CN111468128B - 一种复合纳米片催化剂的制备方法 - Google Patents

一种复合纳米片催化剂的制备方法 Download PDF

Info

Publication number
CN111468128B
CN111468128B CN202010473164.1A CN202010473164A CN111468128B CN 111468128 B CN111468128 B CN 111468128B CN 202010473164 A CN202010473164 A CN 202010473164A CN 111468128 B CN111468128 B CN 111468128B
Authority
CN
China
Prior art keywords
catalyst
preparation
mixture
graphite powder
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010473164.1A
Other languages
English (en)
Other versions
CN111468128A (zh
Inventor
张越
卫柴汇
温亮
黄鑫
李海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN202010473164.1A priority Critical patent/CN111468128B/zh
Publication of CN111468128A publication Critical patent/CN111468128A/zh
Application granted granted Critical
Publication of CN111468128B publication Critical patent/CN111468128B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • C07C29/38Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones
    • C07C29/42Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones with compounds containing triple carbon-to-carbon bonds, e.g. with metal-alkynes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种复合纳米片催化剂的制备方法,属于纳米材料制备及催化技术领域,可解决现有保持无机纳米片结构稳定性的方法制备过程繁琐,不利于催化应用的问题,制备方法如下:将含铜类水滑石与石墨粉与无水乙醇混合;将混合的两类层状材料在超临界乙醇中剥离成纳米片并同时完成再组装,即得本发明所述一种复合纳米片催化剂。该催化剂在甲醛乙炔化反应制备1,4‑丁炔二醇的反应中,可以实现甲醛转化率>50%,对1,4‑丁炔二醇的选择性>85%。该复合纳米片在超临界乙醇中实现了剥离/复合一步完成,制备过程不需要稳定剂,操作环节少,避免了常规复合纳米片的复杂制备过程。

Description

一种复合纳米片催化剂的制备方法
技术领域
本发明属于纳米材料制备及催化技术领域,具体涉及一种复合纳米片催化剂的制备方法。
背景技术
纳米片是厚度为几个纳米,水平尺寸超过100纳米以上的二维材料。因为纳米片的特殊二维结构,使其在催化领域备受关注。类水滑石是一类具有阳离子层板结构的层状无机化合物,可通过液相剥离法制备类水滑石纳米片。然而,由于类水滑石纳米片的静电特性导致其易于在溶液中发生再堆积,恢复为多层结构,进而失去纳米片性能优势。保持无机纳米片结构成为当前二维材料制备及应用中的难点。
目前国内外主要通过加入有机聚合物保持纳米片稳定性,但该方法引入了有机聚合物,对随后的催化应用不利。此外,一些研究将纳米片附着于石英片等平面材料上,但该方法制备过程较为繁琐,且对纳米片和附着材料都有较高的要求。
发明内容
本发明针对现有保持无机纳米片结构稳定性的方法制备过程繁琐,不利于催化应用的问题,提供一种复合纳米片催化剂的制备方法。
本发明采用如下技术方案:
一种复合纳米片催化剂的制备方法,包括如下步骤:
第一步,将石墨粉与含铜类水滑石置于无水乙醇混合,得到混合物;
第二步,将第一步得到的混合物加入到超临界反应釜中,调节温度240-320℃之间,保持混合物处于乙醇的超临界状态下60-240min;
第三步,反应结束后,恢复到常温常压后,离心分离混合液,收集固体,干燥后,即得复合纳米片催化剂。
第一步中所述石墨粉的粒径小于100微米。
第一步中所述含铜类水滑石的组成通式为CuxM3-xAl-LDHs,其中M包括二价镁和锌金属阳离子中的任意一种,Al为三价铝阳离子,x为0.1-2。
第一步中所述石墨粉在无水乙醇的混合物中的浓度为0.1g/L-1g/L,含铜类水滑石在无水乙醇的混合物中的浓度为0.05g/L-0.5g/L。
第一步中所述石墨粉和含铜类水滑石的质量比为1:5-2:1。
本发明利用类水滑石与石墨在超临界乙醇中可同步剥离的特点,在超临界乙醇中实现了剥离/组装一步完成。一方面,利用石墨剥离得到的石墨烯为载体,将类水滑石纳米片稳定负载,形成了多层复合纳米材料,解决了类水滑石纳米片再堆积的问题;另一方面,利用石墨烯良好的导电特性,促进了类水滑石纳米片上活性位点之间的电子传递,提高了复合材料的催化活性,进而在在甲醛乙炔化反应制备1,4-丁炔二醇的反应中显示了良好的催化活性。
本发明的有益效果如下:
1. 本发明利用石墨剥离得到的石墨烯为载体,与含铜类水滑石纳米片形成了多层复合纳米材料,避免了类水滑石纳米片的再堆积,保持了其纳米片结构。
2. 本发明在超临界乙醇中实现了类水滑石纳米片与石墨烯的剥离/组装一步完成,简化了复合纳米片的制备流程。
3. 本发明利用石墨烯良好的导电特性,提高了类水滑石纳米片的催化活性。
具体实施方式
实施例1
将0.1g石墨粉,0.5g组成通式为Cu0.1Mg2.9Al-LDHs的含铜类水滑石加入到1000mL无水乙醇中,充分混合;将该混合物加入到到超临界反应釜中,升温到240℃,保持240分钟;恢复到常温、常压后,离心分离收集固体,干燥后得到复合纳米片催化剂。
将0.1g纳米片催化剂与10 mL甲醛(35%)水溶液装入圆底烧瓶中,通氮气吹扫0.5h,加热至沸腾,搅拌条件下通入乙炔气,反应12h。反应后的物料采用气相色谱仪进行组份分析,未反应的甲醛采用碘量法测定。该纳米片催化剂对甲醛转化率50.8%,对1,4-丁炔二醇的选择性87.9%。
实施例2
将1g石墨粉,0.5g组成通式为Cu1.0Mg2.0Al-LDHs的含铜类水滑石加入到1000mL无水乙醇中,充分混合;将该混合物加入到到超临界反应釜中,升温到320℃,保持120分钟;恢复到常温、常压后,离心分离收集固体,干燥后得到复合纳米片催化剂。
将0.1g纳米片催化剂与10 mL甲醛(35%)水溶液装入圆底烧瓶中,通氮气吹扫0.5h,加热至沸腾,搅拌条件下通入乙炔气,反应12h。反应后的物料采用气相色谱仪进行组份分析,未反应的甲醛采用碘量法测定。该纳米片催化剂对甲醛转化率64.3%,对1,4-丁炔二醇的选择性85.5%。
实施例3
将0.1g石墨粉,0.05g组成通式为Cu2.0Mg1.0Al-LDHs的含铜类水滑石加入到1000mL无水乙醇中,充分混合;将该混合物加入到到超临界反应釜中,升温到300℃,保持60分钟;恢复到常温、常压后,离心分离收集固体,干燥后得到复合纳米片催化剂。
将0.1g纳米片催化剂与10 mL甲醛(35%)水溶液装入圆底烧瓶中,通氮气吹扫0.5h,加热至沸腾,搅拌条件下通入乙炔气,反应24h。反应后的物料采用气相色谱仪进行组份分析,未反应的甲醛采用碘量法测定。该纳米片催化剂对甲醛转化率59.5%,对1,4-丁炔二醇的选择性89.1%。
实施例4
将0.1g石墨粉,0.3g组成通式为Cu1.0Mg2.0Al-LDHs的含铜类水滑石加入到1000mL无水乙醇中,充分混合;将该混合物加入到到超临界反应釜中,升温到240℃,保持180分钟;恢复到常温、常压后,离心分离收集固体,干燥后得到复合纳米片催化剂。
将0.1g纳米片催化剂与10 mL甲醛(35%)水溶液装入圆底烧瓶中,通氮气吹扫0.5h,加热至沸腾,搅拌条件下通入乙炔气,反应24h。反应后的物料采用气相色谱仪进行组份分析,未反应的甲醛采用碘量法测定。该纳米片催化剂对甲醛转化率72.4%,对1,4-丁炔二醇的选择性86.6%。
实施例5
将0.3g石墨粉,0.3g组成通式为Cu1.5Mg1.5Al-LDHs的含铜类水滑石加入到1000mL无水乙醇中,充分混合;将该混合物加入到到超临界反应釜中,升温到300℃,保持240分钟;恢复到常温、常压后,离心分离收集固体,干燥后得到复合纳米片催化剂。
将0.1g纳米片催化剂与10 mL甲醛(35%)水溶液装入圆底烧瓶中,通氮气吹扫0.5h,加热至沸腾,搅拌条件下通入乙炔气,反应12h。反应后的物料采用气相色谱仪进行组份分析,未反应的甲醛采用碘量法测定。该纳米片催化剂对甲醛转化率70.6%,对1,4-丁炔二醇的选择性89.2%。

Claims (3)

1.一种复合纳米片催化剂的制备方法,其特征在于:包括如下步骤:
第一步,将石墨粉与含铜类水滑石置于无水乙醇混合,得到混合物;
第二步,将第一步得到的混合物加入到超临界反应釜中,调节温度240-320℃之间,保持混合物处于乙醇的超临界状态下60-240min;
第三步,反应结束后,恢复到常温常压后,离心分离混合液,收集固体,干燥后,即得复合纳米片催化剂;
所述石墨粉的粒径小于100微米;
所述含铜类水滑石的组成通式为CuxM3-xAl-LDHs,其中M包括二价镁和锌金属阳离子中的任意一种,Al为三价铝阳离子,x为0.1-2。
2.根据权利要求1所述的一种复合纳米片催化剂的制备方法,其特征在于:第一步中所述石墨粉在无水乙醇的混合物中的浓度为0.1g/L-1g/L,含铜类水滑石在无水乙醇的混合物中的浓度为0.05g/L-0.5g/L。
3.根据权利要求1所述的一种复合纳米片催化剂的制备方法,其特征在于:第一步中所述石墨粉和含铜类水滑石的质量比为1:5-2:1。
CN202010473164.1A 2020-05-29 2020-05-29 一种复合纳米片催化剂的制备方法 Active CN111468128B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010473164.1A CN111468128B (zh) 2020-05-29 2020-05-29 一种复合纳米片催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010473164.1A CN111468128B (zh) 2020-05-29 2020-05-29 一种复合纳米片催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN111468128A CN111468128A (zh) 2020-07-31
CN111468128B true CN111468128B (zh) 2023-03-24

Family

ID=71765370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010473164.1A Active CN111468128B (zh) 2020-05-29 2020-05-29 一种复合纳米片催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN111468128B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112108148A (zh) * 2020-09-24 2020-12-22 华东理工大学 一种甲醇蒸汽重整制氢的负载型铜基催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106693945A (zh) * 2016-11-29 2017-05-24 北京化工大学 剥层水滑石纳米片基复合催化剂及其制备方法
CN109607488A (zh) * 2018-11-15 2019-04-12 山西大学 一种环境友好的类水滑石纳米片的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691179B2 (en) * 2011-01-04 2014-04-08 Korea Institute Of Science And Technology Method for fabricating graphene sheets or graphene particles using supercritical fluid
KR101543971B1 (ko) * 2014-10-07 2015-08-12 성균관대학교산학협력단 초임계 유체를 이용한 금속 산화물 나노입자/그래핀 복합체 제조방법 및 이에 의해 제조된 금속 산화물 나노입자/그래핀 복합체

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106693945A (zh) * 2016-11-29 2017-05-24 北京化工大学 剥层水滑石纳米片基复合催化剂及其制备方法
CN109607488A (zh) * 2018-11-15 2019-04-12 山西大学 一种环境友好的类水滑石纳米片的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
多级结构水滑石-石墨烯基纳米杂化物的可控组装及其催化性能研究;窦立广;《中国博士学位论文全文数据库 工程科技I辑》;20180215;第B014-64页 *
超临界乙醇制备TiO2/石墨烯纳米复合材料及其表征;胡文斌等;《青岛科技大学学报(自然科学版)》;20141031;第489-492页 *

Also Published As

Publication number Publication date
CN111468128A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
CN109701572B (zh) FeCo/MXene复合物及其制备方法和应用
Hu et al. N, S co-doped hierarchically porous carbon materials for efficient metal-free catalysis
CN108660479B (zh) 一种木质素基酚类化合物电催化加氢制取ka油及其衍生物的方法
EP3502318B1 (en) Mosx/carbon black nanocomposite material, and manufacturing method and application thereof
CN110280292B (zh) 一种复合铂纳米颗粒和金属氮化物材料催化剂及其制备方法和应用
CN108258251A (zh) 一种碳载铂钴纳米合金催化剂的制备方法和应用
CN103301841B (zh) 一种石墨烯负载高分散纳米Ni催化剂及其制备方法和应用
Wang et al. In situ synthesis of Ni/NiO composites with defect-rich ultrathin nanosheets for highly efficient biomass-derivative selective hydrogenation
CN109516447B (zh) 一种深度低共熔溶剂辅助合成石墨烯封装Ni2P材料
Machado et al. Synergistic effect between few layer graphene and carbon nanotube supports for palladium catalyzing electrochemical oxidation of alcohols
Zhou et al. Scale-up biopolymer-chelated fabrication of cobalt nanoparticles encapsulated in N-enriched graphene shells for biofuel upgrade with formic acid
Yan et al. Metal–organic framework (MOF)-derived catalysts for chemoselective hydrogenation of nitroarenes
CN111468128B (zh) 一种复合纳米片催化剂的制备方法
CN114643072B (zh) 一种金属单原子修饰的三维多孔MXenes复合材料的制备方法
Wang et al. One-step encapsulation of bimetallic Pd–Co nanoparticles within UiO-66 for selective conversion of furfural to cyclopentanone
Wang et al. The construction of novel and efficient hafnium catalysts using naturally existing tannic acid for Meerwein–Ponndorf–Verley reduction
Yang et al. Three-dimensional spherical composite of layered double hydroxides/carbon nanotube for ethanol electrocatalysis
CN114570369B (zh) 一种MOFs衍生纳米片自组装分级双层中空纳米材料及其制备方法
CN109928898B (zh) 一种MOFs衍生磁性纳米颗粒作为可回收催化剂绿色制备氧化偶氮化合物的方法
WO2022166206A1 (zh) 一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法
CN111229276A (zh) 一种双层复合型电解水阳极催化剂及其制备方法
Lu et al. Hydrogenation of furfural over Pd@ ZIF-67 derived catalysts: direct hydrogenation and transfer hydrogenation
Samal et al. Transition metal tellurides/2D Ti3C2Tx MXene: Investigation towards active alkaline hydrogen evolution reaction
Duraisamy et al. Architecture of large surface area N-doped mesoporous carbon sheets as sustainable electrocatalyst for oxygen reduction reaction in alkaline electrolyte
CN111036302B (zh) 一种石墨烯-没食子酸铁燃烧催化剂及其合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant