CN111420710B - 一种双峰孔结构的氧化铝载体及其制备方法 - Google Patents

一种双峰孔结构的氧化铝载体及其制备方法 Download PDF

Info

Publication number
CN111420710B
CN111420710B CN202010358427.4A CN202010358427A CN111420710B CN 111420710 B CN111420710 B CN 111420710B CN 202010358427 A CN202010358427 A CN 202010358427A CN 111420710 B CN111420710 B CN 111420710B
Authority
CN
China
Prior art keywords
alumina carrier
pore
boehmite
pseudo
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010358427.4A
Other languages
English (en)
Other versions
CN111420710A (zh
Inventor
吴艳
马博文
李文博
陈贵锋
孙仲超
黄澎
常秋连
高明龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CCTEG China Coal Research Institute
Original Assignee
CCTEG China Coal Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCTEG China Coal Research Institute filed Critical CCTEG China Coal Research Institute
Priority to CN202010358427.4A priority Critical patent/CN111420710B/zh
Publication of CN111420710A publication Critical patent/CN111420710A/zh
Application granted granted Critical
Publication of CN111420710B publication Critical patent/CN111420710B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • C01F7/306Thermal decomposition of hydrated chlorides, e.g. of aluminium trichloride hexahydrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种重油加氢催化剂双峰孔结构的氧化铝载体及其制备方法。所述氧化铝载体的孔容为0.8~1.5mL/g,比表面积120~350m2/g,介孔最可几孔径为15~30nm,大孔最可几孔径为2000~4000nm,2400nm以上大孔的孔体积占总孔容的5~25%。本发明提供的氧化铝载体具有大孔容大孔径,扩散性能优异,适合作为处理胶质、沥青质含量高的重油的加氢催化剂氧化铝载体。

Description

一种双峰孔结构的氧化铝载体及其制备方法
技术领域
本发明涉及一种适用于重油加氢的氧化铝载体及其制备方法,更具体地说是一种具有双峰孔结构的氧化铝载体及其制备方法。
背景技术
煤焦油是煤在热解和气化过程中获得的一种宝贵化工原料。随着低阶煤热解技术的迅速发展,中低温煤焦油产量的大幅提升。中低温煤焦油含有较多的烷烃、环烷烃和较少的稠环芳烃,适宜通过加氢的方式生产清洁燃料油和高附加值化学品,
渣油属于石油基重油中最难加工的原料,含有大量胶质和沥青质,这部分物质分子量大、结构复杂,扩散困难,因此要求催化剂具有优良的孔道结构。与渣油相比较,煤焦油中所含的沥青质远大于渣油中的含量,由于沥青质分子直径大,含有大量杂原子和金属,在加氢过程中易于缩聚形成焦炭和发生金属沉积,堵塞催化剂孔道使其失活,从而对煤焦油加氢催化剂提出更高的要求。
氧化铝载体的孔结构是催化剂十分重要的性质。煤焦油中的沥青质分子及金属杂原子化合物直径都较大,煤焦油加氢属于扩散控制过程,需要催化剂具有较大的孔径以使重质组分大分子能够进入催化剂孔道,进而与催化剂表面活性位作用,同时需要大孔容容纳脱除的金属杂质,因此氧化铝载体的孔结构对催化剂的反应效果有很大影响。
为提高氧化铝载体扩散性能,目前主流做法是加入扩孔剂制备双峰孔结构氧化铝载体,使催化剂同时存在直径在10-30nm和直径在100nm以上的孔结构。直径在100nm以上孔道为大分子物质提供扩散通道,而直径在10-30nm的孔道提供反应表面和沉积场所。两类孔道协同作用,以提高催化剂的反应性能及稳定性。
CN1647857A公开了一种大孔氧化铝载体的制备方法,该方法使用一种有机扩孔剂进行扩孔,得到双峰孔结构氧化铝载体。
CN1120971公开了一种双峰孔结构氧化铝载体制备方法,该方法采用两种或两种以上原料路线制备的拟薄水铝石干胶粉,加入胶溶剂进行胶溶,采用油氨柱法进行氧化铝载体成型。
CN106914279A公开了一种氧化铝载体制备方法,该方法将水和氧化铝与非酸性粘合剂、复合扩孔剂混合并成型、干燥和焙烧,制备出含有5%-15%孔直径在1000nm大孔的氧化铝载体。CN105983443B公开了一种双峰孔结构氧化铝载体制备方法,使用含硼化合物和聚乙烯醇粉末等高聚物作为复合扩孔剂,粘合剂为合成纤维素,制备的氧化铝载体在25nm和250nm处出现特征峰,孔容在100-2000纳米的孔容占总孔容的24.1%。这两篇专利虽然获得了大量的大孔结构,但是其使用的扩孔剂和粘合剂质量占原料水合氧化铝质量的10%以上,在焙烧过程中需消耗大量能量将扩孔剂和粘合剂烧除,并且由此导致载体强度大幅降低。
上述方法所制备氧化铝载体的大孔孔径多集中在500nm以下,1000nm以上以及2000nm以上大孔含量较低,不能避免较小的孔道发生孔口堵塞,不能最大程度改善催化剂的扩散性能。
发明内容:
针对现有技术的不足,本发明提供一种双峰孔结构的氧化铝载体及其制备方法,本方法制备的氧化铝载体扩散孔孔径更大、含量更高,500nm以上大孔尤其是2400nm以上超大孔含量更高,有效解决煤焦油或渣油中大量沥青质大分子物质向催化剂内部扩散和加氢转化的问题,本发明制备过程简单、仅添加少量复合扩孔剂,焙烧过程能耗低、产品强度满足工业应用需求。本发明制备的氧化铝载体可做为加氢催化剂载体特别是加氢保护剂、加氢脱金属剂和沥青质转化催化剂载体使用。
本发明提供一种加氢催化剂氧化铝载体,其中,
孔容为0.8~1.5mL/g;
比表面积为120~350m2/g;
介孔最可几孔径为15~30nm;
大孔最可几孔径为2000~4000nm;
孔直径在2400nm以上大孔的孔体积占总孔容的5~25%。
本发明同时提供一种重油加氢催化剂氧化铝载体的制备方法,包括如下步骤:
A、拟薄水铝石的制备
(1)将偏铝酸钠溶于去离子水中,得到偏铝酸钠溶液;
(2)将偏铝酸钠溶液在搅拌条件下加入到硫酸铝溶液中;
(3)将步骤(2)所得产物在陈化条件下陈化;
(4)将步骤(3)所得陈化产物过滤,洗涤、干燥,通过调节偏铝酸钠与硫酸铝的铝摩尔比、滴加方式、陈化温度分别得到拟薄水铝石M1和拟薄水铝石M2
B、氧化铝载体的制备
(1)将拟薄水铝石M1及M2与复合扩孔剂和助挤剂混合并成型、干燥;
(2)对(1)中所得的颗粒物在600~1000℃下焙烧1~6小时。
其中,所述的复合扩孔剂为含硼化合物和聚氧乙烯醚,所述拟薄水铝石M1与拟薄水铝石M2具有不同的孔径分布。
进一步,由BET氮吸附表征可知,制得的拟薄水铝石M1孔容为2.0~3.2mL/g,比表面积为130~280m2/g,最可几孔径为30~55nm,由压汞测试结果可知,拟薄水铝石M1大孔区域最可几孔径8000nm,8000nm以上大孔的孔容占总孔容超过57%;制得的拟薄水铝石M2孔容为1.0~1.5mL/g,比表面积为350~500m2/g,最可几孔径为10~20nm。
进一步,所述的拟薄水铝石M1和M2的重量混合比为20~95:5~80。
进一步,所述的复合扩孔剂为含硼化合物和聚氧乙烯醚。
进一步,所述的含硼化合物优选硼酸、氧化硼和硼酸盐中的一种或几种。
进一步,以硼计,所述的含硼化合物的加入量优选为拟薄水铝石中对应的氧化铝重量的0.5~5%。
进一步,所述的聚氧乙烯醚为烷基酚聚氧乙烯醚、蓖麻油聚氧乙烯醚、脂肪胺聚氧乙烯醚、脂肪酸聚氧乙烯脂其中的一种或几种。
进一步,所述的聚氧乙烯醚的加入量优选为拟薄水铝石中对应的氧化铝重量的0.5~3%。
进一步,所述的助挤剂优选为田菁粉或淀粉。
进一步,所述的助挤剂的加入量优选为拟薄水铝石中对应的氧化铝重量的1~3%。
本发明氧化铝载体的形状可以根据不同的要求进行改变。
本发明之所以将拟薄水铝石M1与拟薄水铝石M2混合使用,主要是因为拟薄水铝石M1存在大量的不稳定、易于塌陷的超大孔,单独用于制备氧化铝载体时大孔结构塌陷严重,不能获得大孔容大孔径的合格载体。本发明人发现将拟薄水铝石M2与拟薄水铝石M1混合使用的效果明显优于二者单独使用,特别是在保护2400nm以上大孔方面。
与现有技术相比,本发明提供的氧化铝载体具有大量扩散孔,500nm以上大孔尤其是2400nm以上超大孔含量更高,扩散性能更优异,有效解决煤焦油或渣油中大量沥青质大分子物质向催化剂内部扩散和加氢转化的问题;
本发明提供的方法在载体制备过程中无需添加酸性胶溶剂,降低了酸对水合氧化铝粒子结构的破坏,有效保护氧化铝载体的孔道结构,使上大孔结构尽可能得以保存;
本发明提供的的拟薄水铝石胶溶性能好,在载体制备过程中无需添加粘结剂,大幅降低焙烧能耗并提高产品强度;
使用含硼化合物与聚氧乙烯醚复合扩孔比两者单独使用,所得大孔孔径更大,大孔比例更高,同时扩孔剂加入量低,降低生产成本并提高载体强度。
本发明制备的氧化铝载体可做为加氢催化剂载体特别是加氢保护剂、加氢脱金属剂和沥青质转化催化剂载体使用。
使用含硼化合物与聚氧乙烯醚复合扩孔具有更好的扩孔效果,所得大孔孔径更大,大孔比例更高,同时扩孔剂加入量较低,有利于降低成本并防止焙烧过程发生飞温现象。
本发明提供的双峰孔氧化铝载体的双峰集中于15~30nm和2000~4000nm,2400nm以上大孔的孔体积占总孔容的5~25%,可做为固定床加氢催化剂氧化铝载体使用,特别是作为氧化铝载体制备重油加工用的加氢保护剂、脱金属催化剂和脱沥青质催化剂等加氢催化剂。
附图说明
图1:实施例1氧化铝载体压汞孔径分布示意图。
具体实施方式
以下对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和过程,但本发明的保护范围不限于下述实施例,下列实施例中未注明具体条件的实验方法,通常按照常规条件。
实施例1
制备拟薄水铝石M1和M2。用氮气吸附法测定拟薄水铝石的比表面积和孔体积,M1的比表面积为184m2/g,孔体积2.1mL/g,最可几孔径为40.8nm;M2比表面积为420m2/g,孔体积1.3mL/g,最可几孔径为18.6nm。
称取上述拟薄水铝石M150g(干基),拟薄水铝石M250g(干基),加入田菁粉3g,将1.8g硼酸和0.8g聚氧乙烯醚溶解于110g去离子水中,加入前述物料中,混捏后在单螺杆挤条机上挤成直径2.5mm的圆柱形,105℃干燥4小时,再800℃焙烧4小时,得到氧化铝载体A,其性质见表1。
实施例2
制备拟薄水铝石M1和M2。用氮气吸附法测定拟薄水铝石的比表面积和孔体积,M1的比表面积为178m2/g,孔体积2.2mL/g,最可几孔径为34.6nm;M2比表面积为400m2/g,孔体积1.3mL/g,最可几孔径为17.0nm。
称取上述拟薄水铝石M160g(干基),拟薄水铝石M240g(干基),加入田菁粉2.0g和1.0g氧化硼,将1g聚氧乙烯醚溶解于107g去离子水中,加入前述物料中,混捏后在单螺杆挤条机上挤成直径3.0mm的四叶草形,120℃干燥3小时,再600℃焙烧5小时,得到氧化铝载体B,其性质见表1。
实施例3
制备拟薄水铝石M1和M2。用氮气吸附法测定拟薄水铝石的比表面积和孔体积,M1的比表面积为230m2/g,孔体积3.0mL/g,最可几孔径为51.5nm;M2比表面积为410m2/g,孔体积1.4mL/g,最可几孔径为18.0nm。
称取上述拟薄水铝石M170g(干基),拟薄水铝石M230g(干基),加入田菁粉3g,将1.6g硼酸和1.4g聚氧乙烯醚溶解于110g去离子水中,加入前述物料中,混捏后在单螺杆挤条机上挤成直径3.0mm的三叶草形,110℃干燥4小时,再750℃焙烧4小时,得到氧化铝载体C,其性质见表1。
实施例4
制备拟薄水铝石M1和M2。用氮气吸附法测定拟薄水铝石的比表面积和孔体积,M1的比表面积为260m2/g,孔体积2.6mL/g,最可几孔径为48.5nm;M2比表面积为450m2/g,孔体积1.2mL/g,最可几孔径为18.0nm。
称取上述拟薄水铝石M180g(干基),拟薄水铝石M220g(干基),加入田菁粉3g,将2.8g氧化硼和1.2g聚氧乙烯醚溶解于110g去离子水中,加入前述物料中,混捏后在单螺杆挤条机上挤成直径2.0mm的圆柱形,60℃干燥10小时,再800℃焙烧4小时,得到氧化铝载体D,其性质见表1。
比较例1
称取商用的大孔拟薄铝石干胶粉(干基含量71.5wt%)100g,加入2.1g田菁粉,混合均匀;将3.6g硼酸溶解于86g去离子水中,加入前述物料,混捏后在单螺杆挤条机上挤成直径3.0mm的三叶草形。在100℃干燥5小时,再于750℃焙烧4小时,得到氧化铝载体E,其性质见表1。
比较例2
将34.1g氢氧化铝干胶粉(含氧化铝75%的烷基铝水解产物)和硫酸铝法制得的氢氧化铝39.3g混合后加入1.5g硝酸及3.5g聚氧乙烯醚和66mL水混捏,在单螺杆挤条机上挤成直径2.5mm的圆柱形。在80℃干燥8小时,再于600℃焙烧4小时,得到氧化铝载体F,其性质见表1。
实施例5
本例为以上各例氧化铝载体的理化性质。
采用BET和压汞等分析方法对氧化铝载体进行分析,结果见表1。
表1氧化铝载体物化性质
Figure BDA0002474220760000061
表1的结果表明,与比较例相比较,本发明方法制备的氧化铝载体具有双峰孔结构,孔容、孔径更大,介孔最可几孔径在15nm以上,且具有相当比例的2400nm以上孔道结构;含硼化合物和聚氧乙烯醚复合使用比单独使用扩孔效果好,孔径更大,大孔更多,添加量更少;本发明方法制备的氧化铝载体,强度更高,满足工业应用要求。

Claims (10)

1.一种双峰孔结构的氧化铝载体,其特征在于,所述氧化铝载体的孔容为0.8~1.5mL/g;比表面积为120~350m2/g;介孔最可几孔径为15~30nm;大孔最可几孔径为2000~4000nm;所述氧化铝载体采用的复合扩孔剂为含硼化合物和聚氧乙烯醚;其中,所述氧化铝载体中孔直径在2400nm以上的大孔的孔体积占总孔容的5~25%。
2.根据权利要求1所述的双峰孔结构的氧化铝载体的制备方法,其特征在于,包括如下步骤:
A、拟薄水铝石的制备
(1)将偏铝酸钠溶于去离子水中,得到偏铝酸钠溶液;
(2)将偏铝酸钠溶液在搅拌条件下加入到硫酸铝溶液中;
(3)将步骤(2)所得产物在陈化条件下陈化;
(4)将步骤(3)所得陈化产物过滤,洗涤、干燥,通过调节偏铝酸钠与硫酸铝的铝摩尔比、滴加方式、陈化温度分别得到拟薄水铝石M1和拟薄水铝石M2;
B、氧化铝载体的制备
(1)将拟薄水铝石M1及M2与复合扩孔剂和助挤剂混合并成型、干燥;
(2)对(1)中所得的颗粒物在600~1000℃下焙烧1~6小时;
其中,所述的复合扩孔剂为含硼化合物和聚氧乙烯醚,所述拟薄水铝石M1与拟薄水铝石M2具有不同的孔径分布。
3.根据权利要求2所述的双峰孔结构的氧化铝载体的制备方法,其特征在于,由BET氮吸附表征可知,制得的拟薄水铝石M1孔容为2.0~3.2mL/g,比表面积为130~280m2/g,最可几孔径为30~55nm,由压汞测试结果可知,拟薄水铝石M1大孔区域最可几孔径8000nm,8000nm以上大孔的孔容占总孔容超过57%;制得的拟薄水铝石M2孔容为1.0~1.5mL/g,比表面积为350~500m2/g,最可几孔径为10~20nm。
4.根据权利要求2所述的双峰孔结构的氧化铝载体的制备方法,其特征在于,所述的拟薄水铝石M1和M2的重量混合比为20~95:5~80。
5.根据权利要求2所述的氧化铝载体的制备方法,其特征在于,所述的含硼化合物为硼酸、氧化硼和硼酸盐中的一种或几种。
6.根据权利要求2所述的氧化铝载体的制备方法,其特征在于,所述的含硼化合物的加入量为拟薄水铝石中对应的氧化铝重量的0.5~5%。
7.根据权利要求2所述的氧化铝载体的制备方法,其特征在于,所述的聚氧乙烯醚为烷基酚聚氧乙烯醚、蓖麻油聚氧乙烯醚、脂肪胺聚氧乙烯醚、脂肪酸聚氧乙烯脂其中的一种或几种。
8.根据权利要求2所述的氧化铝载体的制备方法,其特征在于,所述的聚氧乙烯醚的加入量为拟薄水铝石中对应的氧化铝重量的0.5~3%。
9.根据权利要求2所述的氧化铝载体的制备方法,其特征在于,所述的助挤剂为田菁粉或淀粉,所述的助挤剂的加入量为拟薄水铝石中对应的氧化铝重量的1~3%。
10.根据权利要求1所述的氧化铝载体作为加氢催化剂的应用。
CN202010358427.4A 2020-04-29 2020-04-29 一种双峰孔结构的氧化铝载体及其制备方法 Active CN111420710B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010358427.4A CN111420710B (zh) 2020-04-29 2020-04-29 一种双峰孔结构的氧化铝载体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010358427.4A CN111420710B (zh) 2020-04-29 2020-04-29 一种双峰孔结构的氧化铝载体及其制备方法

Publications (2)

Publication Number Publication Date
CN111420710A CN111420710A (zh) 2020-07-17
CN111420710B true CN111420710B (zh) 2022-12-06

Family

ID=71558458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010358427.4A Active CN111420710B (zh) 2020-04-29 2020-04-29 一种双峰孔结构的氧化铝载体及其制备方法

Country Status (1)

Country Link
CN (1) CN111420710B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426300B (zh) * 2020-10-14 2023-07-28 中国石油化工股份有限公司 一种大孔氧化铝载体的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1488441A (zh) * 2002-10-10 2004-04-14 中国石油化工股份有限公司 一种氧化铝载体的制备方法
JP2008212798A (ja) * 2007-03-01 2008-09-18 Jgc Catalysts & Chemicals Ltd アルミナ担体及びそれを用いた水素化脱金属触媒並びにそれらの製造方法
CN102614867A (zh) * 2011-01-30 2012-08-01 中国石油化工股份有限公司 一种烯烃歧化用催化剂及其制备方法
CN105623717A (zh) * 2014-10-29 2016-06-01 中国石油化工股份有限公司 一种加氢催化剂级配方法和一种重油加氢处理方法
CN105983443A (zh) * 2015-01-27 2016-10-05 中国石油天然气股份有限公司 一种双峰孔结构氧化铝载体及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932408B2 (en) * 2006-09-29 2011-04-26 Scientific Design Company, Inc. Catalyst with bimodal pore size distribution and the use thereof
US9108188B2 (en) * 2012-03-07 2015-08-18 Chevoron Phillip Chemical Company, LP Selective hydrogenation catalyst and methods of making and using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1488441A (zh) * 2002-10-10 2004-04-14 中国石油化工股份有限公司 一种氧化铝载体的制备方法
JP2008212798A (ja) * 2007-03-01 2008-09-18 Jgc Catalysts & Chemicals Ltd アルミナ担体及びそれを用いた水素化脱金属触媒並びにそれらの製造方法
CN102614867A (zh) * 2011-01-30 2012-08-01 中国石油化工股份有限公司 一种烯烃歧化用催化剂及其制备方法
CN105623717A (zh) * 2014-10-29 2016-06-01 中国石油化工股份有限公司 一种加氢催化剂级配方法和一种重油加氢处理方法
CN105983443A (zh) * 2015-01-27 2016-10-05 中国石油天然气股份有限公司 一种双峰孔结构氧化铝载体及其制备方法

Also Published As

Publication number Publication date
CN111420710A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
Geng et al. Ph-SO3H-modified mesoporous carbon as an efficient catalyst for the esterification of oleic acid
CN101269343B (zh) 一种复合介孔分子筛加氢裂化催化剂的应用
CN103240114B (zh) 一种加氢裂化催化剂及其制备和应用
CN1089039C (zh) 一种大孔氧化铝载体及其制备方法
CN101121120B (zh) 具有复合孔结构的氧化铝载体的制备方法
CN101362598A (zh) 一种有序介孔炭材料的合成工艺
CN111420710B (zh) 一种双峰孔结构的氧化铝载体及其制备方法
CN103041870B (zh) 一种氧化铝载体及其制备方法和应用
CN102698757B (zh) 裂解c9加氢催化剂及其制备方法
CN111604074B (zh) 一种煤焦油双峰孔结构加氢预处理催化剂及其制备方法
Li et al. Preparation of composite HZSM-5 catalyst by green template and catalytic the pyrolysis of biomass to produce aromatics
CN112742425A (zh) 一种加氢催化剂及其制备方法
CN104549345B (zh) 一种加氢裂化活性支撑剂及其制备方法
Choo et al. Uniform mesoporous hierarchical nanosized zeolite Y for production of Hydrocarbon-like biofuel under H2-Free deoxygenation
CN109158131A (zh) 一种加氢处理催化剂载体的制备方法
CN112547034A (zh) 一种渣油加氢处理催化剂及其制备方法
CN109718798A (zh) 加氢处理催化剂的制备方法
CN104646073A (zh) 一种加氢催化剂载体
EP3702031A1 (en) Aluminum oxide carrier material and preparation method therefor, hydrogenation catalyst and method for residual oil hydrogenation
CN106833697B (zh) 一种复合炭材料制备方法
CN1105053A (zh) 一种馏分油加氢精制催化剂
CN111420711B (zh) 一种氧化铝载体及其制备方法
CN102626659A (zh) 一种TiO2-Al2O3复合载体及其制备方法
WO2020111975A2 (ru) Катализатор защитного слоя для переработки тяжелого нефтяного сырья
CN103447096B (zh) 夹心式圆柱状催化剂载体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant