CN111424267B - 一种制备镍包覆铋硫氯的方法 - Google Patents

一种制备镍包覆铋硫氯的方法 Download PDF

Info

Publication number
CN111424267B
CN111424267B CN202010331164.8A CN202010331164A CN111424267B CN 111424267 B CN111424267 B CN 111424267B CN 202010331164 A CN202010331164 A CN 202010331164A CN 111424267 B CN111424267 B CN 111424267B
Authority
CN
China
Prior art keywords
nickel
bismuth
sulfur chloride
bismuth sulfur
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010331164.8A
Other languages
English (en)
Other versions
CN111424267A (zh
Inventor
张瀚
朱艳
胡永茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202010331164.8A priority Critical patent/CN111424267B/zh
Publication of CN111424267A publication Critical patent/CN111424267A/zh
Application granted granted Critical
Publication of CN111424267B publication Critical patent/CN111424267B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种制备镍包覆铋硫氯的方法,属于材料制备技术领域。本发明所述方法通过液相辅助溶剂热还原法在铋硫氯晶粒表面包覆一层镍单质。方法包括:铋硫氯粉体研磨、稀盐酸浸泡清洗除杂;超声震荡分散;浸泡氢氧化钠溶液10~20min;加入硫酸镍溶液使表面形成氢氧化镍颗粒包覆;使用液相辅助溶剂热还原法还原氢氧化镍;离心、洗涤、干燥得到晶粒表面均匀包覆镍单质的包镍铋硫氯材料。本发明所述方法工艺简单,设备要求低,通过包覆镍修饰铋硫氯晶粒表面,维持铋硫氯自身较高的初始塞贝克系数,电导率性能得到了极大的改善。

Description

一种制备镍包覆铋硫氯的方法
技术领域
本发明涉及一种制备镍包覆铋硫氯的方法,属于材料制备技术领域。
背景技术
三元铋硫属化合物自发现以来,因其自身独特的带隙可控性质、优异的光电以及热电性能参数,在许多领域特别是在半导体电能转换领域存在着巨大的潜力。例如BiSX,BiOCl和CdZnTe已广泛用于光催化和光伏电池。经调查表明,属于本体系的铋硫氯材料大多具有1.7-2.0eV的带隙,在可见光波段具有较强的吸光系数,极高的塞贝克系数以及较低的热导率。但是由于其自身的晶格结构所限,铋硫氯材料表现出极低的电导率性质,因此极大程度的影响了其在半导体电学转换方面的应用。
毋庸置疑,提高铋硫氯的导电性会对此材料带来性能方面的巨大提升。对于提高电导率的方法,一方面可以通过掺杂其他元素,提升其载流子浓度来增强材料的导电性;另一方面可以通过化学镀的方式在其晶粒表面包覆一层导电性高的材料辅助提升材料的导电性。众所周知,镍具有良好的导电性,化学镀镍是一种成熟的工艺,可以将镍元素均匀地沉积在材料的晶粒表面。在铋硫氯晶体表面镀镍是一种可行的方案。
目前尚未有在铋硫氯表面镀镍的报道,同时经调查目前在其他材料表面镀镍的方法多使用水合肼计较高的镀镍温度,镀镍过程存在一定的危害。
发明内容
本发明的目的在于针对上述现有技术的不足,提供一种制备镍包覆铋硫氯的方法;本方法摒弃了水合肼的使用,通过溶液法对铋硫氯进行化学镀镍;所制备的粉体为以铋硫氯为核、以镍单质为壳的核壳结构,可用于对铋硫氯电导率的优化;本发明通过以下技术实现。
(1)按比例称取铋硫氯粉体,经研磨粉碎转入盐酸溶液超声酸洗,然后蒸馏水超声洗涤,离心分离,得到分散的铋硫氯粉体。
(2)将步骤(1)所得分散的铋硫氯粉体加入至氢氧化钠溶液中(此处氢氧化钠溶液的量全部浸泡铋硫氯粉体即可,优选固液比为1:15),粉末完全浸泡在氢氧化钠溶液中,浸泡超声10~20min,过滤,制得表面附有氢氧化钠的铋硫氯前驱体。
(3)将步骤(2)所得的前驱体铋硫氯转入至搅拌条件下的镍盐溶液中,加热20~30min,过滤分离,制得表面附有氢氧化镍纳米颗粒的铋硫氯晶体。
(4)将步骤(3)所得表面附有氢氧化镍纳米颗粒的铋硫氯粉体转入至还原剂溶液中,搅拌条件下,加热、保温5~7h;自然冷却至室温,经离心、洗涤、干燥后得到镍包覆铋硫氯材料;其中,粉体与还原剂溶液比例为15~20g/L。
优选的,本发明步骤(1)中所述的稀盐酸溶液其浓度为2~4%;超声酸洗时间为5~7min;蒸馏水超声洗涤时间为30-40min。
优选的,本发明步骤(2)所使用氢氧化钠(NaOH)溶液的浓度为15~18g/L。
优选的,本发明步骤(3)所使用的镍盐为六水硫酸镍(NiSO4·6H2O),镍盐溶液的浓度为25~30g/L;搅拌过程中的转速为270-400r/min;加热温度为65~85℃。
优选的,本发明步骤(4)中所还原剂溶液成分:三亚乙基四胺(TETA,纯度为70%)、乙二醇(EG,纯度为99%),体积比9:1~8.5:1.5;加热温度为110-130℃。
本发明的有益效果:
(1)与现有的在其他材料表面镀镍方法相比较,本方法所摒弃了有毒的水合肼的使用,药剂安全无污染。
(2)使用硫酸镍与氢氧化钠反应,生成的氢氧化镍纳米颗粒为纳米线形状,易在表被包覆者晶体面形成缠绕层,包覆不易脱落;使用弱还原剂TETA,体系粘度较大,减少了团聚现象,还原的单质镍晶粒更加均匀,镍包覆层更加致密均匀。
(3)镍包覆层较薄,对材料自身其他性质影响较小,同时可以根据在硫酸镍中的反应时间长短来控制氢氧化钠包覆层的厚度,进而控制镍包覆层的厚度。
附图说明
图1为原始样品的SEM图;
图2为实施例1制备的样品的SEM图;
图3为实施例1制备的样品的XRD图;
图4为镍包覆铋硫氯(Ni@BiSCl)与未包覆镍的原始铋硫氯(BiSCl)的导电性能比较图。
具体实施方式
下面结合具体实施例本发明作进一步的详细说明,但本发明的保护范围并比限于所述内容。
实施例1
一种制备镍包覆铋硫氯的方法,其具体步骤包括:
(1)将2g铋硫氯粉末至于30ml浓度为3%的稀盐酸盐酸溶液中,超声5min后离心分离稀盐酸溶液,并用蒸馏水超声30min,用蒸馏水洗涤至中性并干燥。
(2)配置30ml浓度为16g/L的氢氧化钠溶液,放入2g步骤1所得的粉末,超声震荡15min;过滤分离氢氧化钠溶液。
(3)将步骤(2)制得的表面附有氢氧化钠基团的铋硫氯粉末缓慢置入搅拌条件下100ml溶有2.6g六水硫酸镍溶液中,升温至80℃,保温30min;过滤分离出固体颗粒,得到表面包覆有氢氧化镍纳米颗粒的铋硫氯粉体。
(4)使用三颈瓶,加入90ml三亚乙基四胺、10ml乙二醇溶液,加入步骤3所得表面附有氢氧化镍颗粒的铋硫氯粉体;安装回流冷凝管,搅拌条件下升温至120℃,保温5h。自然冷却至室温,使用乙醇进行离心洗涤3次,干燥,得到黑色粉末颗粒,即为外层均匀包覆镍单质的铋硫氯粉体。
本实施例所制备的镍包覆铋硫氯粉体晶形貌如图2所示,与图1原始状态相对比,可以看出在铋硫氯晶体表面均匀包覆有微小颗粒;图3显示所制备的粉体中有镍单质存在,无其他杂质,表明包覆物质为镍单质。图4可以看出,经过镍包覆的铋硫氯粉体的电导率与未包覆的粉体相比较,由于表层的镍单质构成到导电通道,电导率有明显的提高,在500K温度下,电导率由原始的0.013S/cm提升至0.494S/cm。
实施例2
一种制备镍包覆铋硫氯的方法,其具体步骤包括:
(1)将2g铋硫氯粉末至于30ml浓度为2%的稀盐酸盐酸溶液中,超声6min后离心分离稀盐酸溶液,并用蒸馏水超声35min,用蒸馏水洗涤至中性并干燥。
(2)配置30ml浓度为15g/L的氢氧化钠溶液,放入2g步骤1所得的粉末,超声震荡10min;过滤分离氢氧化钠溶液。
(3)将步骤(2)制得的表面附有氢氧化钠基团的铋硫氯粉末缓慢置入搅拌条件下100ml溶有3.0g六水硫酸镍溶液中,升温至65℃,保温25min;过滤分离出固体颗粒,得到表面包覆有氢氧化镍纳米颗粒的铋硫氯粉体。
(4)使用三颈瓶,加入85ml三亚乙基四胺、15ml乙二醇溶液,加入步骤3所得表面附有氢氧化镍颗粒的铋硫氯粉体;安装回流冷凝管,搅拌条件下升温至120℃,保温5h。自然冷却至室温,使用乙醇进行离心洗涤3次,干燥,得到黑色粉末颗粒,即为外层均匀包覆镍单质的铋硫氯粉体。
本实施例所制备的镍包覆铋硫氯粉体晶形貌与实施例1相似,在铋硫氯晶体表面均匀包覆有微小颗粒;制备的粉体中有镍单质存在,无其他杂质,表明包覆物质为镍单质。经过镍包覆的铋硫氯粉体的电导率与未包覆的粉体相比较,电导率有明显的提高,在500K温度下,电导率由原始的0.013S/cm提升至0.487S/cm。
实施例3
一种制备镍包覆铋硫氯的方法,其具体步骤包括:
(1)将2g铋硫氯粉末至于30ml浓度为4%的稀盐酸盐酸溶液中,超声7min后离心分离稀盐酸溶液,并用蒸馏水超声40min,用蒸馏水洗涤至中性并干燥。
(2)配置30ml浓度为18g/L的氢氧化钠溶液,放入2g步骤1所得的粉末,超声震荡20min;过滤分离氢氧化钠溶液。
(3)将步骤(2)制得的表面附有氢氧化钠基团的铋硫氯粉末缓慢置入搅拌条件下100ml溶有2.8g六水硫酸镍溶液中,升温至85℃,保温20min;过滤分离出固体颗粒,得到表面包覆有氢氧化镍纳米颗粒的铋硫氯粉体。
(4)使用三颈瓶,加入87ml三亚乙基四胺、13ml乙二醇溶液,加入步骤3所得表面附有氢氧化镍颗粒的铋硫氯粉体;安装回流冷凝管,搅拌条件下升温至120℃,保温5h;自然冷却至室温,使用乙醇进行离心洗涤3次,干燥,得到黑色粉末颗粒,即为外层均匀包覆镍单质的铋硫氯粉体。
本实施例所制备的镍包覆铋硫氯粉体晶形貌与实施例1相似,在铋硫氯晶体表面均匀包覆有微小颗粒;制备的粉体中有镍单质存在,无其他杂质,表明包覆物质为镍单质。经过镍包覆的铋硫氯粉体的电导率与未包覆的粉体相比较,电导率有明显的提高,在500K温度下,电导率由原始的0.013S/cm提升至0.491S/cm。

Claims (4)

1.一种制备镍包覆铋硫氯的方法,其特征在于,具体包含以下步骤:
(1)按比例称取铋硫氯粉体,经研磨粉碎转入盐酸溶液超声酸洗,然后蒸馏水超声洗涤,离心分离,得到分散的铋硫氯粉体;
(2)将步骤(1)所得分散的铋硫氯粉体加入至氢氧化钠溶液中,粉末完全浸泡在氢氧化钠溶液中,浸泡超声10~20min,过滤,制得表面附有氢氧化钠的铋硫氯前驱体;
(3)将步骤(2)所得的前驱体铋硫氯转入至搅拌条件下的镍盐溶液中,加热20~30min,过滤分离,制得表面附有氢氧化镍纳米颗粒的铋硫氯晶体;
(4)将步骤(3)所得表面附有氢氧化镍纳米颗粒的铋硫氯粉体转入至还原剂溶液中,搅拌条件下,加热、保温5~7 h;自然冷却至室温,经离心、洗涤、干燥后得到镍包覆铋硫氯材料;其中,粉体与还原剂溶液比例为15~20 g/L;
步骤(3)所使用的镍盐为六水硫酸镍(NiSO4•6H2O),镍盐溶液的浓度为25~30 g/L,加热温度为65~85℃;
步骤(4)中所还原剂溶液成分:三亚乙基四胺、乙二醇,体积比9:1~8.5:1.5;加热温度为110-130℃。
2.根据权利要求1所述制备镍包覆铋硫氯的方法,其特征在于:步骤(1)中所述稀盐酸溶液其浓度为2~4%;超声酸洗时间为5~7min;蒸馏水超声洗涤时间为30-40min。
3.根据权利要求1所述制备镍包覆铋硫氯的方法,其特征在于:步骤(2)所使用氢氧化钠(NaOH)溶液的浓度为15~18g/L。
4.根据权利要求1所述制备镍包覆铋硫氯的方法,其特征在于:步骤(3)中搅拌过程的转速为270-400 r/min。
CN202010331164.8A 2020-04-24 2020-04-24 一种制备镍包覆铋硫氯的方法 Active CN111424267B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010331164.8A CN111424267B (zh) 2020-04-24 2020-04-24 一种制备镍包覆铋硫氯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010331164.8A CN111424267B (zh) 2020-04-24 2020-04-24 一种制备镍包覆铋硫氯的方法

Publications (2)

Publication Number Publication Date
CN111424267A CN111424267A (zh) 2020-07-17
CN111424267B true CN111424267B (zh) 2021-10-01

Family

ID=71559106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010331164.8A Active CN111424267B (zh) 2020-04-24 2020-04-24 一种制备镍包覆铋硫氯的方法

Country Status (1)

Country Link
CN (1) CN111424267B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1441648A1 (de) * 1963-12-11 1969-02-20 Clevite Corp Verfahren und Vorrichtung zur piezoelektrischen Umwandlung elektrischer Energie in hydrostatische mechanische Energie oder umgekehrt
JPS537544A (en) * 1976-07-09 1978-01-24 Seikosha Kk Nickel plating method
JPH07118866A (ja) * 1993-10-21 1995-05-09 Nippon Chem Ind Co Ltd 分散性に優れた球状無電解めっき粉末、導電性材料およびその製造方法
JPH08176837A (ja) * 1994-12-22 1996-07-09 Hitachi Chem Co Ltd 無電解ニッケルリンめっき液
CN101041180A (zh) * 2007-04-28 2007-09-26 北京有色金属研究总院 一种纳米镍包铝粉及其制备方法
CN102286736A (zh) * 2011-08-29 2011-12-21 深圳市化讯应用材料有限公司 一种置换型化学镀金液
CN103273061A (zh) * 2013-06-08 2013-09-04 沈阳化工大学 一种电镀分散剂镍包铝粉的制备方法
CN104801709A (zh) * 2015-03-20 2015-07-29 邱羽 一种镍包覆铜金属粉体及其制备方法和应用
CN109365802A (zh) * 2018-11-13 2019-02-22 中国科学院过程工程研究所 一种核壳结构金属陶瓷复合粉体的制备方法
CN109967736A (zh) * 2019-03-21 2019-07-05 武汉科技大学 一种具有核壳结构的Fe2O3@Ni复合粉体及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1441648A1 (de) * 1963-12-11 1969-02-20 Clevite Corp Verfahren und Vorrichtung zur piezoelektrischen Umwandlung elektrischer Energie in hydrostatische mechanische Energie oder umgekehrt
JPS537544A (en) * 1976-07-09 1978-01-24 Seikosha Kk Nickel plating method
JPH07118866A (ja) * 1993-10-21 1995-05-09 Nippon Chem Ind Co Ltd 分散性に優れた球状無電解めっき粉末、導電性材料およびその製造方法
JPH08176837A (ja) * 1994-12-22 1996-07-09 Hitachi Chem Co Ltd 無電解ニッケルリンめっき液
CN101041180A (zh) * 2007-04-28 2007-09-26 北京有色金属研究总院 一种纳米镍包铝粉及其制备方法
CN102286736A (zh) * 2011-08-29 2011-12-21 深圳市化讯应用材料有限公司 一种置换型化学镀金液
CN103273061A (zh) * 2013-06-08 2013-09-04 沈阳化工大学 一种电镀分散剂镍包铝粉的制备方法
CN104801709A (zh) * 2015-03-20 2015-07-29 邱羽 一种镍包覆铜金属粉体及其制备方法和应用
CN109365802A (zh) * 2018-11-13 2019-02-22 中国科学院过程工程研究所 一种核壳结构金属陶瓷复合粉体的制备方法
CN109967736A (zh) * 2019-03-21 2019-07-05 武汉科技大学 一种具有核壳结构的Fe2O3@Ni复合粉体及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Density Functional Calculation of the Photoelectron Emission Spectra of BiSCl Crystal and Molecular Clusters;A. Audzijonis et al.;《Journal of Cluster Science》;20100402;第21卷(第4期);第577-589页 *
原位化学沉积法制备镍包覆碳化硅颗粒复合粉体;王彬彬等;《硅酸盐通报》;20140315;第33卷(第3期);第629-634页 *
影响金刚石微粉化学镀镍品质的因素;方莉俐等;《金刚石与磨料磨具工程》;20190420;第39卷(第2期);第26-31页 *

Also Published As

Publication number Publication date
CN111424267A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
CN113025271B (zh) 一种Ti3C2Tx MXene@ZnO复合吸波材料的制备方法
CN104999076B (zh) 一锅法制备壳层厚度可控的银包铜纳米粉体的方法
WO2015149517A1 (zh) 纳米金属或纳米金属氧化物颗粒的超临界水热合成方法
CN102698666B (zh) 基于红外线辐照的石墨烯/纳米粒子复合材料的制备方法
CN105633266A (zh) 一种柔性还原石墨烯与碲纳米线复合热电薄膜的制备方法
KR101927643B1 (ko) 표면개질된 그래핀 복합 섬유 및 이의 제조방법
CN108546547A (zh) 一种多频谱复合吸波剂的制备方法
CN110615438A (zh) 一种Ti3C2粉体的制备方法
CN111905796A (zh) 一种超细金属纳米颗粒/氮化碳纳米片复合材料的制备方法
CN108161024B (zh) 一种线状微纳米金属铜的制备方法
CN106571460B (zh) 一种无粘结剂、自支撑结构的硒正极材料及其制备方法
KR20200025984A (ko) 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법, 이에 의하여 제조되는 복합체 및 복합체를 이용하는 이차전지용 음극재
CN114700490A (zh) 一种镍包石墨复合颗粒的制备方法及其在电磁屏蔽领域的应用
CN115763828A (zh) 聚合物复合膜及其制备方法、复合集流体、极片、二次电池和用电装置
CN111424267B (zh) 一种制备镍包覆铋硫氯的方法
Yang et al. Synthesis of Ag@ Cu 2 O core-shell metal-semiconductor nanoparticles and conversion to Ag@ Cu core-shell bimetallic nanoparticles
CN115843172A (zh) 一种中空碳负载金属镍颗粒及制备方法和微波吸收的应用
CN105384159A (zh) 一种二氧化锰包覆碳颗粒介电材料用做电磁波吸收材料的应用
CN112058253A (zh) 一种三维结构核壳纳米ZnO@In2O3光催化材料的制备方法
CN106379896B (zh) 一种石墨烯及其制备方法
CN114335474A (zh) 一种锂电池高镍正极无机化合物包覆方法
CN110061227A (zh) 纳米硅存留在碳壳中的锂电池负极材料及制作方法和用途
CN113077998B (zh) 一种超级电容器用二氧化钌/石墨烯复合电极及其制备方法
RU2449426C1 (ru) СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО NiО/C МАТЕРИАЛА
CN113368854A (zh) 一种纳米TiO2/Cu2O多孔复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant