CN111463282B - 集成启动管和采样管的低压超结dmos结构及制备方法 - Google Patents

集成启动管和采样管的低压超结dmos结构及制备方法 Download PDF

Info

Publication number
CN111463282B
CN111463282B CN202010235416.7A CN202010235416A CN111463282B CN 111463282 B CN111463282 B CN 111463282B CN 202010235416 A CN202010235416 A CN 202010235416A CN 111463282 B CN111463282 B CN 111463282B
Authority
CN
China
Prior art keywords
mos tube
starting
sampling
tube
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010235416.7A
Other languages
English (en)
Other versions
CN111463282A (zh
Inventor
李加洋
胡兴正
薛璐
刘海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Huaruiwei Integrated Circuit Co ltd
Original Assignee
Nanjing Huaruiwei Integrated Circuit Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Huaruiwei Integrated Circuit Co ltd filed Critical Nanjing Huaruiwei Integrated Circuit Co ltd
Priority to CN202010235416.7A priority Critical patent/CN111463282B/zh
Publication of CN111463282A publication Critical patent/CN111463282A/zh
Application granted granted Critical
Publication of CN111463282B publication Critical patent/CN111463282B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了集成启动管和采样管的低压超结DMOS结构及制备方法。所述低压超结DMOS结构包括主MOS管、启动MOS管、采样MOS管和多晶电阻;主MOS管的漏极、采样MOS管的漏极与启动MOS管的漏极连接在一起,主MOS管的栅极与采样MOS管的栅极连接,启动MOS管的栅极经所述多晶电阻与启动MOS管的漏极连接,各MOS管的源极经接触孔与有源区金属相连并接零电位,各MOS管之间设置隔离结构,隔离结构通过深槽形成。本发明将采样、启动功能和功率DMOS集成,提高电路的集成度,降低电路中启动损耗和电流采样损耗,从而降低待机功耗,提高能源转换效率。

Description

集成启动管和采样管的低压超结DMOS结构及制备方法
技术领域
本发明属于半导体器件领域,特别涉及了集成启动管和采样管的低压超结DMOS结构及制备方法。
背景技术
现有集成启动管的DMOS主要为高压平面功率管,工作电压在500-800V之间。工作电压在30V-200V的应用电路中,仍然需要IC集成启动管,并使用分立的电流采样电阻和DMOS管来实现采样和异步启动,电路转换效率较低,电路体积较大,待机损耗较高。
发明内容
为了解决上述背景技术提到的技术问题,本发明提出了集成启动管和采样管的低压超结DMOS结构及制备方法。
为了实现上述技术目的,本发明的技术方案为:
集成启动管和采样管的低压超结DMOS结构,包括主MOS管、启动MOS管、采样MOS管和多晶电阻;所述主MOS管的漏极、采样MOS管的漏极与启动MOS管的漏极连接在一起,主MOS管的栅极与采样MOS管的栅极连接,启动MOS管的栅极经所述多晶电阻与启动MOS管的漏极连接,各MOS管的源极经接触孔与有源区金属相连并接零电位,各MOS管之间设置隔离结构,所述隔离结构通过深槽形成。
针对上述低压超结DMOS结构的制备方法,包括以下步骤:
(1)衬底采用N型(100)晶向,并掺杂砷元素或锑元素;在衬底上形成N型外延,通过选择不同的外延电阻率和厚度实现不同的耐压;
(2)在外延层上生长厚度不等的氧化层,以此氧化层作为阻挡层,进行深槽刻蚀,形成隔离结构和原胞区域;
(3)在深槽侧壁通过湿法氧化形成一层厚度为1200-2000埃的氧化层;通过高密度等离子体淀积工艺在沟槽底部形成一层厚度为2000埃的氧化层;
(4)在深槽内淀积源极多晶,通过干法刻蚀使源极多晶的长度为1um,湿法刻蚀深槽侧壁的氧化层;
(5)通过高密度等离子体淀积工艺淀积厚度为8000埃的氧化层,通过湿法刻蚀使源极多晶顶部的氧化层厚度大于4000埃;
(6)在深槽侧壁干法生长一层厚度为500-1200埃的栅氧化层,淀积并刻蚀多晶,形成多晶栅和多晶电阻;
(7)在芯片表面注入硼元素,高温退火形成P阱;在P阱表面通过光刻、注入、退火形成N+区,注入元素为砷元素;
(8)在P阱和N+区上淀积厚度为8000-12000埃的氧化层作为中间介质层,通过刻蚀形成接触孔;
(9)通过注入、退火,降低接触孔的接触电阻,注入的元素为B或BF2;在接触孔中淀积Ti或TiN层,并填充金属钨,形成欧姆接触孔;
(10)在P阱和中间介质层上淀积金属铝,通过刻蚀金属铝形成各功能区;
(11)减薄衬底背面,并在衬底背面蒸镀Ti-Ni-Ag合金。
进一步地,在步骤(2)中,所述深槽的厚度为2-5um,深槽的宽度为0.5-1.2um,深槽的倾斜角度为88-89度。
进一步地,在步骤(3)中,湿法氧化的温度为1100℃。
进一步地,在步骤(6)中,干法生长的温度为950℃-1050℃;淀积多晶的厚度为0.8-1.2um。
进一步地,在步骤(7)中,在形成P阱的过程中,注入硼元素的能量为60KEV~120Kev,注入的剂量根据阈值电压确定,退火的温度和时间为1100℃,50min;在形成N+区的过程中,注入砷元素的能量为120KeV,退火的温度和时间为850℃,60min。
进一步地,在步骤(8)中,在淀积的氧化层中掺杂硼元素和磷元素;接触孔的深度为0.3-0.45um。
进一步地,在步骤(9)中,注入的能量为30-40KeV,注入的剂量为2E14-5E14,退火的温度和时间为950℃,30s。
进一步地,在步骤(10)中,金属铝的厚度为4um,金属铝中掺杂SiCu。
进一步地,在步骤(10)与步骤(11)之间,通过钝化层沉积和刻蚀,形成主MOS管和启动MOS管栅极和源极的开口区以及采样MOS管源极的开口区。
采用上述技术方案带来的有益效果:
(1)本发明将采样、启动功能和功率DMOS集成,且工作电压在20V-200V之间,提高电路的集成度,可以降低电路中启动损耗和电流采样损耗,从而降低待机功耗,提高能源转换效率;
(2)本发明设计的低压超结DMOS具有优异的Rsp(单位面积电阻)和动态特性,较传统功率DMOS,导通损耗和开关损耗分别降低60%和40%左右。
(3)本发明中各功能区采用深槽隔离,有效缩小隔离区面积;
(4)本发明的工艺流程与传统低压DMOS工艺兼容,制作成本低。
附图说明
图1是本发明DMOS电路图;
图2是本发明DMOS结构平面图;
图3是经过步骤2后的剖面图;
图4是经过步骤3后的剖面图;
图5是经过步骤5后的剖面图;
图6是经过步骤6后的剖面图;
图7是经过步骤7后的剖面图;
图8是经过步骤9后的剖面图;
图9是经过步骤10后的剖面图;
图10是经过步骤12后的剖面图。
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
如图1和2所示,集成启动管和采样管的低压超结DMOS结构,包括主MOS管、启动MOS管、采样MOS管和多晶电阻;所述主MOS管的漏极、采样MOS管的漏极与启动MOS管的漏极连接在一起,主MOS管的栅极与采样MOS管的栅极连接,启动MOS管的栅极经所述多晶电阻与启动MOS管的漏极连接,各MOS管的源极经接触孔与有源区金属相连并接零电位,各MOS管之间设置隔离结构,所述隔离结构通过深槽形成。
本发明提出了针对上述集成启动管和采样管的低压超结DMOS结构的制备方法,步骤如下:
步骤1:衬底采用N型(100)晶向,并掺杂砷元素或锑元素;在衬底上形成N型外延;衬底电阻率通常为0.001-0.05Ω/cm,通常外延厚度:3-15um,外延电阻率:0.1-2Ω/cm,器件耐压可以达到20V-200V;
步骤2:在外延层上生长厚度不等的氧化层,以此氧化层作为阻挡层,进行深槽刻蚀,形成隔离结构和原胞区域,如图3所示;在本实施例中,在圆片表面淀积一层SiO2/Si3N4/SiO2,厚度分别为200埃/1200埃/4000埃,膜厚可根据沟槽刻蚀形貌做微调,沟槽光刻、刻蚀形成深槽结构,深度为2-5um,宽度为0.5-1.2um,倾斜角度为88-89度,便于后续多晶和氧化层填充;
步骤3:在深槽侧壁通过湿法氧化形成一层厚度为1200-2000埃的氧化层,氧化温度为1100℃;通过高密度等离子体淀积(HDP)工艺在沟槽底部形成一层厚度为2000埃的氧化层,可有效降低Cds,降低器件开关损耗,如图4所示;
步骤4:在深槽内淀积源极多晶(Source POLY),通过干法刻蚀使源极多晶的长度约为1um,湿法刻蚀深槽侧壁的氧化层;
步骤5:通过高密度等离子体淀积(HDP)工艺淀积厚度为8000埃的氧化层,通过湿法刻蚀使源极多晶顶部的氧化层厚度大于4000埃;采用HDP淀积,一方面填充能力更好,降低出现空洞的风险,另一方面提高氧化层致密性,减小GS漏电,如图5所示;
步骤6:在深槽侧壁干法生长一层厚度为500-1200埃的栅氧化层,淀积并刻蚀多晶,形成多晶栅(Gate POLY)和多晶电阻;在本实施例中,干法生长的温度为950℃-1050℃,干法生长氧化层致密性较好,可降低GS漏电,多晶的厚度为0.8-1.2um,多晶电阻率需根据产品耐压做微调以匹配启动管的正常功能,如图6所示;
步骤7:在芯片表面注入硼元素,高温退火形成P阱;在P阱表面通过光刻、注入、退火形成N+区,注入元素为砷元素,在本实施例中,注入硼元素的能量为60KEV~120Kev,注入的剂量根据阈值电压确定,退火的温度和时间为1100℃,也可以采用双注入提高P阱掺杂浓度的均匀性;在P阱表面通过光刻、注入、退火形成N+区,注入元素为砷元素,在本实施例中,注入砷元素的能量为120KeV,退火的温度和时间为850℃,60min,如图7所示;
步骤8:在P阱和N+区上淀积厚度为8000-12000埃的氧化层作为中间介质层,通过刻蚀形成接触孔;可在氧化层中掺入一定比例的B元素和P元素,吸收可动Na、K离子,提高器件可靠性,孔深度一般为0.3-0.45um;
步骤9:通过注入、退火,降低接触孔的接触电阻,注入的元素为B或BF2,在本实施例中,注入的能量为30-40KeV,注入的剂量为2E14-5E14,退火的温度和时间为950℃,30s;在接触孔中淀积Ti或TiN层,并填充金属钨,形成欧姆接触孔,如图8所示;
步骤10:在P阱和中间介质层上淀积金属铝,通过刻蚀金属铝形成各功能区,在本实施例中,铝的厚度为4um,铝中可掺杂一定比例的SiCu,防止铝硅互溶,如图9所示;
步骤11:沉积钝化层氮化硅7000-12000埃,然后光刻腐蚀,形成主MOS管和启动MOS管栅极和源极的开口区以及采样MOS管源极的开口区,该步骤可作业也可不作业;
步骤12:减薄圆片背面到150um左右,在背面蒸镀Ti-Ni-Ag(钛-镍-银),如图10所示。
实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (10)

1.集成启动管和采样管的低压超结DMOS结构,包括主MOS管,其特征在于:还包括启动MOS管、采样MOS管和多晶电阻;所述主MOS管的漏极、采样MOS管的漏极与启动MOS管的漏极连接在一起,主MOS管的栅极与采样MOS管的栅极连接,启动MOS管的栅极经所述多晶电阻与启动MOS管的漏极连接,各MOS管的源极经接触孔与有源区金属相连并接零电位,各MOS管之间设置隔离结构,所述隔离结构通过深槽形成;所述采样管的沟槽走向和启动管的沟槽走向为垂直90°,采样管的数量少于启动管的数量。
2.针对权利要求1所述低压超结DMOS结构的制备方法,其特征在于,包括以下步骤:
(1)衬底采用N型(100)晶向,并掺杂砷元素或磷元素;在衬底上形成N型外延,通过选择不同的外延电阻率和厚度实现不同的耐压能力;
(2)在外延层上生长厚度不等的氧化层,以此氧化层作为阻挡层,进行深槽刻蚀,形成隔离结构和原胞区域;
(3)在深槽侧壁通过湿法氧化形成一层厚度为1200-2000埃的氧化层;通过高密度等离子体淀积工艺在沟槽底部形成一层厚度为2000埃的氧化层;
(4)在深槽内淀积源极多晶,通过干法刻蚀使源极多晶的长度为1um,湿法刻蚀深槽侧壁的氧化层;
(5)通过高密度等离子体淀积工艺淀积厚度为8000埃的氧化层,通过湿法刻蚀使源极多晶顶部的氧化层厚度大于4000埃;
(6)在深槽侧壁干法生长一层厚度为500-1200埃的栅氧化层,淀积并刻蚀多晶,形成多晶栅和多晶电阻;
(7)在芯片表面注入硼元素,高温退火形成P阱;在P阱表面通过光刻、注入、退火形成N+区,注入元素为砷元素;
(8)在P阱和N+区上淀积厚度为8000-12000埃的氧化层作为中间介质层,通过刻蚀形成接触孔;
(9)通过注入、退火,降低接触孔的接触电阻,注入的元素为B或BF2;在接触孔中淀积Ti或TiN层,并填充金属钨,形成欧姆接触孔;
(10)在P阱和中间介质层上淀积金属铝,通过刻蚀金属铝形成各功能区;
(11)减薄衬底背面,并在衬底背面蒸镀Ti-Ni-Ag合金。
3.根据权利要求2所述低压超结DMOS结构的制备方法,其特征在于,在步骤(2)中,所述深槽的深度为2-5um,深槽的宽度为0.5-1.2um,深槽的倾斜角度为88-89度。
4.根据权利要求2所述低压超结DMOS结构的制备方法,其特征在于,在步骤(3)中,湿法氧化的温度为1100℃。
5.根据权利要求2所述低压超结DMOS结构的制备方法,其特征在于,在步骤(6)中,干法生长的温度为950℃-1050℃;淀积多晶的厚度为0.8-1.2um。
6.根据权利要求2所述低压超结DMOS结构的制备方法,其特征在于,在步骤(7)中,在形成P阱的过程中,注入硼元素的能量为60KEV~120Kev,注入的剂量根据阈值电压确定,退火的温度和时间为1100℃,50min;在形成N+区的过程中,注入砷元素的能量为120KeV,退火的温度和时间为850℃,60min。
7.根据权利要求2所述低压超结DMOS结构的制备方法,其特征在于,在步骤(8)中,在淀积的氧化层中掺杂硼元素和磷元素;接触孔的深度为0.3-0.45um。
8.根据权利要求2所述低压超结DMOS结构的制备方法,其特征在于,在步骤(9)中,注入的能量为30-40KeV,注入的剂量为2E14-5E14,退火的温度和时间为950℃,30s。
9.根据权利要求2所述低压超结DMOS结构的制备方法,其特征在于,在步骤(10)中,金属铝的厚度为4um,金属铝中掺杂SiCu。
10.根据权利要求2所述低压超结DMOS结构的制备方法,其特征在于,在步骤(10)与步骤(11)之间,通过钝化层沉积和刻蚀,形成主MOS管和启动MOS管栅极和源极的开口区以及采样MOS管源极的开口区。
CN202010235416.7A 2020-03-30 2020-03-30 集成启动管和采样管的低压超结dmos结构及制备方法 Active CN111463282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010235416.7A CN111463282B (zh) 2020-03-30 2020-03-30 集成启动管和采样管的低压超结dmos结构及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010235416.7A CN111463282B (zh) 2020-03-30 2020-03-30 集成启动管和采样管的低压超结dmos结构及制备方法

Publications (2)

Publication Number Publication Date
CN111463282A CN111463282A (zh) 2020-07-28
CN111463282B true CN111463282B (zh) 2023-09-26

Family

ID=71679313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010235416.7A Active CN111463282B (zh) 2020-03-30 2020-03-30 集成启动管和采样管的低压超结dmos结构及制备方法

Country Status (1)

Country Link
CN (1) CN111463282B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952373A (zh) * 2020-08-13 2020-11-17 南京华瑞微集成电路有限公司 一种具有高k介质沟槽栅的mosfet及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219898A (zh) * 2013-04-02 2013-07-24 苏州博创集成电路设计有限公司 具有电流采样和启动结构的半导体装置
CN108364870A (zh) * 2018-01-23 2018-08-03 西安龙腾新能源科技发展有限公司 改善栅极氧化层质量的屏蔽栅沟槽mosfet制造方法
CN109888018A (zh) * 2019-04-03 2019-06-14 南京华瑞微集成电路有限公司 一种集成启动管、采样管和电阻的dmos及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219898A (zh) * 2013-04-02 2013-07-24 苏州博创集成电路设计有限公司 具有电流采样和启动结构的半导体装置
CN108364870A (zh) * 2018-01-23 2018-08-03 西安龙腾新能源科技发展有限公司 改善栅极氧化层质量的屏蔽栅沟槽mosfet制造方法
CN109888018A (zh) * 2019-04-03 2019-06-14 南京华瑞微集成电路有限公司 一种集成启动管、采样管和电阻的dmos及其制造方法

Also Published As

Publication number Publication date
CN111463282A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
CN111463281B (zh) 集成启动管、采样管和电阻的高压超结dmos结构及其制备方法
CN111463283B (zh) 集成启动管、采样管和二极管的dmos结构及其制备方法
CN114068331B (zh) 一种提高bv稳定性的sgt终端结构及其制备方法
CN113555354B (zh) 一种集成sbd的沟槽终端结构及其制备方法
CN116994956B (zh) 一种碳化硅功率器件及其制备方法、芯片
CN113053738A (zh) 一种分裂栅型沟槽mos器件及其制备方法
CN114975602A (zh) 一种高可靠性的igbt芯片及其制作方法
CN114927562B (zh) 碳化硅jfet器件结构及其制备方法
CN115831759B (zh) 一种集成sbd结构的sgt mosfet及其制作方法
CN116721925B (zh) 集成sbd的碳化硅sgt-mosfet及其制备方法
CN115799339A (zh) 一种屏蔽栅沟槽mosfet结构及其制造方法
CN111211168A (zh) 一种rc-igbt芯片及其制造方法
CN111463282B (zh) 集成启动管和采样管的低压超结dmos结构及制备方法
CN116613072B (zh) 集成电压采样功能的沟槽型mosfet及其制造方法
CN111200025A (zh) 超结器件及其制造方法
CN111900090A (zh) 超级结器件的制造方法
CN115020240B (zh) 一种低压超结沟槽mos器件的制备方法及结构
CN112133750A (zh) 深沟槽功率器件及其制备方法
CN113314592A (zh) 一种集成sbr的低损耗高压超结器件及其制备方法
CN113725295B (zh) 一种逆导型mos栅控晶闸管及其制造方法
CN113921400B (zh) 集成鳍式sbd结构的沟槽栅mosfet及其制造方法
CN218788378U (zh) 一种沟槽型SiC MOSFET元胞结构及功能电路
CN213601874U (zh) 一种mosfet器件
CN214152912U (zh) 一种半导体功率器件结构
CN210607261U (zh) 一种超低功率半导体功率器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant