且硅胶膜130的外缘被夹持在环壁120的底缘与夹环112之间,由此将硅胶膜130的外缘固定于环壁120的底缘。于本实施例中,具体而言,夹环112较佳地套设在环壁120外侧,夹环112的下缘向内收缩而包覆环壁120的底缘,且硅胶膜130的外缘被夹持在环壁120的底缘与夹环112的下缘之间。
于本实施例中,硅胶膜130设置有一扩张支架140,扩张支架140对应环壁120围设的范围内配置,且扩张支架140沿垂直于硅胶膜130的方向推抵硅胶膜130的多处而扩张拉平硅胶膜130。扩张支架140的具体实施方式详述如后,具体而言,扩张支架140较佳地为环状,本发明不限定其环状的具体形态,例如可以是方环或圆环,且扩张支架140的侧面开设有多个通孔141。于本实施例中,扩张支架140较佳地设置在环壁120的下方而容置在底座110的开放腔室111内,而且扩张支架140的顶缘向上延伸穿入环壁120,由此而沿垂直于该硅胶膜130的方向向上推抵硅胶膜130的底面。扩张支架140侧面上的通孔141则容许氧气通过以接触硅胶膜130的底面。
成型平台200悬设在成型槽100的上方且向下对应环壁120围设的范围内配置。升降机构300连接成型平台200以相对于硅胶膜130升降移动成型平台200。
光源模块400对应成型平台200的位置设置在硅胶膜130下方以穿透硅胶膜130投射光线至成型平台200与硅胶膜130之间。具体而言,光源模块400产生的光线为紫外光。于本实施例中,光源模块400较佳地设置在底座110下方且底座110为可透光,由此光源模块400能够穿透底座110及硅胶膜130投射光线至成型平台200与硅胶膜130之间。
于本实施例中,本发明的3D成型装置可以选择性地更包含一供氧模块500。供氧模块500连通开放腔室111,供氧模块500能够制造氧气,并且将特定含氧量的空气输送通过开放腔室111。但本发明不限于此,当未设置供氧模块500时,氧气也可以来自于开放腔室111内的环境空气。
参阅图3,本发明的3D成型装置使用时,硅胶膜130的顶面上分布的氧气与成形液10反应而抑制成形液10固化,由此使得接触硅胶膜130顶面的成形液10无法固化而使得成形液10中固化形成的切层20不致于黏结硅胶膜130的顶面。因此升降机构300可在切层20固化后直接抬升成型平台200至下一个成型的预定位置,不需反复升降或是摇动使切层20脱离硅胶膜130。当硅胶膜130顶面上分布的氧气与成形液10反应而消耗时,硅胶膜130内含氧气自然向含氧浓度较低的硅胶膜130顶面扩散,硅胶膜130的底面则能够通过开放腔室111持续地吸收氧气。且通过扩张支架140能够确实维持硅胶膜130平整。
参阅图4所示扩张支架140的另一种配置方式,扩张支架140也可以容置在环壁120之内,而且扩张支架140向下凸出环壁120的底缘而沿垂直于硅胶膜130的方向向下推抵硅胶膜130。
参阅图5所示硅胶膜130的另一种配置方式,扩张支架140也可以穿接于环壁120的底缘,此配置不需通过底座110的夹环112固定硅胶膜130。硅胶膜130的外缘被夹持在环壁120的底缘与扩张支架140之间而迫紧固定,同时硅胶膜130也被扩张拉平。
参阅图6光源模块400的另一种配置方式,光源模块400也可以设置在开放腔室111内。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明权利要求的保护范围。

Claims (19)

1.一种成型槽,其特征在于,包含一底座、一环壁及一硅胶膜,该底座围设形成一开放腔室,该环壁设置在该底座上,该硅胶膜水平配置且固定在该环壁的底缘,该硅胶膜封闭该环壁的底部且露出在该开放腔室内,该硅胶膜设置有一扩张支架,该扩张支架对应该环壁围设的范围内配置,该扩张支架沿垂直于该硅胶膜的方向推抵该硅胶膜的多处而扩张拉平该硅胶膜。
2.如权利要求1所述的成型槽,其特征在于,该扩张支架容置在该环壁之内且向下凸出该环壁的底缘而向下推抵该硅胶膜。
3.如权利要求1所述的成型槽,其特征在于,该扩张支架设置在该环壁的下方,且向上延伸穿入该环壁而向上推抵该硅胶膜。
4.如权利要求3所述的成型槽,其特征在于,该硅胶膜的外缘被夹持在该环壁的底缘与该扩张支架之间。
5.如权利要求3所述的成型槽,其特征在于,该扩张支架容置在该底座的该开放腔室内。
6.如权利要求5所述的成型槽,其特征在于,该扩张支架为环状且该扩张支架的侧面开设有多个通孔。
7.如权利要求1所述的成型槽,其特征在于,该硅胶膜的外缘固定于该环壁的底缘。
8.如权利要求7所述的成型槽,其特征在于,该底座包含一夹环,该夹环与该环壁相互穿套,且该硅胶膜的外缘被夹持在该环壁的底缘与该夹环之间。
9.一种3D成型装置,其特征在于,包含:
权利要求1所述的成型槽;
一升降机构,连接一成型平台以相对于该硅胶膜升降移动该成型平台;及
一光源模块,对应该成型平台的位置设置在该硅胶膜下方以穿透该硅胶膜投射光线至该成型平台与该硅胶膜之间。
10.如权利要求9所述的3D成型装置,其特征在于,该扩张支架容置在该环壁之内且向下凸出该环壁的底缘而向下推抵该硅胶膜。
11.如权利要求9所述的3D成型装置,其特征在于,该扩张支架设置在该环壁的下方,且向上延伸穿入该环壁而向上推抵该硅胶膜。
12.如权利要求11所述的3D成型装置,其特征在于,该硅胶膜的外缘被夹持在该环壁的底缘与该扩张支架之间。
13.如权利要求11所述的3D成型装置,其特征在于,该扩张支架容置在该底座的该开放腔室内。
14.如权利要求13所述的3D成型装置,其特征在于,该扩张支架为环状且该扩张支架的侧面开设有多个通孔。
15.如权利要求9所述的3D成型装置,其特征在于,该硅胶膜的外缘固定于该环壁的底缘。
16.如权利要求15所述的3D成型装置,其特征在于,该底座包含一夹环,该夹环与该环壁相互穿套,且该硅胶膜的外缘被夹持在该环壁的底缘与该夹环之间。
17.如权利要求9所述的3D成型装置,其特征在于,更包含连通该开放腔室的一供氧模块。
18.如权利要求9所述的3D成型装置,其特征在于,该光源模块设置在该底座下方且该底座为可透光。
19.如权利要求9所述的3D成型装置,其特征在于,该光源模块设置在该开放腔室内。
CN201910099978.0A 2019-01-31 2019-01-31 3d成型装置及其成型槽 Pending CN111497229A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910099978.0A CN111497229A (zh) 2019-01-31 2019-01-31 3d成型装置及其成型槽
US16/456,989 US20200247051A1 (en) 2019-01-31 2019-06-28 Three-dimensional forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910099978.0A CN111497229A (zh) 2019-01-31 2019-01-31 3d成型装置及其成型槽

Publications (1)

Publication Number Publication Date
CN111497229A true CN111497229A (zh) 2020-08-07

Family

ID=71838041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910099978.0A Pending CN111497229A (zh) 2019-01-31 2019-01-31 3d成型装置及其成型槽

Country Status (2)

Country Link
US (1) US20200247051A1 (zh)
CN (1) CN111497229A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11833757B2 (en) * 2021-04-22 2023-12-05 3D Systems, Inc. Manufacturing system and method for high performance customized articles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155477A (ja) * 2006-12-22 2008-07-10 Roland Dg Corp 三次元造形装置
WO2016177893A1 (en) * 2015-05-07 2016-11-10 Addifab Aps Additive manufacturing yield improvement
CN208359475U (zh) * 2018-06-12 2019-01-11 无锡映型三维数字技术有限公司 一种高速3d打印装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2775758A (en) * 1951-05-25 1956-12-25 Munz Otto John Photo-glyph recording
US5096530A (en) * 1990-06-28 1992-03-17 3D Systems, Inc. Resin film recoating method and apparatus
US5122441A (en) * 1990-10-29 1992-06-16 E. I. Du Pont De Nemours And Company Method for fabricating an integral three-dimensional object from layers of a photoformable composition
US9636873B2 (en) * 2012-05-03 2017-05-02 B9Creations, LLC Solid image apparatus with improved part separation from the image plate
US10259171B2 (en) * 2014-04-25 2019-04-16 Carbon, Inc. Continuous three dimensional fabrication from immiscible liquids
US20160303795A1 (en) * 2015-04-15 2016-10-20 Lehigh University All Dimension Fabrication Apparatus and Methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155477A (ja) * 2006-12-22 2008-07-10 Roland Dg Corp 三次元造形装置
WO2016177893A1 (en) * 2015-05-07 2016-11-10 Addifab Aps Additive manufacturing yield improvement
CN208359475U (zh) * 2018-06-12 2019-01-11 无锡映型三维数字技术有限公司 一种高速3d打印装置

Also Published As

Publication number Publication date
US20200247051A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US7780429B2 (en) Three-dimensional molding device
CA3017759C (en) System and method for generating a three-dimensional body
RU2695290C2 (ru) Способ изготовления штампа с рисунком, штамп с рисунком и способ отпечатывания
JP2006253644A (ja) 微細パターン形成装置
CN111497230A (zh) 3d成形方法
CN111497229A (zh) 3d成型装置及其成型槽
KR102234197B1 (ko) 적층식 광조형 장치
JP2022527768A (ja) 精密光路を備えた大面積三次元プリンタ
JP2009051107A (ja) 光素子の樹脂封止成形方法及び装置
JP2018535864A (ja) 付加製造装置
RU2740620C1 (ru) Емкость для использования в стереолитографических системах
CN114829113A (zh) 用于增材制造的辐射系统和方法
US10124332B2 (en) Reversible bonding of microfluidic channels using dry adhesives
CN106104751B (zh) 压印设备和制造产品的方法
CN105619819B (zh) 一种三维成型装置及方法
KR101426463B1 (ko) 미세 패턴필름 제조장치 및 미세 패턴필름 제조방법
KR101970169B1 (ko) 인쇄용 블랭킷의 제조 방법
KR20090056131A (ko) 박판형 기판 고정 장치 및 이를 이용한 박판형 기판의 나노패턴 제조 방법
CN108859114B (zh) 一种用于连续面成型3d打印的透光透气舱及操作方法
TWI391226B (zh) 真空形成設備及真空形成基板之方法
WO2017120806A1 (zh) 一种3d打印设备和方法
KR20220125471A (ko) 필름공급형 광중합 방식 세라믹 3d 프린터
Price et al. Subtractive methods for forming microfluidic gels of extracellular matrix proteins
Li 3D Printed Microfluidic Devices for Controlled Biomaterial Fabrication
JP2000085026A (ja) 光学部品製造方法及びその装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200807

WD01 Invention patent application deemed withdrawn after publication