CN106398142A - 一种纳米石墨烯改性蓝藻基复合生物塑料及其制备方法 - Google Patents
一种纳米石墨烯改性蓝藻基复合生物塑料及其制备方法 Download PDFInfo
- Publication number
- CN106398142A CN106398142A CN201610504028.8A CN201610504028A CN106398142A CN 106398142 A CN106398142 A CN 106398142A CN 201610504028 A CN201610504028 A CN 201610504028A CN 106398142 A CN106398142 A CN 106398142A
- Authority
- CN
- China
- Prior art keywords
- fermentation
- parts
- cyanophyceae
- fermentation tank
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P39/00—Processes involving microorganisms of different genera in the same process, simultaneously
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/56—Lactic acid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/06—Biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/16—Fibres; Fibrils
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了一种纳米石墨烯改性蓝藻基复合生物塑料,包括以下重量份组分:蓝藻130‑135、德氏乳杆菌9‑10、血红密孔菌孢子液7‑8、乳糖16‑17、纳米石墨烯9‑10、魔芋葡甘聚糖10‑11、珍珠纤维50‑55、竹纤维56‑57、贝壳粉24‑25、乙烯基甲氧基硅烷8‑9、聚乙烯醇7‑8、适量的水。本发明采用珍珠纤维、竹纤维、贝壳粉配合蓝藻发酵深加工产物在交联剂乙烯基甲氧基硅烷的作用下制备蓝藻基生物塑料,该塑料具有生物可降解性,具有韧性强,拉伸性能好的特性,加入的纳米石墨烯能够起到增强生物塑料阻隔性能的功效。
Description
技术领域
本发明涉及蓝藻基生物可降解塑料技术领域,尤其涉及一种纳米石墨烯改性蓝藻基复合生物塑料及其制备方法。
背景技术
乳酸、聚乳酸是生物化工产品,以可再生生物材料为原料,利用生物工程技术,产品具有生物可降解性。随着石油资源枯竭带来的能源危机以及化学工业引发的环境污染日益严重,利用生物质基原材料为底物,通过微生物发酵法生产乳酸具有重要意义;蓝藻是一类进化历史悠久、革兰氏阴性,无鞭毛,含叶绿素a,不形成叶绿体,能进行产氧性能光合作用的原核生物。蓝藻原料发酵具有高的附加值产品乳酸、L-乳酸等非食品产品,这些产品可以大大提高蓝藻资源的利用价值,制备成生物塑料,无锡德林海藻水分离技术发展有限公司研制出将藻泥制成含水率10%以下的藻粉技术,这些藻粉成本并不高的出口到美国制备成生物塑料,而自己缺乏相应的直接实现蓝藻到生物塑料加工的技术,尽管占有有利资源,却并不能实现利益最大化;国内目前对蓝藻的利用多集中先制备蓝藻提取物蓝藻蛋白、蓝藻纤维等蓝藻等生物质,在利用这些生物质的优良性能结合其它原料制备一些生物膜,而关于蓝藻直接开发利用制备蓝藻基生物塑料的报道并不多。
蓝藻直接开发利用制备蓝藻基生物塑料有通常面临以下两个问题:(1)、蓝藻原料通过发酵生产乳酸实现蓝藻到乳酸的转化率问题,该问题直接决定了原材料的利用效率;(2)、乳酸,L-乳酸以及聚乳酸聚合生成生物塑料的性能改进问题。常采用增塑、酸调、交联、填充或者共混等单一改性方法,然而这种单一改性方法有限,制备出的全降解塑料薄膜功能单一且成本高无法实现蓝藻的高价值开发
设计出利用蓝藻原料高效生产高质量蓝藻基生物塑料对提高蓝藻的开发利用价值具有重要的意义。
发明内容
本发明目的就是为了弥补已有技术的缺陷,提供一种纳米石墨烯改性蓝藻基复合生物塑料及其制备方法。
本发明是通过以下技术方案实现的:
一种纳米石墨烯改性蓝藻基复合生物塑料,包括以下重量份组分:蓝藻130-135、德氏乳杆菌9-10、血红密孔菌孢子液7-8、乳糖16-17、纳米石墨烯9-10、魔芋葡甘聚糖10-11、珍珠纤维50-55、竹纤维56-57、贝壳粉24-25、乙烯基甲氧基硅烷8-9、聚乙烯醇7-8、适量的水。
一种纳米石墨烯改性蓝藻基复合生物塑料制备方法,包括以下步骤:
(1)、将魔芋葡甘聚糖、纳米石墨烯、乳糖以及总重量2倍的水混合,高压均质均匀之后,采用喷雾干燥技术干燥得改性乳糖,将德氏乳杆菌、血红密孔菌孢子液、改性乳糖以及总重量0.5倍的水混合搅拌均匀,低温30℃干燥活化,并搅拌干燥制备成微囊化复合菌粉备用;
(2)、构建动态发酵罐系统:所述的动态发酵罐系统包括上下放置的两个发酵罐,上下发酵罐连通处设置有滤膜,外部设置有动态泵,用于将下发酵罐发酵物泵入上发酵罐;将蓝藻去除泥沙,超微粉碎,加入总重量5倍的水混合搅拌均匀,采用600W的超声波辅助破壁处理1h,得蓝藻培养基,将该培养基经灭菌处理后,放入所构建的动态发酵罐系统的上发酵罐中,并投入微囊化复合菌粉,在25℃下搅拌发酵,当上发酵罐中的蓝藻培养基的发酵液通过滤膜过滤到下发酵罐,使得培养基沉淀到上发酵罐底部时,开启动态泵实现下发酵罐发酵物一次泵入上发酵罐,并和上发酵罐培养基混合搅拌均匀,再次搅拌发酵至培养基沉淀到上发酵罐底部,完成一次的循环补料发酵,循环4-5次,上发酵罐中获得蓝藻发酵渣备用;下发酵罐中获得高乳酸转换率的蓝藻发酵复合液备用;
(3)、将步骤(2)获取的蓝藻发酵渣焙烘缩水后再次超微粉碎获取蓝藻纤维备用;将步骤(2)获取的高乳酸转换率的蓝藻发酵复合液先80℃搅拌浓缩处理50min,之后放入密闭反应釜中,通入惰性气体N2慢慢加热升温至160℃抽真空至160Pa使得乳酸直接脱水缩合,之后继续加热并缓慢减压,在220-260℃,133Pa下进一步缩聚,得改性聚乳酸;
(4)、将该改性聚乳酸中加入珍珠纤维、竹纤维、贝壳粉、乙烯基甲氧基硅烷以及海藻纤维,在70-75℃条件下600-700rpm/min速度搅拌20-30min形成悬浊液,将该悬浊液中加入聚乙烯醇,高压均质搅拌均匀,然后经螺杆挤出机挤出造粒,将挤出造粒的粒料经压延成膜即得。
本发明的优点是:本发明采用珍珠纤维、竹纤维、贝壳粉配合蓝藻发酵深加工产物在交联剂乙烯基甲氧基硅烷的作用下制备蓝藻基生物塑料,该塑料具有生物可降解性,具有韧性强,拉伸性能好的特性,加入的纳米石墨烯能够起到增强生物塑料阻隔性能的功效,同时,在改性乳糖的制备过程中,配合魔芋葡甘聚糖起到了稳定分散乳糖,使其具有良好的均匀大表面积,为蓝藻发酵菌提供了良好的载体以及可以充分利用的碳源;改性乳糖配合多次补料发酵工艺的设计提高了蓝藻乳酸发酵的乳酸转化率,同时,方便实现了蓝藻发酵产物的分离,为蓝藻基生物塑料的高效生产提供了基础。本发明工艺简单,经济效益好,对国内的蓝藻基生物薄膜的高效经济开发具有重要意义。
具体实施方式
一种纳米石墨烯改性蓝藻基复合生物塑料,包括以下重量份组分:蓝藻130、德氏乳杆菌9、血红密孔菌孢子液7、乳糖16、纳米石墨烯9、魔芋葡甘聚糖10、珍珠纤维50、竹纤维56、贝壳粉24、乙烯基甲氧基硅烷8、聚乙烯醇7、适量的水。
一种纳米石墨烯改性蓝藻基复合生物塑料制备方法,包括以下步骤:
(1)、将魔芋葡甘聚糖、纳米石墨烯、乳糖以及总重量2倍的水混合,高压均质均匀之后,采用喷雾干燥技术干燥得改性乳糖,将德氏乳杆菌、血红密孔菌孢子液、改性乳糖以及总重量0.5倍的水混合搅拌均匀,低温30℃干燥活化,并搅拌干燥制备成微囊化复合菌粉备用;
(2)、构建动态发酵罐系统:所述的动态发酵罐系统包括上下放置的两个发酵罐,上下发酵罐连通处设置有滤膜,外部设置有动态泵,用于将下发酵罐发酵物泵入上发酵罐;将蓝藻去除泥沙,超微粉碎,加入总重量5倍的水混合搅拌均匀,采用600W的超声波辅助破壁处理1h,得蓝藻培养基,将该培养基经灭菌处理后,放入所构建的动态发酵罐系统的上发酵罐中,并投入微囊化复合菌粉,在25℃下搅拌发酵,当上发酵罐中的蓝藻培养基的发酵液通过滤膜过滤到下发酵罐,使得培养基沉淀到上发酵罐底部时,开启动态泵实现下发酵罐发酵物一次泵入上发酵罐,并和上发酵罐培养基混合搅拌均匀,再次搅拌发酵至培养基沉淀到上发酵罐底部,完成一次的循环补料发酵,循环4次,上发酵罐中获得蓝藻发酵渣备用;下发酵罐中获得高乳酸转换率的蓝藻发酵复合液备用;
(3)、将步骤(2)获取的蓝藻发酵渣焙烘缩水后再次超微粉碎获取蓝藻纤维备用;将步骤(2)获取的高乳酸转换率的蓝藻发酵复合液先80℃搅拌浓缩处理50min,之后放入密闭反应釜中,通入惰性气体N2慢慢加热升温至160℃抽真空至160Pa使得乳酸直接脱水缩合,之后继续加热并缓慢减压,在220℃,133Pa下进一步缩聚,得改性聚乳酸,
(4)、将该改性聚乳酸中加入珍珠纤维、竹纤维、贝壳粉、乙烯基甲氧基硅烷以及海藻纤维,在70℃条件下600rpm/min速度搅拌20min形成悬浊液,将该悬浊液中加入聚乙烯醇,高压均质搅拌均匀,然后经螺杆挤出机挤出造粒,将挤出造粒的粒料经压延成膜即得。
Claims (2)
1.一种纳米石墨烯改性蓝藻基复合生物塑料,其特征在于,包括以下重量份组分:蓝藻130-135、德氏乳杆菌9-10、血红密孔菌孢子液7-8、乳糖16-17、纳米石墨烯9-10、魔芋葡甘聚糖10-11、珍珠纤维50-55、竹纤维56-57、贝壳粉24-25、乙烯基甲氧基硅烷8-9、聚乙烯醇7-8、适量的水。
2.一种纳米石墨烯改性蓝藻基复合生物塑料制备方法,其特征在于,包括以下步骤:
(1)、将魔芋葡甘聚糖、纳米石墨烯、乳糖以及总重量2倍的水混合,高压均质均匀之后,采用喷雾干燥技术干燥得改性乳糖,将德氏乳杆菌、血红密孔菌孢子液、改性乳糖以及总重量0.5倍的水混合搅拌均匀,低温30℃干燥活化,并搅拌干燥制备成微囊化复合菌粉备用;
(2)、构建动态发酵罐系统:所述的动态发酵罐系统包括上下放置的两个发酵罐,上下发酵罐连通处设置有滤膜,外部设置有动态泵,用于将下发酵罐发酵物泵入上发酵罐;将蓝藻去除泥沙,超微粉碎,加入总重量5倍的水混合搅拌均匀,采用600W的超声波辅助破壁处理1h,得蓝藻培养基,将该培养基经灭菌处理后,放入所构建的动态发酵罐系统的上发酵罐中,并投入微囊化复合菌粉,在25℃下搅拌发酵,当上发酵罐中的蓝藻培养基的发酵液通过滤膜过滤到下发酵罐,使得培养基沉淀到上发酵罐底部时,开启动态泵实现下发酵罐发酵物一次泵入上发酵罐,并和上发酵罐培养基混合搅拌均匀,再次搅拌发酵至培养基沉淀到上发酵罐底部,完成一次的循环补料发酵,循环4-5次,上发酵罐中获得蓝藻发酵渣备用;下发酵罐中获得高乳酸转换率的蓝藻发酵复合液备用;
(3)、将步骤(2)获取的蓝藻发酵渣焙烘缩水后再次超微粉碎获取蓝藻纤维备用;将步骤(2)获取的高乳酸转换率的蓝藻发酵复合液先80℃搅拌浓缩处理50min,之后放入密闭反应釜中,通入惰性气体N2慢慢加热升温至160℃抽真空至160Pa使得乳酸直接脱水缩合,之后继续加热并缓慢减压,在220-260℃,133Pa下进一步缩聚,得改性聚乳酸;
(4)、将该改性聚乳酸中加入珍珠纤维、竹纤维、贝壳粉、乙烯基甲氧基硅烷以及海藻纤维,在70-75℃条件下600-700rpm/min速度搅拌20-30min形成悬浊液,将该悬浊液中加入聚乙烯醇,高压均质搅拌均匀,然后经螺杆挤出机挤出造粒,将挤出造粒的粒料经压延成膜即得。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610504028.8A CN106398142A (zh) | 2016-07-01 | 2016-07-01 | 一种纳米石墨烯改性蓝藻基复合生物塑料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610504028.8A CN106398142A (zh) | 2016-07-01 | 2016-07-01 | 一种纳米石墨烯改性蓝藻基复合生物塑料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106398142A true CN106398142A (zh) | 2017-02-15 |
Family
ID=58006826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610504028.8A Withdrawn CN106398142A (zh) | 2016-07-01 | 2016-07-01 | 一种纳米石墨烯改性蓝藻基复合生物塑料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106398142A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106958051A (zh) * | 2017-05-10 | 2017-07-18 | 云南农业大学 | 一种组合植物的聚乳酸纤维的生产方法 |
CN108739242A (zh) * | 2018-04-17 | 2018-11-06 | 淮北市菲美得环保科技有限公司 | 一种可降解育苗杯的制备工艺 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102108196A (zh) * | 2010-12-30 | 2011-06-29 | 广东上九生物降解塑料有限公司 | 一种聚乳酸可降解材料的制备方法 |
-
2016
- 2016-07-01 CN CN201610504028.8A patent/CN106398142A/zh not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102108196A (zh) * | 2010-12-30 | 2011-06-29 | 广东上九生物降解塑料有限公司 | 一种聚乳酸可降解材料的制备方法 |
Non-Patent Citations (1)
Title |
---|
杨海麟: ""蓝藻资源无害化利用技术的研究"", 《生物技术》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106958051A (zh) * | 2017-05-10 | 2017-07-18 | 云南农业大学 | 一种组合植物的聚乳酸纤维的生产方法 |
CN108739242A (zh) * | 2018-04-17 | 2018-11-06 | 淮北市菲美得环保科技有限公司 | 一种可降解育苗杯的制备工艺 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106118000A (zh) | 一种纳米碳气凝胶改性蓝藻基复合生物塑料及其制备方法 | |
CN101831033B (zh) | 一种环境友好的改性羧甲基纤维素热塑材料的制备方法 | |
Wallenius et al. | Continuous propionic acid production with Propionibacterium acidipropionici immobilized in a novel xylan hydrogel matrix | |
CN108892793A (zh) | 一种绿色可降解高阻隔高透明度纳米纤维素复合膜的制备方法 | |
CN106398142A (zh) | 一种纳米石墨烯改性蓝藻基复合生物塑料及其制备方法 | |
CN105968759A (zh) | 一种生物质纳米纤维素改性蓝藻基复合生物塑料及其制备方法 | |
Chen et al. | Accelerated bioethanol fermentation by using a novel yeast immobilization technique: Microtube array membrane | |
CN105420127A (zh) | 高分子量普鲁兰多糖的高产菌株及利用该菌株生产高分子量普鲁兰多糖的方法 | |
Huang et al. | The microsphere of sodium alginate-chitosan-Pichia kudriavzevii enhanced esterase activity to increase the content of esters in Baijiu solid-state fermentation | |
El Gazzar et al. | BACTERIAL CELLULOSE AS A BASE MATERIAL IN BIODIGITAL ARCHITECTURE (BETWEEN BIO-MATERIAL DEVELOPMENT AND STRUCTURAL CUSTOMIZATION). | |
CN106800755B (zh) | 一种利用造纸黑液制备高韧性聚乳酸的方法 | |
CN105968758A (zh) | 一种液体硅胶改性蓝藻基复合生物塑料及其制备方法 | |
CN105968760A (zh) | 一种蓝藻发酵制备的蓝藻基生物可降解复合膜材料及其制备方法 | |
CN106117999A (zh) | 一种有机纳米膨润土改性蓝藻基生物复合材料及其制备方法 | |
CN101597627B (zh) | 一种高分子γ-聚谷氨酸的生产方法 | |
John et al. | Production of L (+) lactic acid from cassava starch hydrolyzate by immobilized Lactobacillus delbrueckii | |
CN105907067A (zh) | 一种具有高抗氧化性的壳聚糖蓝藻基复合生物薄膜及其制备方法 | |
CN106633579B (zh) | 热塑性魔芋葡甘聚糖纳米复合材料的制备方法 | |
CN114437524A (zh) | 一种甘蔗纤维素基可降解复合材料的制备方法 | |
CN105968761A (zh) | 一种层状纳米填料蒙脱土改性蓝藻基复合生物塑料及其制备方法 | |
CN105907066A (zh) | 一种纳米钙强化营养蓝藻基复合生物塑料及其制备方法 | |
CN110144370B (zh) | 一种基质循环连续发酵生产细菌纤维素的方法 | |
CN103242683B (zh) | 甲基乙烯基硅橡胶补强用乙烯基官能化白炭黑的制备方法 | |
CN107573520B (zh) | 竹纤维接枝聚乳酸及其制备方法 | |
WO2013013126A1 (en) | Process and system for producing a fermentation product using a cone bottom fermenter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20170215 |