CN111471162A - 一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料及其制法 - Google Patents

一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料及其制法 Download PDF

Info

Publication number
CN111471162A
CN111471162A CN202010363180.5A CN202010363180A CN111471162A CN 111471162 A CN111471162 A CN 111471162A CN 202010363180 A CN202010363180 A CN 202010363180A CN 111471162 A CN111471162 A CN 111471162A
Authority
CN
China
Prior art keywords
tio
polyaniline
solution
nano
antibacterial material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010363180.5A
Other languages
English (en)
Inventor
许廷海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202010363180.5A priority Critical patent/CN111471162A/zh
Publication of CN111471162A publication Critical patent/CN111471162A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4081Mixtures of compounds of group C08G18/64 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6415Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7685Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing two or more non-condensed aromatic rings directly linked to each other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明涉及聚氨酯抗菌材料技术领域,且公开了一种TiO2‑聚苯胺接枝改性聚氨酯抗菌材料,包括以下配方原料及组分:聚苯胺接枝纳米TiO2、聚酯二元醇、二异氰酸酯单体、二羟甲基丙酸、1,4‑丁二醇、二月桂酸二丁基锡。该一种TiO2‑聚苯胺接枝改性聚氨酯抗菌材料,多孔状TiO2纳米中空微球孔隙结构丰富,表面面积巨大,TiO2在真空高温条件下形成了大量的氧空位,可以作为光生电子的捕获陷阱,减少了光生电子和空穴的重组,聚苯胺接枝纳米TiO2共价修饰到聚氨酯的基体中,并且聚苯胺的氨基和亚氨基与聚氨酯的羰基形成大量的氢键,增强了聚苯胺接枝纳米TiO2与聚氨酯的分散性和相容性,氧空位型纳米TiO2和聚苯胺赋予了聚氨酯优异的抗菌性能。

Description

一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料及其制法
技术领域
本发明涉及聚氨酯抗菌材料技术领域,具体为一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料及其制法。
背景技术
抗菌材料是将抗菌剂加入到高分子材料中,赋予材料抑制或杀灭细菌等微生物的功能型材料,抗菌剂主要有氧化锌、二氧化钛、季铵盐类、双胍类化合物、聚苯胺等,在医疗领域、皮革领域、造纸行业和涂料行业等具有重要的应用,二氧化钛是一种常见的半导体材料,禁带宽度约为3.2eV,可以吸收紫外光能量,使价带的电子激发至导带,而产生的空穴留在价带,形成光生电子-空穴对,具有很强的活性活性,二氧化钛在光催化产氢、光催化降解、光催化抗菌等方面具有重要的作用。
聚氨酯主要是有二异氰酸酯单体和多元醇单体聚合得到的聚氨基甲酸酯化合物,聚氨酯具有良好的稳定性、耐化学性、回弹性和力学性能,产品主要有聚氨酯泡沫、聚氨酯氨纶、聚氨酯涂料和胶黏剂等,广泛应用于家居家电领域、建筑领域和交通领域等,但是传统的聚氨酯材料不具有抗菌性能,可以将纳米TiO2与聚氨酯结合得到聚氨酯抗菌材料,纳米TiO2和聚氨酯的相容性不好,通过简单的物理分散或者机械混合的方法,会导致纳米TiO2在聚氨酯基体中容易发生团聚和结块的现象,会严重影响材料的力学性能,并且普通的TiO2的光生电子和空穴很容易重组,大大降低了TiO2的光催化抗菌性能。
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料及其制法,解决了纳米TiO2在聚氨酯基体中容易团聚和结块,同时解决了TiO2的光生电子和空穴很容易重组的问题。
(二)技术方案
为实现上述目的,本发明提供如下技术方案:一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料,包括以下原料及组分:聚苯胺接枝纳米TiO2、聚酯二元醇、二异氰酸酯单体、二羟甲基丙酸、1,4-丁二醇、二月桂酸二丁基锡,质量比为3-10:100:65-75:12-15:4-6:0.4-1。
优选的,所述二异氰酸酯单体为异氟尔酮异氰酸酯、4,4'-亚甲基双(异氰酸苯酯)、4,4'-二异氰酸基-3,3'-二甲基联苯或甲苯-2,4-二异氰酸酯的任意一种
优选的,所述TiO2-聚苯胺接枝改性聚氨酯抗菌材料制备方法包括以下步骤:
(1)向反应瓶中加入乙醇溶剂和钛酸四丁酯,搅拌均匀后将溶液缓慢滴加进入蒸馏水溶剂中,匀速搅拌20-60min,将溶液倒入水热反应釜中,再加入碳酸氢铵,置于反应釜烘箱中,加热至160-200℃,反应40-60h,将溶液过滤除去溶剂,使用蒸馏水和乙醇洗涤并干燥,制备得到多孔状TiO2纳米中空微球。
(2)将多孔状TiO2纳米中空微球置于真空电阻炉中,控制真空度为0.015-0.15Pa,升温速率为1-3℃/min,升温至460-520℃,保温处理2-3h,制备得到氧空位型纳米TiO2
(3)向反应瓶中加入蒸馏水溶剂和氧空位型纳米TiO2,在超声分散仪中加热至60-80℃,超声频率为22-30KHz,进行超声处理2-6h,过滤、洗涤并干燥,制备得到羟基化氧空位型纳米TiO2
(4)向反应瓶中通入氮气,加入丙酮溶剂和羟基化氧空位型纳米TiO2,超声分散均匀后加入六亚甲基二异氰酸酯和二丁基二月桂酸锡,在70-90℃下超声反应处理2-4h,超声频率为20-25KHz,将溶液过滤除去溶剂,使用蒸馏水和乙醇洗涤固体产物,并充分干燥,制备得到异氰酸酯功能化TiO2
(5)向反应瓶中通入氮气,加入丙酮溶剂和异氰酸酯功能化TiO2,超声分散均匀后加入对苯二胺和二丁基二月桂酸锡,匀速搅拌反应2-6h,将溶液过滤除去溶剂、使用蒸馏水和乙醇洗涤固体产物并干燥,制备得到苯胺基化TiO2
(6)向反应瓶中通入氮气,加入蒸馏水溶剂和苯胺基化TiO2,超声分散均匀后加入浓盐酸,控制溶液总盐酸质量分数为3-4%,再加入苯胺,并缓慢滴加引发剂过硫酸铵,匀速搅拌反应4-8h,使用乙醇离心分离和洗涤,制备得到聚苯胺接枝纳米TiO2
(7)向反应瓶中加入聚酯二元醇和二羟甲基丙酸,加热至75-85℃匀速搅拌20-40min,再加入二异氰酸酯单体、聚苯胺接枝纳米TiO2和催化剂二月桂酸二丁基锡,匀速搅拌反应3-5h,将温度降至40-50℃,加入丙酮调节溶液粘度,滴加三乙胺调节溶液pH至中性,再加入扩链剂1,4-丁二醇,反应1-2h,将溶液高速乳化并倒入成膜模具中固化成膜,制备得到TiO2-聚苯胺接枝改性聚氨酯抗菌材料。
优选的,所述步骤(1)中钛酸四丁酯和碳酸氢铵的质量比为1.5-3:1。
优选的,所述步骤(4)中羟基化氧空位型纳米TiO2、六亚甲基二异氰酸酯和二丁基二月桂酸锡的质量比为1:1.2-2:0.005-0.01。
优选的,所述步骤(5)中异氰酸酯功能化TiO2和对苯二胺的质量比为1:0.2-0.6:0.002:0.006。
优选的,所述步骤(6)中苯胺基化TiO2、苯胺和过硫酸铵的质量比为1-4:10:22-28。
(三)有益的技术效果
与现有技术相比,本发明具备以下有益的技术效果:
该一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料,以碳酸氢铵作为模板剂和致孔剂,制备得到多孔状TiO2纳米中空微球,具有丰富的孔隙结构和空心结构,表面面积巨大,可以提高光辐射的接触面积和利用率,然后通过真空热处理,TiO2中的氧发生在真空高温条件下,逸出形成了氧空位,氧空位可以作为光生电子的捕获陷阱,促进光电子向氧空位迁移,从而加速了光生电子和空穴的分离,减少了光生电子和空穴重组和复合,从而提高了TiO2的光催化抗菌性能。
该一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料,将比表面巨大的氧空位型纳米TiO2通过超声水热处理,可以大幅提高TiO2表面、孔隙和空心结构中活性羟基的数量,以二月桂酸二丁基锡作为催化剂,大量的羟基很容易与空间位阻效应很小的直链型六亚甲基二异氰酸酯的异氰酸酯基团发生反应,得到异氰酸酯功能化TiO2,部分异氰酸酯基团再与对苯二胺的氨基反应,从而将苯胺基团引入多孔中空TiO2纳米的基体中,再通过原位聚合法,苯胺与TiO2的苯胺基团发生共聚,得到聚苯胺接枝纳米TiO2,在合成聚氨酯的过程中,聚苯胺接枝纳米TiO2中剩余的异氰酸酯基团再与聚酯二元醇反应,从而将聚苯胺接枝纳米TiO2通过共价键修饰到聚氨酯的基体中,并且聚苯胺分子链中的氨基和亚氨基与聚氨酯分子链中的羰基形成大量的氢键作用力,在协同作用下增强了聚苯胺接枝纳米TiO2与聚氨酯的分散性和相容性,氧空位型纳米TiO2和具有抗菌性的聚苯胺分子赋予了聚氨酯优异的抗菌性能。
附图说明
图1是多孔状TiO2纳米中空微球的扫描电子显微镜SEM图
图2是羟基化氧空位型纳米TiO2的扫描电子显微镜SEM图;
图3是羟基化氧空位型纳米TiO2的X射线衍射仪XRD图。
具体实施方式
为实现上述目的,本发明提供如下具体实施方式和实施例:一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料,包括以下原料及组分:聚苯胺接枝纳米TiO2、聚酯二元醇、二异氰酸酯单体、二羟甲基丙酸、1,4-丁二醇、二月桂酸二丁基锡,质量比为3-10:100:65-75:12-15:4-6:0.4-1,其中二异氰酸酯单体为异氟尔酮异氰酸酯、4,4'-亚甲基双(异氰酸苯酯)、4,4'-二异氰酸基-3,3'-二甲基联苯或甲苯-2,4-二异氰酸酯的任意一种
TiO2-聚苯胺接枝改性聚氨酯抗菌材料制备方法包括以下步骤:
(1)向反应瓶中加入乙醇溶剂和钛酸四丁酯,搅拌均匀后将溶液缓慢滴加进入蒸馏水溶剂中,匀速搅拌20-60min,将溶液倒入水热反应釜中,再加入碳酸氢铵,其中钛酸四丁酯和碳酸氢铵的质量比为1.5-3:1,置于反应釜烘箱中,加热至160-200℃,反应40-60h,将溶液过滤除去溶剂,使用蒸馏水和乙醇洗涤并干燥,制备得到多孔状TiO2纳米中空微球。
(2)将多孔状TiO2纳米中空微球置于真空电阻炉中,控制真空度为0.015-0.15Pa,升温速率为1-3℃/min,升温至460-520℃,保温处理2-3h,制备得到氧空位型纳米TiO2
(3)向反应瓶中加入蒸馏水溶剂和氧空位型纳米TiO2,在超声分散仪中加热至60-80℃,超声频率为22-30KHz,进行超声处理2-6h,过滤、洗涤并干燥,制备得到羟基化氧空位型纳米TiO2
(4)向反应瓶中通入氮气,加入丙酮溶剂和羟基化氧空位型纳米TiO2,超声分散均匀后加入六亚甲基二异氰酸酯和二丁基二月桂酸锡,三者质量比为1:1.2-2:0.005-0.01,在70-90℃下超声反应处理2-4h,超声频率为20-25KHz,将溶液过滤除去溶剂,使用蒸馏水和乙醇洗涤固体产物,并充分干燥,制备得到异氰酸酯功能化TiO2
(5)向反应瓶中通入氮气,加入丙酮溶剂和异氰酸酯功能化TiO2,超声分散均匀后加入对苯二胺和二丁基二月桂酸锡,两者质量比为1:0.2-0.6:0.002:0.006,匀速搅拌反应2-6h,将溶液过滤除去溶剂、使用蒸馏水和乙醇洗涤固体产物并干燥,制备得到苯胺基化TiO2
(6)向反应瓶中通入氮气,加入蒸馏水溶剂和苯胺基化TiO2,超声分散均匀后加入浓盐酸,控制溶液总盐酸质量分数为3-4%,再加入苯胺,并缓慢滴加引发剂过硫酸铵,其中苯胺基化TiO2、苯胺和过硫酸铵的质量比为1-4:10:22-28,匀速搅拌反应4-8h,使用乙醇离心分离和洗涤,制备得到聚苯胺接枝纳米TiO2
(7)向反应瓶中加入聚酯二元醇和二羟甲基丙酸,加热至75-85℃匀速搅拌20-40min,再加入二异氰酸酯单体、聚苯胺接枝纳米TiO2和催化剂二月桂酸二丁基锡,匀速搅拌反应3-5h,将温度降至40-50℃,加入丙酮调节溶液粘度,滴加三乙胺调节溶液pH至中性,再加入扩链剂1,4-丁二醇,反应1-2h,将溶液高速乳化并倒入成膜模具中固化成膜,制备得到TiO2-聚苯胺接枝改性聚氨酯抗菌材料。
实施例1
(1)向反应瓶中加入乙醇溶剂和钛酸四丁酯,搅拌均匀后将溶液缓慢滴加进入蒸馏水溶剂中,匀速搅拌20min,将溶液倒入水热反应釜中,再加入碳酸氢铵,其中钛酸四丁酯和碳酸氢铵的质量比为1.5:1,置于反应釜烘箱中,加热至160℃,反应40h,将溶液过滤除去溶剂,使用蒸馏水和乙醇洗涤并干燥,制备得到多孔状TiO2纳米中空微球。
(2)将多孔状TiO2纳米中空微球置于真空电阻炉中,控制真空度为0.015Pa,升温速率为1℃/min,升温至460℃,保温处理2h,制备得到氧空位型纳米TiO2
(3)向反应瓶中加入蒸馏水溶剂和氧空位型纳米TiO2,在超声分散仪中加热至60℃,超声频率为22KHz,进行超声处理2h,过滤、洗涤并干燥,制备得到羟基化氧空位型纳米TiO2
(4)向反应瓶中通入氮气,加入丙酮溶剂和羟基化氧空位型纳米TiO2,超声分散均匀后加入六亚甲基二异氰酸酯和二丁基二月桂酸锡,三者质量比为1:1.2:0.005,在70℃下超声反应处理2h,超声频率为20KHz,将溶液过滤除去溶剂,使用蒸馏水和乙醇洗涤固体产物,并充分干燥,制备得到异氰酸酯功能化TiO2
(5)向反应瓶中通入氮气,加入丙酮溶剂和异氰酸酯功能化TiO2,超声分散均匀后加入对苯二胺和二丁基二月桂酸锡,两者质量比为1:0.2:0.002:,匀速搅拌反应2h,将溶液过滤除去溶剂、使用蒸馏水和乙醇洗涤固体产物并干燥,制备得到苯胺基化TiO2
(6)向反应瓶中通入氮气,加入蒸馏水溶剂和苯胺基化TiO2,超声分散均匀后加入浓盐酸,控制溶液总盐酸质量分数为3%,再加入苯胺,并缓慢滴加引发剂过硫酸铵,其中苯胺基化TiO2、苯胺和过硫酸铵的质量比为1:10:22,匀速搅拌反应4h,使用乙醇离心分离和洗涤,制备得到聚苯胺接枝纳米TiO2
(7)向反应瓶中加入聚酯二元醇和二羟甲基丙酸,加热至75℃匀速搅拌20min,再加入异氟尔酮异氰酸酯、聚苯胺接枝纳米TiO2和催化剂二月桂酸二丁基锡,匀速搅拌反应3h,将温度降至40℃,加入丙酮调节溶液粘度,滴加三乙胺调节溶液pH至中性,再加入扩链剂1,4-丁二醇,反应1h,控制聚苯胺接枝纳米TiO2、聚酯二元醇、异氟尔酮异氰酸酯、二羟甲基丙酸、1,4-丁二醇和二月桂酸二丁基锡的质量比为3:100:65:12:4:0.4,将溶液高速乳化并倒入成膜模具中固化成膜,制备得到TiO2-聚苯胺接枝改性聚氨酯抗菌材料1。
实施例2
(1)向反应瓶中加入乙醇溶剂和钛酸四丁酯,搅拌均匀后将溶液缓慢滴加进入蒸馏水溶剂中,匀速搅拌60min,将溶液倒入水热反应釜中,再加入碳酸氢铵,其中钛酸四丁酯和碳酸氢铵的质量比为2:1,置于反应釜烘箱中,加热至200℃,反应60h,将溶液过滤除去溶剂,使用蒸馏水和乙醇洗涤并干燥,制备得到多孔状TiO2纳米中空微球。
(2)将多孔状TiO2纳米中空微球置于真空电阻炉中,控制真空度为0.01Pa,升温速率为3℃/min,升温至460℃,保温处理3h,制备得到氧空位型纳米TiO2
(3)向反应瓶中加入蒸馏水溶剂和氧空位型纳米TiO2,在超声分散仪中加热至80℃,超声频率为30KHz,进行超声处理6h,过滤、洗涤并干燥,制备得到羟基化氧空位型纳米TiO2
(4)向反应瓶中通入氮气,加入丙酮溶剂和羟基化氧空位型纳米TiO2,超声分散均匀后加入六亚甲基二异氰酸酯和二丁基二月桂酸锡,三者质量比为1:1.4:0.006,在90℃下超声反应处理3h,超声频率为25KHz,将溶液过滤除去溶剂,使用蒸馏水和乙醇洗涤固体产物,并充分干燥,制备得到异氰酸酯功能化TiO2
(5)向反应瓶中通入氮气,加入丙酮溶剂和异氰酸酯功能化TiO2,超声分散均匀后加入对苯二胺和二丁基二月桂酸锡,两者质量比为1:0.3:0.003,匀速搅拌反应6h,将溶液过滤除去溶剂、使用蒸馏水和乙醇洗涤固体产物并干燥,制备得到苯胺基化TiO2
(6)向反应瓶中通入氮气,加入蒸馏水溶剂和苯胺基化TiO2,超声分散均匀后加入浓盐酸,控制溶液总盐酸质量分数为4%,再加入苯胺,并缓慢滴加引发剂过硫酸铵,其中苯胺基化TiO2、苯胺和过硫酸铵的质量比为2:10:23,匀速搅拌反应8h,使用乙醇离心分离和洗涤,制备得到聚苯胺接枝纳米TiO2
(7)向反应瓶中加入聚酯二元醇和二羟甲基丙酸,加热至85℃匀速搅拌40min,再加入4,4'-亚甲基双(异氰酸苯酯)、聚苯胺接枝纳米TiO2和催化剂二月桂酸二丁基锡,匀速搅拌反应3h,将温度降至50℃,加入丙酮调节溶液粘度,滴加三乙胺调节溶液pH至中性,再加入扩链剂1,4-丁二醇,反应2h,控制聚苯胺接枝纳米TiO2、聚酯二元醇、4,4'-亚甲基双(异氰酸苯酯)、二羟甲基丙酸、1,4-丁二醇和二月桂酸二丁基锡的质量比为5:100:68:13:4.5:0.6,将溶液高速乳化并倒入成膜模具中固化成膜,制备得到TiO2-聚苯胺接枝改性聚氨酯抗菌材料2。
实施例3
(1)向反应瓶中加入乙醇溶剂和钛酸四丁酯,搅拌均匀后将溶液缓慢滴加进入蒸馏水溶剂中,匀速搅拌40min,将溶液倒入水热反应釜中,再加入碳酸氢铵,其中钛酸四丁酯和碳酸氢铵的质量比为2.2:1,置于反应釜烘箱中,加热至180℃,反应50h,将溶液过滤除去溶剂,使用蒸馏水和乙醇洗涤并干燥,制备得到多孔状TiO2纳米中空微球。
(2)将多孔状TiO2纳米中空微球置于真空电阻炉中,控制真空度为0.01Pa,升温速率为2℃/min,升温至500℃,保温处理2.5h,制备得到氧空位型纳米TiO2
(3)向反应瓶中加入蒸馏水溶剂和氧空位型纳米TiO2,在超声分散仪中加热至60℃,超声频率为30KHz,进行超声处理6h,过滤、洗涤并干燥,制备得到羟基化氧空位型纳米TiO2
(4)向反应瓶中通入氮气,加入丙酮溶剂和羟基化氧空位型纳米TiO2,超声分散均匀后加入六亚甲基二异氰酸酯和二丁基二月桂酸锡,三者质量比为1:1.7:0.007,在70℃下超声反应处理3h,超声频率为22KHz,将溶液过滤除去溶剂,使用蒸馏水和乙醇洗涤固体产物,并充分干燥,制备得到异氰酸酯功能化TiO2
(5)向反应瓶中通入氮气,加入丙酮溶剂和异氰酸酯功能化TiO2,超声分散均匀后加入对苯二胺和二丁基二月桂酸锡,两者质量比为1:0.4:0.004,匀速搅拌反应4h,将溶液过滤除去溶剂、使用蒸馏水和乙醇洗涤固体产物并干燥,制备得到苯胺基化TiO2
(6)向反应瓶中通入氮气,加入蒸馏水溶剂和苯胺基化TiO2,超声分散均匀后加入浓盐酸,控制溶液总盐酸质量分数为3.5%,再加入苯胺,并缓慢滴加引发剂过硫酸铵,其中苯胺基化TiO2、苯胺和过硫酸铵的质量比为2.5:10:25,匀速搅拌反应6h,使用乙醇离心分离和洗涤,制备得到聚苯胺接枝纳米TiO2
(7)向反应瓶中加入聚酯二元醇和二羟甲基丙酸,加热至80℃匀速搅拌30min,再加入4,4'-二异氰酸基-3,3'-二甲基联苯、聚苯胺接枝纳米TiO2和催化剂二月桂酸二丁基锡,匀速搅拌反应4h,将温度降至45℃,加入丙酮调节溶液粘度,滴加三乙胺调节溶液pH至中性,再加入扩链剂1,4-丁二醇,反应1.5h,控制聚苯胺接枝纳米TiO2、聚酯二元醇、4,4'-二异氰酸基-3,3'-二甲基联苯、二羟甲基丙酸、1,4-丁二醇和二月桂酸二丁基锡的质量比为7:100:70:13.8:5:0.7,将溶液高速乳化并倒入成膜模具中固化成膜,制备得到TiO2-聚苯胺接枝改性聚氨酯抗菌材料3。
实施例4
(1)向反应瓶中加入乙醇溶剂和钛酸四丁酯,搅拌均匀后将溶液缓慢滴加进入蒸馏水溶剂中,匀速搅拌60min,将溶液倒入水热反应釜中,再加入碳酸氢铵,其中钛酸四丁酯和碳酸氢铵的质量比为2.6:1,置于反应釜烘箱中,加热至190℃,反应45h,将溶液过滤除去溶剂,使用蒸馏水和乙醇洗涤并干燥,制备得到多孔状TiO2纳米中空微球。
(2)将多孔状TiO2纳米中空微球置于真空电阻炉中,控制真空度为0.015Pa,升温速率为3℃/min,升温至520℃,保温处理3h,制备得到氧空位型纳米TiO2
(3)向反应瓶中加入蒸馏水溶剂和氧空位型纳米TiO2,在超声分散仪中加热至60℃,超声频率为30KHz,进行超声处理2h,过滤、洗涤并干燥,制备得到羟基化氧空位型纳米TiO2
(4)向反应瓶中通入氮气,加入丙酮溶剂和羟基化氧空位型纳米TiO2,超声分散均匀后加入六亚甲基二异氰酸酯和二丁基二月桂酸锡,三者质量比为1:1.8:0.009,在90℃下超声反应处理4h,超声频率为20KHz,将溶液过滤除去溶剂,使用蒸馏水和乙醇洗涤固体产物,并充分干燥,制备得到异氰酸酯功能化TiO2
(5)向反应瓶中通入氮气,加入丙酮溶剂和异氰酸酯功能化TiO2,超声分散均匀后加入对苯二胺和二丁基二月桂酸锡,两者质量比为1:0.5:0.005,匀速搅拌反应6h,将溶液过滤除去溶剂、使用蒸馏水和乙醇洗涤固体产物并干燥,制备得到苯胺基化TiO2
(6)向反应瓶中通入氮气,加入蒸馏水溶剂和苯胺基化TiO2,超声分散均匀后加入浓盐酸,控制溶液总盐酸质量分数为4%,再加入苯胺,并缓慢滴加引发剂过硫酸铵,其中苯胺基化TiO2、苯胺和过硫酸铵的质量比为3.5:10:27,匀速搅拌反应7h,使用乙醇离心分离和洗涤,制备得到聚苯胺接枝纳米TiO2
(7)向反应瓶中加入聚酯二元醇和二羟甲基丙酸,加热至80℃匀速搅拌30min,再加入甲苯-2,4-二异氰酸酯、聚苯胺接枝纳米TiO2和催化剂二月桂酸二丁基锡,匀速搅拌反应4h,将温度降至45℃,加入丙酮调节溶液粘度,滴加三乙胺调节溶液pH至中性,再加入扩链剂1,4-丁二醇,反应1.5h,控制聚苯胺接枝纳米TiO2、聚酯二元醇、甲苯-2,4-二异氰酸酯、二羟甲基丙酸、1,4-丁二醇和二月桂酸二丁基锡的质量比为8:100:72:14:5.5:0.8,将溶液高速乳化并倒入成膜模具中固化成膜,制备得到TiO2-聚苯胺接枝改性聚氨酯抗菌材料4。
实施例5
(1)向反应瓶中加入乙醇溶剂和钛酸四丁酯,搅拌均匀后将溶液缓慢滴加进入蒸馏水溶剂中,匀速搅拌60min,将溶液倒入水热反应釜中,再加入碳酸氢铵,其中钛酸四丁酯和碳酸氢铵的质量比为3:1,置于反应釜烘箱中,加热至200℃,反应60h,将溶液过滤除去溶剂,使用蒸馏水和乙醇洗涤并干燥,制备得到多孔状TiO2纳米中空微球。
(2)将多孔状TiO2纳米中空微球置于真空电阻炉中,控制真空度为0.15Pa,升温速率为3℃/min,升温至520℃,保温处理3h,制备得到氧空位型纳米TiO2
(3)向反应瓶中加入蒸馏水溶剂和氧空位型纳米TiO2,在超声分散仪中加热至80℃,超声频率为30KHz,进行超声处理6h,过滤、洗涤并干燥,制备得到羟基化氧空位型纳米TiO2
(4)向反应瓶中通入氮气,加入丙酮溶剂和羟基化氧空位型纳米TiO2,超声分散均匀后加入六亚甲基二异氰酸酯和二丁基二月桂酸锡,三者质量比为1:2:0.01,在90℃下超声反应处理4h,超声频率为25KHz,将溶液过滤除去溶剂,使用蒸馏水和乙醇洗涤固体产物,并充分干燥,制备得到异氰酸酯功能化TiO2
(5)向反应瓶中通入氮气,加入丙酮溶剂和异氰酸酯功能化TiO2,超声分散均匀后加入对苯二胺和二丁基二月桂酸锡,两者质量比为1:0.6:0.006,匀速搅拌反应6h,将溶液过滤除去溶剂、使用蒸馏水和乙醇洗涤固体产物并干燥,制备得到苯胺基化TiO2
(6)向反应瓶中通入氮气,加入蒸馏水溶剂和苯胺基化TiO2,超声分散均匀后加入浓盐酸,控制溶液总盐酸质量分数为4%,再加入苯胺,并缓慢滴加引发剂过硫酸铵,其中苯胺基化TiO2、苯胺和过硫酸铵的质量比为4:10:28,匀速搅拌反应8h,使用乙醇离心分离和洗涤,制备得到聚苯胺接枝纳米TiO2
(7)向反应瓶中加入聚酯二元醇和二羟甲基丙酸,加热至85℃匀速搅拌40min,再加入异氟尔酮异氰酸酯、聚苯胺接枝纳米TiO2和催化剂二月桂酸二丁基锡,匀速搅拌反应5h,将温度降至50℃,加入丙酮调节溶液粘度,滴加三乙胺调节溶液pH至中性,再加入扩链剂1,4-丁二醇,反应2h,控制聚苯胺接枝纳米TiO2、聚酯二元醇、异氟尔酮异氰酸酯、二羟甲基丙酸、1,4-丁二醇和二月桂酸二丁基锡的质量比为10:100:75:15:6:1,将溶液高速乳化并倒入成膜模具中固化成膜,制备得到TiO2-聚苯胺接枝改性聚氨酯抗菌材料5。
分别将将实施例1-5中的改性聚氨酯抗菌材料剪裁成小块,置于培养皿底部,加入生理盐水、活化的大肠杆菌悬菌液和琼脂培养基作为实验组,以不加改性聚氨酯抗菌材料的培养液作为空白对照组,震荡均匀后置于恒温恒湿培养箱中,以5W的氙灯作为灯源,在37℃下培养24h,统计各培养皿中的菌落数量,计算抑菌率,抑菌率=(空白对照组菌落数-实验组菌落数量)/空白对照组菌落数,测试标准为GB/T 37247-2018。
实施例 实施例1 实施例2 实施例3 实施例4 实施例5 空白对照
菌落数 3 2 2 1 2 38
抑菌率 92.1% 94.7% 94.7% 97.4% 94.7% 0%
综上所述,该一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料,以碳酸氢铵作为模板剂和致孔剂,制备得到多孔状TiO2纳米中空微球,具有丰富的孔隙结构和空心结构,表面面积巨大,可以提高光辐射的接触面积和利用率,然后通过真空热处理,TiO2中的氧发生在真空高温条件下,逸出形成了氧空位,氧空位可以作为光生电子的捕获陷阱,促进光电子向氧空位迁移,从而加速了光生电子和空穴的分离,减少了光生电子和空穴重组和复合,从而提高了TiO2的光催化抗菌性能。
将比表面巨大的氧空位型纳米TiO2通过超声水热处理,可以大幅提高TiO2表面、孔隙和空心结构中活性羟基的数量,以二月桂酸二丁基锡作为催化剂,大量的羟基很容易与空间位阻效应很小的直链型六亚甲基二异氰酸酯的异氰酸酯基团发生反应,得到异氰酸酯功能化TiO2,部分异氰酸酯基团再与对苯二胺的氨基反应,从而将苯胺基团引入多孔中空TiO2纳米的基体中,再通过原位聚合法,苯胺与TiO2的苯胺基团发生共聚,得到聚苯胺接枝纳米TiO2,在合成聚氨酯的过程中,聚苯胺接枝纳米TiO2中剩余的异氰酸酯基团再与聚酯二元醇反应,从而将聚苯胺接枝纳米TiO2通过共价键修饰到聚氨酯的基体中,并且聚苯胺分子链中的氨基和亚氨基与聚氨酯分子链中的羰基形成大量的氢键作用力,在协同作用下增强了聚苯胺接枝纳米TiO2与聚氨酯的分散性和相容性,氧空位型纳米TiO2和具有抗菌性的聚苯胺分子赋予了聚氨酯优异的抗菌性能。

Claims (7)

1.一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料,包括以下原料及组分,其特征在于:聚苯胺接枝纳米TiO2、聚酯二元醇、二异氰酸酯单体、二羟甲基丙酸、1,4-丁二醇、二月桂酸二丁基锡,质量比为3-10:100:65-75:12-15:4-6:0.4-1。
2.根据权利要求1所述的一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料,其特征在于:所述二异氰酸酯单体为异氟尔酮异氰酸酯、4,4'-亚甲基双(异氰酸苯酯)、4,4'-二异氰酸基-3,3'-二甲基联苯或甲苯-2,4-二异氰酸酯的任意一种。
3.根据权利要求1所述的一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料,其特征在于:所述TiO2-聚苯胺接枝改性聚氨酯抗菌材料制备方法包括以下步骤:
(1)向乙醇溶剂中加入钛酸四丁酯,搅拌均匀后将溶液缓慢滴加进入蒸馏水溶剂中,搅拌20-60min,将溶液倒入水热反应釜中,再加入碳酸氢铵,加热至160-200℃,反应40-60h,过滤、洗涤并干燥,制备得到多孔状TiO2纳米中空微球;
(2)将多孔状TiO2纳米中空微球置于真空电阻炉中,控制真空度为0.015-0.15Pa,升温速率为1-3℃/min,升温至460-520℃,保温处理2-3h,制备得到氧空位型纳米TiO2
(3)向蒸馏水溶剂中加入氧空位型纳米TiO2,在60-80℃下,超声频率为22-30KHz,进行超声处理2-6h,过滤、洗涤并干燥,制备得到羟基化氧空位型纳米TiO2
(4)向丙酮溶剂中加入羟基化氧空位型纳米TiO2,超声分散均匀后在氮气氛围中,加入六亚甲基二异氰酸酯和二丁基二月桂酸锡,在70-90℃下超声反应处理2-4h,超声频率为20-25KHz,过滤、洗涤并干燥,制备得到异氰酸酯功能化TiO2
(5)向丙酮溶剂中加入异氰酸酯功能化TiO2,超声分散均匀后,在氮气氛围下加入对苯二胺和二丁基二月桂酸锡,反应2-6h,过滤、洗涤并干燥,制备得到苯胺基化TiO2
(6)向蒸馏水溶剂中加入苯胺基化TiO2,超声分散均匀后在氮气氛围中,加入浓盐酸,控制溶液总盐酸质量分数为3-4%,加入苯胺并缓慢滴加引发剂过硫酸铵,反应4-8h,使用乙醇离心分离和洗涤,制备得到聚苯胺接枝纳米TiO2
(7)向聚酯二元醇中加入二羟甲基丙酸,加热至75-85℃匀速搅拌20-40min,再加入二异氰酸酯单体、聚苯胺接枝纳米TiO2和催化剂二月桂酸二丁基锡,反应3-5h,将温度降至40-50℃,加入丙酮调节溶液粘度,滴加三乙胺调节溶液pH至中性,再加入扩链剂1,4-丁二醇,反应1-2h,将溶液高速乳化并倒入成膜模具中固化成膜,制备得到TiO2-聚苯胺接枝改性聚氨酯抗菌材料。
4.根据权利要求3所述的一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料,其特征在于:所述步骤(1)中钛酸四丁酯和碳酸氢铵的质量比为1.5-3:1。
5.根据权利要求3所述的一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料,其特征在于:所述步骤(4)中羟基化氧空位型纳米TiO2、六亚甲基二异氰酸酯和二丁基二月桂酸锡的质量比为1:1.2-2:0.005-0.01。
6.根据权利要求3所述的一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料,其特征在于:所述步骤(5)中异氰酸酯功能化TiO2和对苯二胺的质量比为1:0.2-0.6:0.002:0.006。
7.根据权利要求3所述的一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料,其特征在于:所述步骤(6)中苯胺基化TiO2、苯胺和过硫酸铵的质量比为1-4:10:22-28。
CN202010363180.5A 2020-04-30 2020-04-30 一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料及其制法 Withdrawn CN111471162A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010363180.5A CN111471162A (zh) 2020-04-30 2020-04-30 一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料及其制法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010363180.5A CN111471162A (zh) 2020-04-30 2020-04-30 一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料及其制法

Publications (1)

Publication Number Publication Date
CN111471162A true CN111471162A (zh) 2020-07-31

Family

ID=71764269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010363180.5A Withdrawn CN111471162A (zh) 2020-04-30 2020-04-30 一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料及其制法

Country Status (1)

Country Link
CN (1) CN111471162A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402721A (zh) * 2021-05-24 2021-09-17 杭州余芯新型材料有限公司 一种混晶相TiO2接枝聚甲基丙烯酸甲酯义齿基托树脂及制法
CN115064764A (zh) * 2022-08-03 2022-09-16 洛阳理工学院 一种陶瓷填料改性的高导电宽电压窗口复合电解质材料、制备方法及应用
CN117986849A (zh) * 2024-02-02 2024-05-07 广东中鼎科技发展有限公司 一种飞机坐垫用耐污耐汗液tpu复合膜及其制备工艺
CN118638295A (zh) * 2024-08-13 2024-09-13 兴邦新材料(山东)有限公司 高强度抗菌热塑性聚氨酯弹性体的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402721A (zh) * 2021-05-24 2021-09-17 杭州余芯新型材料有限公司 一种混晶相TiO2接枝聚甲基丙烯酸甲酯义齿基托树脂及制法
CN113402721B (zh) * 2021-05-24 2022-09-23 杭州华粹义齿制作有限公司 一种混晶相TiO2接枝聚甲基丙烯酸甲酯义齿基托树脂及制法
CN115064764A (zh) * 2022-08-03 2022-09-16 洛阳理工学院 一种陶瓷填料改性的高导电宽电压窗口复合电解质材料、制备方法及应用
CN117986849A (zh) * 2024-02-02 2024-05-07 广东中鼎科技发展有限公司 一种飞机坐垫用耐污耐汗液tpu复合膜及其制备工艺
CN118638295A (zh) * 2024-08-13 2024-09-13 兴邦新材料(山东)有限公司 高强度抗菌热塑性聚氨酯弹性体的制备方法
CN118638295B (zh) * 2024-08-13 2024-10-15 兴邦新材料(山东)有限公司 高强度抗菌热塑性聚氨酯弹性体的制备方法

Similar Documents

Publication Publication Date Title
CN111471162A (zh) 一种TiO2-聚苯胺接枝改性聚氨酯抗菌材料及其制法
CN111040426A (zh) 一种纳米氧化锌改性水性聚氨酯乳液及其制备方法
CN109021550B (zh) 一种超支化水性聚氨酯纳米氧化锌复合材料及其制备方法
CN107699874B (zh) 一种纳米银-纤维素复合材料及其制备方法和应用
CN117447883B (zh) 一种基于羟基丙烯酸树脂的复合材料及其制备方法
CN111978443A (zh) 一种抗菌亚克力材料及其制备方法
CN116813870B (zh) 一种水性聚氨酯树脂分散体及其在涂料中的应用
CN114351353A (zh) 复合TiO2@PHMG抗菌粉体的聚丙烯无纺布的制备方法
AU7935101A (en) Porous films and process
CN109206626A (zh) 一种杂化交联动态聚合物
CN111574679A (zh) 一种可降解的TiO2-聚乳酸接枝聚氨酯抗菌材料及其制法
CN113621082A (zh) 一种纳米纤维素的改性方法及在尼龙6原位开环聚合中的应用
CN114044937B (zh) 一种纳米银抗菌剂、制备方法及其应用
CN111635572A (zh) 一种纳米TiO2改性聚乙烯的复合抗菌薄膜及其制法
CN109134820B (zh) 一种阴离子水性聚氨酯纳米氧化锌复合材料及其制备方法
CN112920369B (zh) 自抗菌性乳酸基水性聚氨酯、其制备方法及其乳液
CN116145280A (zh) 一种TiO2-PHMG复合改性PET抗菌织物及其制备方法
CN115010972B (zh) 一种陶瓷/壳聚糖纳米高强度复合薄膜及其制备方法
CN114917847B (zh) 一种二氧化硅微球及其制备方法和应用
Lin et al. Synthesis of antibacterial polyurethane film and its properties
CN113527664A (zh) 一种纳米纤维素表面接枝尼龙6复合材料的原位制备方法
CN114015008A (zh) 聚氨酯乳液、其制备方法及印花用涂料及其制备方法
CN115594855A (zh) 光致变色聚酯、聚酯纤维及制备方法
CN106398142A (zh) 一种纳米石墨烯改性蓝藻基复合生物塑料及其制备方法
CN113104995A (zh) 一种磁性聚氨酯光生耦合填料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20200731