CN111393163B - 一种钙钛矿阳极材料及其制备方法和应用 - Google Patents
一种钙钛矿阳极材料及其制备方法和应用 Download PDFInfo
- Publication number
- CN111393163B CN111393163B CN202010205020.8A CN202010205020A CN111393163B CN 111393163 B CN111393163 B CN 111393163B CN 202010205020 A CN202010205020 A CN 202010205020A CN 111393163 B CN111393163 B CN 111393163B
- Authority
- CN
- China
- Prior art keywords
- anode material
- solution
- perovskite
- polyvinylpyrrolidone
- metal salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62231—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
- H01M4/9025—Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9033—Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3241—Chromium oxides, chromates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
- C04B2235/3267—MnO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Textile Engineering (AREA)
- Inert Electrodes (AREA)
Abstract
本发明提供了一种钙钛矿阳极材料及其制备方法和应用,属于无机材料领域。本发明基于静电纺丝工艺,利用柠檬酸、乙二醇和PVP制得了网络结构多晶钙钛矿阳极材料,该材料的孔隙率为40%~60%,孔径为1~20μm,较大的孔隙率和孔径有利于燃料气体的迅速扩散,网络状结构同时形成了连续性好的电子、离子通道,网络结构由纳米晶粒组成,网络结构的纤维内部具有体积含量较高的纳米级孔隙结构,进一步增大了阳极催化反应活性区域,可以提高材料的电化学催化性能,且该阳极材料也方便在其内部浸渍、复合其它物相进行SOFC电极性能的改善。
Description
技术领域
本发明涉及无机材料技术领域,尤其涉及一种钙钛矿阳极材料及其制备方法和应用。
背景技术
LaCrO3基材料是目前直接碳氢燃料钙钛矿型阳极材料的研究热点之一,该类材料可以对烃类燃料表现出一定的电化学催化活性。通常在LaCrO3的A位掺杂Ca、Sr和B位掺杂Mn、Fe、Co、Ni、Cu、V、B等元素,调整其离子电导率或/和电子电导率,如B位高Mn掺杂量的La0.75Sr0.25Cr0.5Mn0.5O3(LSCM)材料作为SOFC(固体氧化物燃料电池)阳极时表现出良好的抗积碳性能,但是该材料存在气体扩散、导电性和催化能力互为矛盾、相互制约的问题,在还原气氛中的电导率较低,导致电化学输出性能不佳,存在电化学催化性能低的问题。
发明内容
有鉴于此,本发明的目的在于提供一种钙钛矿阳极材料及其制备方法和应用。本发明通过静电纺丝工艺,制得了网络结构多晶钙钛矿阳极材料,提高了电化学催化性能。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种钙钛矿阳极材料的制备方法,包括以下步骤:
根据La1-xSrxCr1-yMnyO3的化学计量比分别称取La(NO3)3·6H2O、Sr(NO3)2、Cr(NO3)3·9H2O、Mn(NO3)2与水混合,得到金属盐溶液,其中x=0.1~0.4,y=0.30~0.70;
将所述金属盐溶液依次与柠檬酸和乙二醇混合后调节pH值为1.5~3,然后除去水分,得到粘稠状混合溶液;
将所述粘稠状混合溶液与聚乙烯吡咯烷酮的乙醇溶液混合,得到静电纺丝液;
将所述静电纺丝液进行静电纺丝,得到纤维;
将所述纤维进行焙烧,得到所述钙钛矿阳极材料。
优选地,所述柠檬酸的用量为金属盐溶液中阳离子摩尔总量的1~2倍。
优选地,所述乙二醇与柠檬酸的摩尔量之比为1:1。
优选地,所述除去水分为将所得调节pH值后的溶液密封,50~90℃水浴搅拌8~16h,然后打开密封,继续50~90℃下搅拌蒸发水分,直至粘稠状混合溶液的质量为金属盐溶液中硝酸盐总质量的1.7~2倍。
优选地,所述聚乙烯吡咯烷酮的乙醇溶液的质量百分比为6~12%,所述聚乙烯吡咯烷酮的乙醇溶液中聚乙烯吡咯烷酮的质量为金属盐溶液中硝酸盐总质量的1~2%。
优选地,所述聚乙烯吡咯烷酮的乙醇溶液中聚乙烯吡咯烷酮的重均分子量为800000~1500000。
优选地,所述静电纺丝的条件包括:使用25#医用针头,负压为-3~-1kV,正压为10~20kV,推速为0.01~0.1mm/min,温度为35~60℃,湿度为25%~75%,接收距离为10~25cm。
优选地,所述焙烧为以0.3~0.6℃/min升温至800~1300℃后保温1~5h。
本发明还提供了上述技术方案所述的制备方法制得的钙钛矿阳极材料,所述钙钛矿阳极材料的孔隙率为40%~60%,孔径为1~20μm。
本发明还提供了上述技术方案所述的钙钛矿阳极材料直接作为固体氧化物燃料电池阳极的应用。
本发明提供了一种钙钛矿阳极材料的制备方法,包括以下步骤:根据La1-xSrxCr1- yMnyO3的化学计量比分别称取La(NO3)3·6H2O、Sr(NO3)2、Cr(NO3)3·9H2O、Mn(NO3)2与水混合,得到金属盐溶液,其中x=0.1~0.4,y=0.30~0.70;将所述金属盐溶液依次与柠檬酸和乙二醇混合后调节pH值为1.5~3,然后除去水分,得到粘稠状混合溶液;将所述粘稠状混合溶液与聚乙烯吡咯烷酮(PVP)的乙醇溶液混合,得到静电纺丝液;将所述静电纺丝液进行静电纺丝,得到纤维;将所述纤维进行焙烧,得到所述钙钛矿阳极材料。本发明基于静电纺丝工艺,以柠檬酸作为络合剂,以乙二醇作为分散剂和助纺剂,结合PVP,制得了网络结构多晶钙钛矿阳极材料(LSCM),该材料的孔隙率为40%~60%,孔径分布于1μm~20μm,较大的孔隙率和孔径有利于燃料气体的迅速扩散,网络状结构同时形成了连续性好的电子、离子通道,网络结构由纳米晶粒组成,网络结构的纤维内部具有体积含量较高的纳米级孔隙结构,进一步增大了阳极催化反应活性区域,可以提高材料的电化学催化性能,避免了常规的颗粒或纤维结构的SOFC阳极中,气体扩散、导电性和催化能力三方面的性能互为矛盾、相互制约的问题,且该阳极材料也方便在其内部浸渍、复合其它物相进行SOFC电极性能的改善。实施例的数据表明,本发明制得的钙钛矿阳极材料直接用作固体氧化物燃料电池阳极,单电池的最大功率密度为0.31W/cm2,极化阻抗为2.9Ω·cm2,表现出更好的电化学催化性能。
附图说明
图1为实施例1制得的钙钛矿阳极材料在低倍率下的SEM谱图;
图2为实施例1制得的钙钛矿阳极材料在高倍率下的SEM谱图;
图3为实施例1制得的钙钛矿阳极材料的X-ray衍射谱;
图4为对比例制得的LSCM粉体的XRD图谱;
图5为分别实施例1和对比例制得的钙钛矿阳极材料为阳极材料制备的单电池的电化学输出性能曲线;
图6为分别实施例1和对比例制得的钙钛矿阳极材料为阳极材料制备的单电池的交流阻抗谱图。
具体实施方式
本发明提供了一种钙钛矿阳极材料的制备方法,包括以下步骤:
根据La1-xSrxCr1-yMnyO3的化学计量比分别称取La(NO3)3·6H2O、Sr(NO3)2、Cr(NO3)3·9H2O、Mn(NO3)2与水混合,得到金属盐溶液,其中x=0.1~0.4,y=0.30~0.70;
将所述金属盐溶液依次与柠檬酸和乙二醇混合后调节pH值为1.5~3,然后除去水分,得到粘稠状混合溶液;
将所述粘稠状混合溶液与聚乙烯吡咯烷酮的乙醇溶液混合,得到静电纺丝液;
将所述静电纺丝液进行静电纺丝,得到纤维;
将所述纤维进行焙烧,得到所述钙钛矿阳极材料。
本发明根据La1-xSrxCr1-yMnyO3的化学计量比分别称取La(NO3)3·6H2O、Sr(NO3)2、Cr(NO3)3·9H2O、Mn(NO3)2与水混合,得到金属盐溶液,其中x=0.1~0.4,y=0.30~0.70。本发明对所述水的用量没有特殊的限定。
得到金属盐溶液后,本发明将所述金属盐溶液依次与柠檬酸和乙二醇混合后调节pH值为1.5~3,然后除去水分,得到粘稠状混合溶液。
在本发明中,所述柠檬酸的用量优选为金属盐溶液中阳离子摩尔总量的1~2倍,更优选为1.5倍。在本发明中,所述柠檬酸作为络合剂。
在本发明中,所述乙二醇与柠檬酸的摩尔量之比优选为1:1。在本发明中,所述乙二醇作为分散剂和助纺剂。
在本发明中,所述pH值优选为2。
在本发明的具体实施例中,优选称取金属盐溶液中阳离子摩尔总量1~2倍的柠檬酸,加入溶液后常温下搅拌约1~5h,再加入与柠檬酸等物质的量的乙二醇,继续搅拌,并用氨水调节pH值。本发明对所述氨水的浓度以及用量没有特殊的限定,能够保证pH值调节为1.5~3即可。
在本发明中,所述除去水分优选为将所得调节pH值后的溶液密封,50~90℃水浴搅拌8~16h,然后打开密封,继续50~90℃下搅拌蒸发水分,直至粘稠状混合溶液的质量为金属盐溶液中硝酸盐总质量的1.7~2倍,更优选为1.8倍。
得到粘稠状混合溶液后,本发明将所述粘稠状混合溶液与聚乙烯吡咯烷酮的乙醇溶液混合,得到静电纺丝液。在本发明中,所述聚乙烯吡咯烷酮的乙醇溶液的质量百分比优选为6~12%,更优选为9%,所述聚乙烯吡咯烷酮的乙醇溶液中聚乙烯吡咯烷酮的质量优选为金属盐溶液中硝酸盐总质量的1~2%,更优选为1.5%。
在本发明中,所述聚乙烯吡咯烷酮的乙醇溶液(PVP/乙醇溶液)中聚乙烯吡咯烷酮的重均分子量优选为800000~1500000,更优选为1300000。
得到静电纺丝液后,本发明将所述静电纺丝液进行静电纺丝,得到纤维。
在本发明中,所述静电纺丝的条件优选包括:使用25#医用针头,负压为-3~-1kV,更优选为-2kV,正压为10~20kV,更优选为15kV,推速为0.01~0.1mm/min,更为0.05mm/min,温度为35~60℃,更优选为45℃,湿度为25%~75%,更优选为35%,接收距离为10~25cm,更优选为15cm。
得到纤维后,本发明将所述纤维进行焙烧,得到所述钙钛矿阳极材料。
在本发明中,所述焙烧优选为以0.3~0.6℃/min升温至800~1300℃后保温1~5h,更优选为以0.5℃/min升温至1200℃后保温3h。
本发明还提供了上述技术方案所述的制备方法制得的钙钛矿阳极材料,所述钙钛矿阳极材料的孔隙率为40%~60%,孔径为1~20μm。
本发明还提供了上述技术方案所述的钙钛矿阳极材料直接作为固体氧化物燃料电池阳极的应用。本发明对所述应用没有特殊的限定,采用本领域技术人员熟知的应用方式即可,在本发明的具体实施例中,优选为以GDC(Ce0.8Gd0.2O1.9)为电解质、La0.6Sr0.4Co0.2Fe0.8O3-δ为阴极材料,以所述钙钛矿阳极材料为阳极材料制备单电池。
为了进一步说明本发明,下面结合实例对本发明提供的钙钛矿阳极材料及其制备方法和应用进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
按照La0.75Sr0.25Cr0.5Mn0.5O3的化学计量比分别称取La(NO3)3·6H2O、Sr(NO3)2、Cr(NO3)3·9H2O、Mn(NO3)2,充分溶解于适量去离子水中,得到金属盐溶液。称取金属盐溶液中阳离子摩尔总量1.5倍的柠檬酸作为络合剂,加入溶液后常温下搅拌约3h;加入与柠檬酸等物质的量的乙二醇作为分散剂和助纺剂,继续搅拌,并用氨水调节pH值为2.0。将混合溶液密封,80℃水浴搅拌10h。然后打开密封,继续80℃水浴搅拌蒸发水分,直至溶胶质量为硝酸盐总质量的1.8倍。选用Mw=1300000的PVP作粘结剂,按照其质量为硝酸盐质量的1.5%加入质量百分比为9%的PVP/乙醇溶液。进行静电纺丝,纺丝参数为:负压-2kV,正压15kv,推速0.05mm/min,温度45℃,湿度35%,距离15cm。所得前驱体在马弗炉中以0.5℃/min速率升温至1200℃保温3h,随炉冷却,得到网络结构LSCM(network LSCM)。所得产物形貌和物相分析结果分别如图1~2和图3所示,图1为实施例1制得的钙钛矿阳极材料在低倍率下的SEM谱图,图2为实施例1制得的钙钛矿阳极材料在高倍率下的SEM谱图,图3为实施例1制得的钙钛矿阳极材料的X-ray衍射谱,由图1~3可知,制得的钙钛矿阳极材料为多孔网络显微结构,其物相为钙钛矿单相。
对比例
制备LSCM粉体作为SOFC阳极材料进行阳极电化学性能对比。按照La0.75Sr0.25Cr0.5Mn0.5O3的化学计量比分别称取La(NO3)3·6H2O、Sr(NO3)2、Cr(NO3)3·9H2O、Mn(NO3)2,加入去离子水后放置磁力搅拌器上常温下溶解为混合溶液。分别称取混合溶液中阳离子摩尔数总量1.5倍的柠檬酸和乙二醇,加入混合溶液中继续搅拌,用氨水调节pH值为2.5。将混合溶液密封后80℃水浴搅拌6小时后打开密封,继续80℃下搅拌蒸发水分得到粘稠溶胶。120℃下将溶胶烘干,800℃下焙烧,得到LSCM粉体(powder LSCM)。其XRD图谱如图4所示,可知,形成钙钛矿单相。
以GDC为电解质、La0.6Sr0.4Co0.2Fe0.8O3-δ为阴极材料,分别以实施例1和对比例制得的钙钛矿阳极材料为阳极材料制备单电池,800℃下以95%H2+5%H2O(g)为燃料、空气为氧化剂进行电化学性能测试,所得电化学输出性能曲线及交流阻抗谱图分别如图5和图6所示。图中OCV(Open circuit voltage)为开路电压,J为电流密度即单位有效面积的电池所产生的电流,EIS(Electrochemical impedance spectroscopy)即交流阻抗谱,由图5~6可知,实施例1和对比例制得的钙钛矿阳极材料为阳极材料制备的单电池的最大功率密度分别为0.31W/cm2和0.25W/cm2,极化阻抗分别为2.9Ω·cm2和3.78Ω·cm2,可知,实施例1制得的钙钛矿阳极材料表现出更好的电化学性能。
实施例2
按照La0.75Sr0.25Cr0.5Mn0.5O3的化学计量比分别称取La(NO3)3·6H2O、Sr(NO3)2、Cr(NO3)3·9H2O、Mn(NO3)2,充分溶解于适量去离子水中,得到金属盐溶液。称取金属盐溶液中阳离子摩尔总量1倍的柠檬酸作为络合剂,加入溶液后常温下搅拌约3h;加入与柠檬酸等物质的量的乙二醇作为分散剂和助纺剂,继续搅拌,并用氨水调节pH值为1.5。将混合溶液密封,80℃水浴搅拌10h。然后打开密封,继续80℃水浴搅拌蒸发水分,直至溶胶质量为硝酸盐总质量的1.7倍。选用Mw=800000的PVP作粘结剂,按照其质量为硝酸盐质量的1%加入质量百分比为6%的PVP/乙醇溶液。进行静电纺丝,纺丝参数为:负压-1kV,正压10kv,推速0.01mm/min,温度35℃,湿度25%,距离10cm。所得前驱体在马弗炉中以0.3℃/min速率升温至1300℃保温1h,随炉冷却,得到网络结构LSCM(network LSCM)。
以GDC为电解质、La0.6Sr0.4Co0.2Fe0.8O3-δ为阴极材料,以实施例2制得的钙钛矿阳极材料为阳极材料制备单电池,800℃下以95%H2+5%H2O(g)为燃料、空气为氧化剂进行电化学性能测试,测得单电池的最大功率密度为0.30W/cm2,极化阻抗为3.1Ω·cm2。
实施例3
按照La0.75Sr0.25Cr0.5Mn0.5O3的化学计量比分别称取La(NO3)3·6H2O、Sr(NO3)2、Cr(NO3)3·9H2O、Mn(NO3)2,充分溶解于适量去离子水中,得到金属盐溶液。称取金属盐溶液中阳离子摩尔总量2倍的柠檬酸作为络合剂,加入溶液后常温下搅拌约3h;加入与柠檬酸等物质的量的乙二醇作为分散剂和助纺剂,继续搅拌,并用氨水调节pH值为3。将混合溶液密封,80℃水浴搅拌10h。然后打开密封,继续80℃水浴搅拌蒸发水分,直至溶胶质量为硝酸盐总质量的2倍。选用Mw=1500000的PVP作粘结剂,按照其质量为硝酸盐质量的2%加入质量百分比为12%的PVP/乙醇溶液。进行静电纺丝,纺丝参数为:负压-3kV,正压20kv,推速0.1mm/min,温度60℃,湿度75%,距离25cm。所得前驱体在马弗炉中以0.6℃/min速率升温至800℃保温5h,随炉冷却,得到网络结构LSCM(network LSCM)。
以GDC为电解质、La0.6Sr0.4Co0.2Fe0.8O3-δ为阴极材料,以实施例3制得的钙钛矿阳极材料为阳极材料制备单电池,800℃下以95%H2+5%H2O(g)为燃料、空气为氧化剂进行电化学性能测试,测得单电池的最大功率密度为0.31W/cm2,极化阻抗为2.9Ω·cm2。
以上所述仅是本发明的优选实施方式,并非对本发明作任何形式上的限制。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (6)
1.一种钙钛矿阳极材料的制备方法,其特征在于,包括以下步骤:
根据La1-xSrxCr1-yMnyO3的化学计量比分别称取La(NO3)3·6H2O、Sr(NO3)2、Cr(NO3)3·9H2O、Mn(NO3)2与水混合,得到金属盐溶液,其中x=0.1~0.4,y=0.30~0.70;
将所述金属盐溶液依次与柠檬酸和乙二醇混合后调节pH值为1.5~3,然后除去水分,得到粘稠状混合溶液;所述粘稠状混合溶液的质量为金属盐溶液中硝酸盐总质量的1.7~2倍;
将所述粘稠状混合溶液与聚乙烯吡咯烷酮的乙醇溶液混合,得到静电纺丝液;所述聚乙烯吡咯烷酮的乙醇溶液的质量百分比为6~12%,所述聚乙烯吡咯烷酮的乙醇溶液中聚乙烯吡咯烷酮的质量为金属盐溶液中硝酸盐总质量的1~2%;所述聚乙烯吡咯烷酮的乙醇溶液中聚乙烯吡咯烷酮的重均分子量为800000~1500000;
将所述静电纺丝液进行静电纺丝,得到纤维;所述静电纺丝的条件包括:使用25#医用针头,负压为-3~-1kV,正压为10~20kV,推速为0.01~0.1mm/min,温度为35~60℃,湿度为25%~75%,接收距离为10~25cm;
将所述纤维进行焙烧,得到所述钙钛矿阳极材料,所述焙烧为以0.3~0.6℃/min升温至800~1300℃后保温1~5h;
所述钙钛矿阳极材料的孔隙率为40%~60%,孔径为1~20μm。
2.根据权利要求1所述的制备方法,其特征在于,所述柠檬酸的用量为金属盐溶液中阳离子摩尔总量的1~2倍。
3.根据权利要求1或2所述的制备方法,其特征在于,所述乙二醇与柠檬酸的摩尔量之比为1:1。
4.根据权利要求1所述的制备方法,其特征在于,所述除去水分为将所得调节pH值后的溶液密封,50~90℃水浴搅拌8~16h,然后打开密封,继续50~90℃下搅拌蒸发水分。
5.权利要求1~4任一项所述的制备方法制得的钙钛矿阳极材料,其特征在于,所述钙钛矿阳极材料的孔隙率为40%~60%,孔径为1~20μm。
6.权利要求5所述的钙钛矿阳极材料直接作为固体氧化物燃料电池阳极的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010205020.8A CN111393163B (zh) | 2020-03-23 | 2020-03-23 | 一种钙钛矿阳极材料及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010205020.8A CN111393163B (zh) | 2020-03-23 | 2020-03-23 | 一种钙钛矿阳极材料及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111393163A CN111393163A (zh) | 2020-07-10 |
CN111393163B true CN111393163B (zh) | 2023-06-30 |
Family
ID=71424793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010205020.8A Active CN111393163B (zh) | 2020-03-23 | 2020-03-23 | 一种钙钛矿阳极材料及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111393163B (zh) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009173484A (ja) * | 2008-01-23 | 2009-08-06 | Mitsubishi Materials Corp | サーミスタ用金属酸化物焼結体及びサーミスタ素子並びにサーミスタ用金属酸化物焼結体の製造方法 |
CN101235556A (zh) * | 2008-03-12 | 2008-08-06 | 长春理工大学 | 一种制备钙钛矿型稀土复合氧化物超长纳米纤维的方法 |
CN101950808A (zh) * | 2010-09-17 | 2011-01-19 | 大连理工大学 | 固态氧化物燃料电池阴极的电纺丝制备方法 |
CN103427094B (zh) * | 2012-05-23 | 2016-04-20 | 中国科学院物理研究所 | 钙钛矿型结构的氧化物及其制备方法和用途 |
CN104028261B (zh) * | 2014-05-28 | 2015-12-30 | 南昌航空大学 | 一种静电纺丝制备BiTaO4纳米纤维光催化剂的方法 |
CN104659378B (zh) * | 2015-02-07 | 2016-11-23 | 大连理工大学 | 一种中温固体氧化物燃料电池纳米纤维复合阴极制备方法 |
CN106784804B (zh) * | 2016-12-30 | 2019-03-01 | 衢州学院 | 一种La0.5Li0.5TiO3纤维增强的Ag基电接触材料制备方法 |
CN106673651B (zh) * | 2017-01-18 | 2019-11-29 | 清陶(昆山)能源发展有限公司 | 一种锂镧锆氧离子导体陶瓷纤维及其制备方法 |
CN110102289A (zh) * | 2019-04-17 | 2019-08-09 | 华南理工大学 | 一种中空纤维网状钙钛矿催化剂及其制备方法与应用 |
-
2020
- 2020-03-23 CN CN202010205020.8A patent/CN111393163B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN111393163A (zh) | 2020-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun et al. | Electrochemical performance of Nd1. 93Sr0. 07CuO4 nanofiber as cathode material for SOFC | |
Yu et al. | BaZr0. 1Co0. 4Fe0. 4Y0. 1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells | |
CN112968185B (zh) | 植物多酚改性的超分子网络框架结构锰基纳米复合电催化剂的制备方法 | |
Qiu et al. | Promoted CO2-poisoning resistance of La0. 8Sr0. 2MnO3− δ-coated Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ cathode for intermediate temperature solid oxide fuel cells | |
Jin et al. | Tuning the Fe–N 4 sites by introducing Bi–O bonds in a Fe–N–C system for promoting the oxygen reduction reaction | |
Zeng et al. | Enhancing surface activity of La0. 6Sr0. 4CoO3-δ cathode by a simple infiltration process | |
Zhou et al. | Preparation and electrochemical properties of an La-doped Pr2Ni0. 85Cu0. 1Al0. 05O4+ δ cathode material for an IT-SOFC | |
CN113948714A (zh) | 原位析出法自组装核壳结构纳米颗粒修饰钙钛矿氧化物电极材料及其制备方法与应用 | |
Samreen et al. | Electrochemical performance of novel NGCO-LSCF composite cathode for intermediate temperature solid oxide fuel cells | |
Zhang et al. | Enhanced electrochemical performance and operating stability of La0. 8Sr0. 2Co0. 2Fe0. 8O3-δ fiber cathode via Gd0. 2Ce0. 8O1. 9-δ coating for intermediate temperature solid oxide fuel cells | |
CN112952171B (zh) | 一种基于铈酸钡基质子导体一体化全对称固体氧化物燃料电池电极材料及其制备和应用 | |
Wen et al. | High performance and stability of PrBa0. 5Sr0. 5Fe2O5+ δ symmetrical electrode for intermediate temperature solid oxide fuel cells | |
Wei et al. | La 0.6 Sr 0.4 CoO 3− δ–Ce 0.8 Gd 0.2 O 2− δ nanocomposites prepared by a sol–gel process for intermediate temperature solid oxide fuel cell cathode applications | |
US9914649B2 (en) | Electro-catalytic conformal coatings and method for making the same | |
JP6625855B2 (ja) | 水蒸気電解用セルおよびその製造方法 | |
KR102261142B1 (ko) | 전기화학기법을 적용한 고체산화물연료전지 공기극 및 이의 제조방법 | |
CN111393163B (zh) | 一种钙钛矿阳极材料及其制备方法和应用 | |
CN116646535A (zh) | 一种固体氧化物燃料电解池阴极材料及其制备方法和应用 | |
CN114657579A (zh) | 一种二元合金纳米颗粒修饰的固体氧化物电解池工作电极及其制备方法和应用 | |
CN115321611A (zh) | Ba掺杂一步法制备原位析出纳米颗粒的RP相氧化物及其应用 | |
Zhou et al. | CO2-tolerant and cobalt-free La4Ni3-xCuxO10±δ (x= 0, 0.3, 0.5 and 0.7) cathodes for intermediate-temperature solid oxide fuel cells | |
CN114614033A (zh) | 固体氧化物燃料电池氧还原催化剂及其制备方法与应用 | |
Liu et al. | A novel catalytic layer material for direct dry methane solid oxide fuel cell | |
Li et al. | Investigation of Pr 2 NiMnO 6‐Ce 0.9 Gd 0.1 O 1.95 composite cathode for intermediate-temperature solid oxide fuel cells | |
CN114695906B (zh) | 一种固体氧化物电池燃料极材料、其制备方法和电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |