CN111485249B - 一种提高铁基非晶合金催化析氢性能的方法 - Google Patents

一种提高铁基非晶合金催化析氢性能的方法 Download PDF

Info

Publication number
CN111485249B
CN111485249B CN202010360333.0A CN202010360333A CN111485249B CN 111485249 B CN111485249 B CN 111485249B CN 202010360333 A CN202010360333 A CN 202010360333A CN 111485249 B CN111485249 B CN 111485249B
Authority
CN
China
Prior art keywords
amorphous alloy
iron
based amorphous
hydrogen evolution
alloy strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010360333.0A
Other languages
English (en)
Other versions
CN111485249A (zh
Inventor
沈宝龙
邵根苗
王倩倩
苗芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010360333.0A priority Critical patent/CN111485249B/zh
Publication of CN111485249A publication Critical patent/CN111485249A/zh
Application granted granted Critical
Publication of CN111485249B publication Critical patent/CN111485249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • B01J35/61
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明公开了一种提高铁基非晶合金催化析氢性能的方法,涉及电解水催化剂领域。该提高铁基非晶合金催化析氢性能的方法包括如下步骤:(1)采用电化学工作站三电极体系,以铁基非晶合金带材为工作电极,H2SO4为电解液,在析氢反应体系中进行循环伏安扫描、活化该铁基非晶合金带材;(2)利用强氧化性溶液浸蚀活化后的铁基非晶合金带材。本发明先通过循环伏安法处理非晶合金带材,显著增大了非晶合金带材的活性比表面积,使铁基非晶合金的析氢过电位明显降低,有效解决了带材活性比表面积小的问题;然后通过HNO3溶液浸蚀活化后的非晶合金带材,使其表面钝化,克服了铁基非晶催化剂在酸性条件下易腐蚀的问题,提高了催化剂长期有效工作的稳定性。

Description

一种提高铁基非晶合金催化析氢性能的方法
技术领域
本发明涉及一种提高铁基非晶合金催化析氢性能的方法,属于电解水制氢催化剂技术领域。
背景技术
随着经济发展所带来的能源危机以及环境污染问题,氢气,作为一种清洁、高效、可再生能源,极具发展前景。电解水是生产高纯度氢,发展可持续能源的重要途径,水电解由阴极析氢(HER)和阳极析氧(OER)两个半反应构成,但由于动力学阻碍,驱动水分解制氢往往耗能大、效率低,因此需要开发电解水催化剂来降低能耗,提高能量转化率。
目前商用催化剂主要是贵金属Pt、Ir或其氧化物,但是价格昂贵且储量稀缺,所以亟待开发低成本且高效的非贵金属催化剂。过渡金属,以Fe、Co、Ni为主,由于具有不完全填充的d轨道而具有较高的催化活性,有望替代贵金属催化剂。现有研究主要集中于一系列过渡金属的硫化物、磷化物、碳化物以及氮化物。相比于过渡金属晶态催化剂,非晶合金不仅反应活性位点多,而且耐腐蚀性能佳;相比于粉末催化剂,熔体旋淬法所制备的韧性非晶带材还可自支撑,直接用作电极,更适合工业应用。所以非晶合金,尤其带状非晶,成为一种具有发展前途的催化材料。
近年来,非贵金属基非晶合金催化剂的研究主要围绕于镍基合金、铁基合金,通常镍基合金适合在碱性环境下工作,而铁基合金在酸性环境下具有更佳的析氢催化活性。铁不仅储量丰富、成本低,而且非晶态铁合金成分多样,但因在酸性条件下易腐蚀,所以极大的限制了铁基非晶作为析氢催化剂的应用。通过贵金属元素如Pd、Pt掺杂可改善催化剂的稳定性,但也增加了成本。
根据目前铁基非晶合金作为析氢电极材料的报道发现,铁基非晶合金析氢催化活性也有待进一步提升。如公开号为CN 107217219 A的中国专利申请公开了一种用于高效析氢反应的Fe-Co-P-C系非晶电催化剂及其制备方法,该专利通过熔体旋淬法制备的Fe40Co40P13C7非晶合金带材,在电流密度为10mA cm-2时,酸性析氢过电位为124mV。公开号为CN 109023161 A的中国专利申请公开了一种Fe-Ni-P-C系非晶合金电催化剂及其制备方法和应用,成分为Fe70Ni10P13C7的非晶合金带材性能最佳,在电流密度为10mA cm-2时,酸性析氢过电位为120mV。虽然上述催化剂的成本均显著降低了,但过电位仍明显高于商用催化剂Pt/C(37mV),这主要归因于非晶带材本身活性比表面积较小,不具备粗糙或纳米多孔表面暴露多活性位点的优势。
由上可知,铁基非晶合金作为析氢电极材料仍存在不少挑战。基于此,进一步提升可自支撑铁基非晶合金电催化活性,克服铁基非晶催化剂在酸性条件下稳定性差的问题,提供一种提高铁基非晶合金催化析氢性能的方法,对非晶合金带材在催化电解水方面的应用具有重要意义。
发明内容
发明目的:针对现有铁基非晶合金带材活性比表面积较小、铁基非晶催化剂在酸性条件下稳定性差的问题,本发明提供一种提高铁基非晶合金催化析氢性能的方法。
技术方案:本发明所述的一种提高铁基非晶合金催化析氢性能的方法,包括如下步骤:
(1)采用电化学工作站三电极体系,以铁基非晶合金带材为工作电极,H2SO4为电解液,在析氢反应体系中进行循环伏安扫描、活化该铁基非晶合金带材;
(2)利用强氧化性溶液浸蚀活化后的铁基非晶合金带材。
上述铁基非晶合金为Fe-R-P-C系非晶合金,其中,R为Co、Ni、Mo中的一种。较优的,该Fe-Mo-P-C系非晶合金的制备步骤包括:
A、以高纯Fe、Mo、FeP、C为原料,在高纯氩气氛围下,采用电弧熔炼、感应熔炼制备母合金锭,并对母合金锭多次重熔以确保合金成分均匀;
B、通过熔体旋淬法制备Fe-Mo-P-C系非晶合金带材。
当铁基非晶合金为Fe-Mo-P-C系非晶合金时,步骤(1)中,循环伏安扫描电压范围为-0.19~0.16V vs RHE。较优的,该Fe-Mo-P-C系非晶合金的组成为Fe80-xMoxP13C7,其中4≤x≤10,x为元素Mo的原子百分数。
上述步骤(1)中,优选的,循环伏安扫描速度为10~100mV s-1,当扫描获得的循环伏安曲线不再变化时,即前后数次循环伏安曲线重合时,停止扫描。
步骤(2)中,强氧化性溶液优选为HNO3溶液或H2SO4溶液。最好为HNO3溶液,其浓度优选为7.2~9.6M,浸蚀反应时间为10~30min。浸蚀反应可在常温下进行。
有益效果:与现有技术相比,本发明的优点为:本发明先通过循环伏安法处理非晶合金带材,显著增大了非晶合金带材的活性比表面积,使铁基非晶合金的析氢过电位明显降低;然后通过强氧化性溶液如HNO3溶液浸蚀活化后的非晶合金带材,使其表面钝化,克服了铁基非晶催化剂在酸性条件下易腐蚀的问题,提高了催化剂长期有效工作的稳定性。
附图说明
图1为实施例1制备的Fe-Mo-P-C系非晶合金带材的X射线衍射图谱;
图2为实施例1制备的Fe76Mo4P13C7非晶合金带材在0.5M H2SO4电解液中的循环伏安曲线;
图3为实施例1和实施例2制备的Fe-Mo-P-C系非晶合金带材在0.5M H2SO4电解液中的LSV曲线;
图4为实施例1和实施例2制备的Fe76Mo4P13C7非晶合金带材在0.5M H2SO4电解液中循环伏安曲线扫描速度与双层电容电流密度关系图;
图5为实施例1和实施例2制备的Fe76Mo4P13C7非晶合金带材在0.5M H2SO4电解液中10mA cm-2电流密度下的V-t曲线。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
本发明的一种提高铁基非晶合金催化析氢性能的方法,包括如下步骤:
(1)采用电化学工作站三电极体系,以铁基非晶合金带材为工作电极,H2SO4为电解液,在析氢反应体系中进行循环伏安扫描、活化该铁基非晶合金带材;
(2)利用强氧化性溶液浸蚀活化后的铁基非晶合金带材。
通过循环伏安法处理铁基非晶合金带材,可明显增大铁基非晶合金带材的活性比表面积,使铁基非晶合金的析氢过电位显著降低;通过强氧化性溶液如HNO3溶液浸蚀活化后的非晶合金带材,使其表面钝化,可提高铁基非晶合金催化剂在酸性环境工作的稳定性。
下述实施例以Fe-Mo-P-C系非晶合金Fe80-xMoxP13C7(4≤x≤10)为例,对本发明的方法进行详细说明。
实施例1
分别制备Fe76Mo4P13C7非晶合金带材和Fe70Mo10P13C7非晶合金带材。
制备过程具体如下:
(1)将高纯Fe、Mo、FeP、C按原子百分比换算称量,在高纯氩气氛围下,首先将Fe、Mo、C通过电弧熔炼成合金锭,对合金锭至少重熔4次以确保合金成分均匀,然后将合金锭与FeP混合,进行感应熔炼;
(2)采用单辊甩带设备,将母合金锭Fe80-xMoxP13C7(x=4,10)在氩气氛围中进行感应熔化,通过瞬时压差(0.02MPa)将金属液喷到转速为40m/s的铜辊上,获得宽1~3mm,厚20~30μm的Fe80-xMoxP13C7(x=4,10)合金带材。
取部分制备的Fe76Mo4P13C7合金带材和Fe70Mo10P13C7合金带材分别经去离子水、无水乙醇超声清洗,自然干燥后,剪成长为2cm的短带材。
图1所示为Fe76Mo4P13C7合金带材及Fe70Mo10P13C7合金带材的X射线衍射图谱,可以看到,XRD图谱上只有漫散射峰,说明制得的Fe76Mo4P13C7合金带材及Fe70Mo10P13C7合金带材均为非晶态结构。
实施例2
对实施例1制得的Fe76Mo4P13C7非晶合金带材及Fe70Mo10P13C7非晶合金带材分别进行循环伏安扫描活化和HNO3溶液浸蚀处理。
以Fe76Mo4P13C7非晶合金带材为例,活化及浸蚀步骤如下:
(1)以实施例1制备的长为2cm的Fe76Mo4P13C7非晶合金带材为工作电极,Ag/AgCl为参比电极,石墨棒为对电极,在0.5M H2SO4电解液中,以10mV s-1的扫描速度在-0.19~0.16V vs RHE电压范围内进行循环伏安扫描(CV),当循环伏安曲线重合时,停止扫描。
图2为Fe76Mo4P13C7非晶合金带材的循环伏安曲线,由图可知,随着循环伏安扫描次数增加,阴极极化曲线下移并趋于重合,循环伏安曲线说明电催化剂的析氢性能有所提升,而该提升是有极限的。
(2)将经循环伏安法活化后的Fe76Mo4P13C7非晶合金带材浸蚀在浓度为9.6M的HNO3溶液中,20min后取出,并依次用去离子水和无水乙醇清洗,去除非晶合金带材表面残留的化学物质。
实施例3
对实施例1制备的Fe80-xMoxP13C7(x=4,10)非晶合金带材、实施例2中循环伏安扫描活化后的非晶合金带材以及HNO3溶液浸蚀处理后的非晶合金带材分别进行电化学性能测试。
(1)在0.5M H2SO4电解液中,分别以实施例1制备的非晶合金带材和实施例2制备的循环伏安扫描活化后的非晶合金带材为工作电极,Ag/AgCl为参比电极,石墨棒为对电极,以5mV s-1的扫速进行线性扫描伏安测试。
图3为活化前后Fe80-xMoxP13C7(x=4,10)非晶合金带材的LSV曲线,可以看到在电流密度为10mA cm-2时,活化前的Fe76Mo4P13C7、Fe70Mo10P13C7的过电位分别为:165mV、283mV;活化后的Fe76Mo4P13C7、Fe70Mo10P13C7的过电位分别为:96mV、161mV,活化后,催化剂的析氢过电位明显降低。
(2)在0.5M H2SO4电解液中,分别以实施例1制备的Fe76Mo4P13C7非晶合金带材和实施例2制备的循环伏安法活化后的Fe76Mo4P13C7非晶合金带材为工作电极,Ag/AgCl为参比电极,石墨棒为对电极,以10mV s-1、20mV s-1、30mV s-1、40mV s-1、50mV s-1的扫速测循环伏安曲线。
图4为活化前后Fe76Mo4P13C7非晶合金带材的循环伏安曲线扫描速度与双层电容电流密度关系图,由图可知,经循环伏安法活化后,Fe76Mo4P13C7的电容值由26mF cm-2提升至316mF cm-2,表明活化后催化剂的活性面积显著增大,即活性位点增多,与活化后Fe76Mo4P13C7析氢过电位显著降低这一结果相吻合。
(3)在0.5M H2SO4电解液中,分别以实施例2制备的循环伏安法活化后的Fe76Mo4P13C7非晶合金带材和循环伏安法活化并硝酸浸蚀后的Fe76Mo4P13C7非晶合金带材为工作电极,Ag/AgCl为参比电极,石墨棒为对电极。通过计时电位法,测试以Fe76Mo4P13C7非晶合金作为析氢催化剂在12h内的稳定性。
图5为硝酸处理前后活化的Fe76Mo4P13C7非晶合金带材的V-t曲线,可以看到,未经硝酸浸蚀处理的非晶合金带材,12h测试后过电位增加28mV,而经硝酸处理后的非晶合金带材,12h测试后过电位仅增加5mV,可见,经过进一步HNO3溶液浸蚀处理的Fe76Mo4P13C7非晶合金稳定性明显提升,这可能是因为非晶合金表面生成的氧化层阻止了非晶合金内部原子在反应过程中继续被腐蚀。
综上可知,通过循环伏安法对Fe-Mo-P-C系非晶合金带材进行活化,可增大其活性面积,显著降低非晶合金的析氢过电位;进一步通过HNO3溶液浸蚀活化后的非晶合金带材,对其进行表面处理,可提升非晶合金作为催化剂在酸性环境下长期有效工作的稳定性。

Claims (4)

1.一种提高铁基非晶合金催化析氢性能的方法,其特征在于,包括如下步骤:
(1)采用电化学工作站三电极体系,以铁基非晶合金带材为工作电极,H2SO4为电解液,在析氢反应体系中进行循环伏安扫描、活化该铁基非晶合金带材;所述铁基非晶合金为Fe80-xMoxP13C7,其中4≤x≤10,x为元素Mo的原子百分数;
(2)利用强氧化性溶液浸蚀活化后的铁基非晶合金带材;所述强氧化性溶液为HNO3溶液。
2.根据权利要求1所述的提高铁基非晶合金催化析氢性能的方法,其特征在于,所述步骤(1)中,循环伏安扫描电压范围为-0.19~0.16V vs RHE。
3.根据权利要求1所述的提高铁基非晶合金催化析氢性能的方法,其特征在于,步骤(1)中,所述循环伏安扫描速度为10~100mV s-1,当扫描获得的循环伏安曲线不再变化时,停止扫描。
4.根据权利要求1所述的提高铁基非晶合金催化析氢性能的方法,其特征在于,所述HNO3溶液浓度为7.2~9.6M,浸蚀反应时间为10~30min。
CN202010360333.0A 2020-04-30 2020-04-30 一种提高铁基非晶合金催化析氢性能的方法 Active CN111485249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010360333.0A CN111485249B (zh) 2020-04-30 2020-04-30 一种提高铁基非晶合金催化析氢性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010360333.0A CN111485249B (zh) 2020-04-30 2020-04-30 一种提高铁基非晶合金催化析氢性能的方法

Publications (2)

Publication Number Publication Date
CN111485249A CN111485249A (zh) 2020-08-04
CN111485249B true CN111485249B (zh) 2021-02-09

Family

ID=71791988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010360333.0A Active CN111485249B (zh) 2020-04-30 2020-04-30 一种提高铁基非晶合金催化析氢性能的方法

Country Status (1)

Country Link
CN (1) CN111485249B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981442A (zh) * 2021-02-08 2021-06-18 东南大学 一种用于碱性全解水的FeCoMoPC系非晶合金及其制备方法
CN113862722B (zh) * 2021-09-30 2023-08-01 东南大学 一种高熵非晶型阳极析氧电极材料及其制备方法
CN116288074B (zh) * 2023-03-22 2024-04-05 哈尔滨工业大学 FeNi(Mo/Co)BP非晶合金析氧催化剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106609346A (zh) * 2016-03-15 2017-05-03 北京纳米能源与系统研究所 一种非晶合金及其制备方法和应用
CN107217219A (zh) * 2017-06-08 2017-09-29 合肥工业大学 一种用于高效析氢反应的Fe‑Co‑P‑C系非晶电催化剂及其制备方法
CN109731589A (zh) * 2019-01-26 2019-05-10 南京理工大学 原位循环提高NiP非晶合金催化性能的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106609346A (zh) * 2016-03-15 2017-05-03 北京纳米能源与系统研究所 一种非晶合金及其制备方法和应用
CN107217219A (zh) * 2017-06-08 2017-09-29 合肥工业大学 一种用于高效析氢反应的Fe‑Co‑P‑C系非晶电催化剂及其制备方法
CN109731589A (zh) * 2019-01-26 2019-05-10 南京理工大学 原位循环提高NiP非晶合金催化性能的方法

Also Published As

Publication number Publication date
CN111485249A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
CN111485249B (zh) 一种提高铁基非晶合金催化析氢性能的方法
Miles Evaluation of electrocatalysts for water electrolysis in alkaline solutions
CN110639534B (zh) 一种析氧电催化材料及其制备方法和应用
CN108342749B (zh) 一种改性SnO2电极的制备方法及其应用于光电催化还原CO2制甲酸
CN106967997B (zh) 一种高效自支撑催化电极及其制备方法和应用
CN113215617A (zh) 一种铜纳米线负载CoNi纳米片电催化剂及其制备方法和应用
CN110773171A (zh) 一种层状镍铁铜氢氧化物电催化剂及其制备方法和应用
CN110983360A (zh) 多孔氮掺杂石墨烯复合磷化钴纳米片及其制备方法与应用
CN111001414A (zh) 结构可控的空心钴酸镍纳米线/片状氧化锰核壳阵列材料及制备方法
Papaderakis et al. Ternary IrO2-Pt-Ni deposits prepared by galvanic replacement as bifunctional oxygen catalysts
CN110813330A (zh) 一种Co-Fe@FeF催化剂及二维纳米阵列合成方法
CN112981442A (zh) 一种用于碱性全解水的FeCoMoPC系非晶合金及其制备方法
CN112626539B (zh) 一种用于超稳定pem析氧反应的合金电催化剂及其制备方法
CN116180127A (zh) 一种少层过渡金属层状双氢氧化物的宏量制备和应用
CN112501645B (zh) 一种氢氧化镍/镍网复合析氢析氧电极、制备方法及其应用
CN113293407B (zh) 一种富铁纳米带析氧电催化剂及其制备方法
CN111841567A (zh) 一种具有图灵结构的镍锰羟基氧化物薄膜的制备方法及应用
Zhang Enhancing the Water Oxidation Performance of Bulk Al1. 2CrFe2Ni2 High Entropy Alloy Through Deep Cryogenic Treatment
CN116288462B (zh) 一种提高Fe基非晶合金电化学析氧催化性能的方法
CN110158111B (zh) 一种自支撑型催化析氢电极及其制备方法
CN114045513B (zh) 一种金属硼化物电催化剂的改性方法
CN112575346B (zh) 一种用于高效酸性析氧反应的超稳定电催化剂材料及其制备方法
CN114649538B (zh) 一种甲醇电解制氢电催化剂及其制备方法
Itaya et al. Electrochemical quartz crystal microbalance study of high-rate Pt dissolution in H2O2-containing H2SO4 solution with Fe2+ ion
CN112626553B (zh) 一种空心碳管复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Shen Baolong

Inventor after: Shao Genmiao

Inventor after: Wang Qianqian

Inventor after: Miao Fang

Inventor before: Shen Baolong

Inventor before: Miao Fang

Inventor before: Wang Qianqian

GR01 Patent grant
GR01 Patent grant