CN111384155A - 一种超级结器件 - Google Patents

一种超级结器件 Download PDF

Info

Publication number
CN111384155A
CN111384155A CN202010471397.8A CN202010471397A CN111384155A CN 111384155 A CN111384155 A CN 111384155A CN 202010471397 A CN202010471397 A CN 202010471397A CN 111384155 A CN111384155 A CN 111384155A
Authority
CN
China
Prior art keywords
region
junction device
super junction
conductive type
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010471397.8A
Other languages
English (en)
Inventor
胡浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202010471397.8A priority Critical patent/CN111384155A/zh
Publication of CN111384155A publication Critical patent/CN111384155A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823493MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Thyristors (AREA)

Abstract

一种超级结器件,属于功率半导体器件技术领域。所述超级结器件在轻掺杂外延层中离子注入第一导电类型掺杂和第二导电类型掺杂,经多次外延、注入、推结后,在轻掺杂外延层中形成交替排列的第一导电类型掺杂立柱和第二导电类型掺杂立柱;该超级结器件包括位于中心的元胞区、终端区以及过渡区,通过对过渡区中第一导电类型掺杂立柱和第二导电类型掺杂立柱的布局进行优化调整,使得该区域的第一导电类型掺杂立柱与第二导电类型掺杂立柱的剂量介于元胞区与终端区之间,保证了由元胞区到终端区两种导电类型掺杂剂量的逐渐变化,从而确保在不改变该超结器件电流导通能力的情况下其终端区耐压受制造工艺造成的掺杂浓度偏差的影响更小。

Description

一种超级结器件
技术领域
本发明属于功率半导体器件技术领域,具体涉及一种超级结器件及其制造方法。
背景技术
功率MOSFET广泛应用于需要功率转换和功率放大的器件中。对于功率转换器件来说,市场上代表性的器件就是垂直型双扩散MOSFET(VDMOSFET)。在一个典型的晶体管中,漂移区承担了大部分的击穿电压BV,所以为了获得较高的击穿电压BV,漂移区要轻掺杂使电场分布尽量趋近于矩形。然而,轻掺杂的漂移区会产生高导通电阻Rdson。对于一个典型的晶体管而言,Rdson 与BV2.5成正比。因此,对于传统的晶体管,击穿电压BV 较高的器件也有较大的Rdson,这两者之间需要进行折中考虑。
超级结结构由漂移区中交替排列的P型和N型掺杂立柱组成。在MOSFET 断开状态时,立柱完全耗尽,相对于传统MOS器件的三角形或者梯形的电场分布,超级结结构的电场分布更加接近矩形,从而能够维持很高的击穿电压。由于另一种导电类型掺杂的引入,超级结结构可以在漂移区进行较重的掺杂以降低器件的导通电阻Rdson。对于超级结,导通电阻Rdson 的增加与击穿电压BV1.3 的增加成正比,其导通电阻Rdson 与击穿电压BV的相关性被极大削弱。因此,对于相同的高击穿电压BV,超级结器件比传统的MOSFET 器件具有更低的Rdson,或者说对于特定的Rdson,超级结器件比传统的MOSFET具有更高的BV。
超级结器件为了维持较高的击穿电压,必须保证相邻第一导电类型掺杂区域和第二导电类型掺杂区域的电荷平衡,在耐压时,两种导电类型掺杂区域能够相互完全耗尽。如果两种导电类型的掺杂区域各自的掺杂剂量过大,那么器件该区域的耐压能力受到制造工艺造成的掺杂剂量偏差的影响就会更严重,而在终端区这个现象尤为严重。如果两种导电类型的掺杂区域各自的掺杂剂量过小,那么器件在导通时的导通电阻则会变大。因此对于两种导电类型的掺杂区域在超级结器件不同区域的掺杂剂量进行优化与调整就变得尤为重要。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提出了一种超级结器件及其制造方法。本发明通过新的终端区设计,并在元胞区和终端区之间引入过渡区,在不影响元胞区导通压降的情况下,减小了掺杂立柱的掺杂浓度偏差对过渡区和终端区耐压的影响。
为实现上述目的,本发明采用的技术方案如下:
一种超级结器件,在轻掺杂外延层中离子注入第一导电类型掺杂和第二导电类型掺杂,经多次外延、注入、推结后,在轻掺杂外延层001中形成交替排列的第一导电类型掺杂立柱002和第二导电类型掺杂立柱003,即超级结结构;所述超级结器件包括位于中心的元胞区和位于元胞区周围的终端区;其特征在于,还包括位于元胞区和终端区之间的过渡区,当从离子注入方向俯视所述超级结器件时,所述轻掺杂外延层包括位于元胞区的第一轻掺杂外延层、位于过渡区的第二轻掺杂外延层和位于终端区的第三轻掺杂外延层;所述第一轻掺杂外延层为矩形,其宽度为W1,第二轻掺杂外延层为梯形,第三轻掺杂外延层为矩形,其宽度为W1',W1<W1';
当俯视所述超级结器件时,所述第一导电类型掺杂立柱002包括位于元胞区的、宽度为W2的矩形区域,位于过渡区的梯形区域和位于终端区的、宽度为W2'的矩形区域,W2>W2';
当俯视所述超级结器件时,所述第二导电类型掺杂立柱003包括位于元胞区的、宽度为W3的矩形区域,位于过渡区的梯形区域和位于终端区的、宽度为W3'的矩形区域,W3>W3'。
进一步地,所述W2'=(0.2~0.8)W2; W3'=(0.2~0.8)W3; W1'= W1+(0.1~0.4)W2+(0.1~0.4)W3
优选地,所述W2'=0.5W2; W3'=0.5W3; W1'= W1+0.25W2+0.25W3
优选地,所述W2=W3,W2'=W3'。
本发明还提供了一种超级结器件的制造方法,其特征在于,包括以下步骤:
步骤1、准备N型重掺杂衬底,其电阻率为0.0001~0.1欧姆•厘米;
步骤2、在N型重掺杂衬底上生长一层厚度为T微米的N型轻掺杂外延层,N型轻掺杂外延层的电阻率为1~100欧姆•厘米;
步骤3、采用掩膜版遮挡,再分别进行N型、P型掺杂注入,注入杂质为P(磷)、B(硼),注入剂量为1×1012 atom/cm2 ~1×1015 atom/cm2
步骤4、重复步骤2-3的过程n次,使N型轻掺杂外延层的总厚度达到T*n微米;
步骤5、采用掩膜版遮挡,只在终端区进行P型掺杂注入,形成终端区上表面耐压结构005,注入杂质为B(硼),注入剂量为1×1012 atom/cm2 ~1×1015 atom/cm2
步骤6、通过高温推结,炉管温度为850℃~1200℃,持续时间为30min~300min,激活N型、P型杂质,使每层轻掺杂外延层中的N型、P型杂质扩散后,与上下外延层中的N型、P型杂质连通,形成N型掺杂立柱和P型掺杂立柱;
步骤7、生长场氧化层006;
步骤8、去除元胞区场氧化层;
步骤9、采用掩膜版遮挡,生长栅氧化层009,厚度为100 Å ~1200 Å;
步骤10、通过低压化学气相淀积生长N型多晶硅,经光刻和刻蚀形成栅极010;
步骤11、进行P型杂质注入,形成基区004,并高温推结,激活杂质并使基区达到需要的深度和横向扩散;
步骤12、进行N+注入,形成源极007,注入剂量为1×1012 atom/cm2 ~5×1015 atom/cm2
步骤13、进行P+注入,得到P型重掺杂区008,注入剂量为1×1012 atom/cm2 ~5×1015atom/cm2
步骤14、淀积二氧化硅作为层间介质011;
步骤15、溅射或蒸镀铝,制作金属层012,作为接触孔和电极。
与现有技术相比,本发明的有益效果为:
本发明提供的一种超级结器件,通过对布局的特殊设计在超结器件的元胞区与终端区之间形成了过渡区,保证了由元胞区到终端区两种导电类型掺杂剂量的逐渐变化,从而确保在不改变该超结器件电流导通能力的情况下其终端区耐压受制造工艺造成的掺杂浓度偏差的影响更小。同时,终端区有效掺杂剂量的减小提高了器件终端区的击穿电压,使得整个器件的击穿电压由元胞区的击穿电压决定,最终整个器件的耐压和雪崩耐量也因此提高。
附图说明
图1为本发明所述超级结器件的局部俯视图;
图2为本发明所述超级结器件的整体俯视图;
图3为本发明所述超级结器件的元胞区在未推结时、沿垂直于掺杂立柱方向的剖面图;其中上表面结构仅为相对位置示意,不代表工艺的先后顺序;
图4为本发明所述超级结器件的终端区在未推结时、沿垂直于掺杂立柱方向的剖面图;其中上表面结构仅为相对位置示意,不代表工艺的先后顺序;
图5为本发明所述超级结器件推结后沿P型立柱的剖面图,上表面结构示意了终端区的优化变掺杂结构;
图6为本发明所述超级结器件推结后沿N型立柱的剖面图,上表面结构示意了终端区的优化变掺杂结构;
附图标记说明:
000为重掺杂衬底,001为轻掺杂外延层,002为第一导电类型掺杂立柱,003为第二导电类型掺杂立柱,004为基区,005为终端区上表面耐压结构,006为场氧化层,007为源极,008为P型重掺杂区(基区接触),009为栅氧化层,010为栅极,011为层间介质,012为金属层。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
如图1所示,为本发明所述超级结器件的局部俯视图;如图2所示,为本发明所述超级结器件的整体俯视图。在轻掺杂外延层中离子注入第一导电类型掺杂和第二导电类型掺杂,经多次外延、退火、推结后,在轻掺杂外延层001中形成交替排列的第一导电类型掺杂立柱002和第二导电类型掺杂立柱003,即超级结结构,实际应用中采用两个掩膜版分别实现两种导电类型掺杂的注入;所述超级结器件包括位于中心的元胞区和位于元胞区周围的终端区,其特征在于,还包括位于元胞区和终端区之间的过渡区,当俯视所述超级结器件时,所述轻掺杂外延层包括位于元胞区的第一轻掺杂外延层、位于过渡区的第二轻掺杂外延层和位于终端区的第三轻掺杂外延层;所述第一轻掺杂外延层为矩形,其宽度为W1,第二轻掺杂外延层为梯形,第三轻掺杂外延层为矩形,其宽度为W1';当俯视所述超级结器件时,所述第一导电类型掺杂立柱002包括位于元胞区的、宽度为W2的矩形区域,位于过渡区的梯形区域和位于终端区的、宽度为W2'的矩形区域;当俯视所述超级结器件时,所述第二导电类型掺杂立柱003包括位于元胞区的、宽度为W3的矩形区域,位于过渡区的梯形区域和位于终端区的、宽度为W3'的矩形区域。对于超级结器件,其电流导通能力不仅仅由第二导电类型掺杂立柱的掺杂浓度决定,还与W3的大小有关,为了保证该器件有良好的电流导通能力,在不影响元胞区耐压的情况下希望W3的值较大,即掺杂立柱的掺杂剂量较大。但第一、二导电类型掺杂立柱各自的宽度W2、W3较大时,器件的耐压能力受制造工艺造成的掺杂浓度偏差的影响也会变大。而终端区由于几乎不参与器件电流的导通,因此第一导电类型掺杂立柱在终端区的W2'的值和第二导电类型掺杂立柱在终端区的W3'的值应较小,这样终端区的耐压受制造工艺造成的掺杂浓度偏差的影响也会较小。由于第一、二导电类型掺杂立柱的宽度值在元胞区和终端区大小不同,因此在元胞区与终端区接触的地方如果立柱宽度突然变化,那么器件的耐压能力会受到影响。因此引入过渡区,并使过渡区中两种导电类型掺杂立柱的掺杂注入宽度W2、W3逐渐减小到W2'、W3',使掺杂立柱的注入剂量从元胞区的较高剂量逐步减小到终端区的较小剂量,掺杂立柱剂量的缓慢变化保证了超结器件的耐压能力不受损害。
图3给出了本发明所述超级结器件的元胞区在未推结时、沿垂直于掺杂立柱方向的剖面图;图4给出了本发明所述超级结器件的终端区在未推结时、沿垂直于掺杂立柱方向的剖面图。剖面图的相对位置见图1的竖直方向虚线。图3的上层结构为现有的平面栅MOS结构,在此处仅作为掺杂立柱注入的相对位置示意。
图5和图6分别给出了本发明所述超级结器件推结后沿P型立柱和N型立柱的剖面图,剖面图的相对位置见图1的水平方向虚线。掺杂杂质进行退火推结后形成两种不同导电类型的掺杂立柱,因终端区的掺杂杂质注入剂量比元胞区小,所以其退火形成的掺杂立柱掺杂浓度更低,终端区耐压受制造工艺造成的掺杂浓度偏差的影响更小。
实施例
一种超级结器件的制造方法,包括以下步骤:
步骤1、准备N型重掺杂衬底,其电阻率为0.004欧姆•厘米;
步骤2、在N型重掺杂衬底上生长一层厚度为10微米的N型轻掺杂外延层,N型轻掺杂外延层的电阻率为20欧姆•厘米;
步骤3、采用掩膜版遮挡,再分别进行N型、P型掺杂注入,注入杂质为P(磷)、B(硼),注入剂量为1×1013 atom/cm2
步骤4、重复步骤2-3的过程4次,使N型轻掺杂外延层的总厚度达到50微米;
步骤5、采用掩膜版遮挡,只在终端区进行P型掺杂注入,形成终端区上表面耐压结构005,注入杂质为B(硼),注入剂量约为1×1012 atom/cm2
步骤6、通过高温推结,炉管温度为1200℃,持续时间为300min,激活N型、P型杂质,使每层轻掺杂外延层中的N型、P型杂质扩散后,与上下外延层中的N型、P型杂质连通,形成N型掺杂立柱和P型掺杂立柱;
步骤7、生长场氧化层006;
步骤8、去除元胞区场氧化层;
步骤9、采用掩膜版遮挡,生长栅氧化层009,厚度为1000Å(埃);
步骤10、通过低压化学气相淀积生长N型多晶硅,经光刻和刻蚀形成栅极010;
步骤11、进行P型杂质注入,形成基区004,并高温推结,激活杂质并使基区达到需要的深度和横向扩散;
步骤12、进行N+注入,形成源极007,注入剂量为5×1015 atom/cm2
步骤13、进行P+注入,得到P型重掺杂区008,注入剂量为1×1015 atom/cm2
步骤14、淀积二氧化硅作为层间介质011;
步骤15、溅射或蒸镀铝,制作金属层012,作为接触孔和电极。
以上仅为本发明的优选实施例,并不用于限定本发明。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种超级结器件,在轻掺杂外延层(001)中离子注入形成交替排列的第一导电类型掺杂立柱(002)和第二导电类型掺杂立柱(003),所述超级结器件包括位于中心的元胞区和位于元胞区周围的终端区;其特征在于,还包括位于元胞区和终端区之间的过渡区,当从离子注入方向俯视所述超级结器件时,所述轻掺杂外延层包括位于元胞区的第一轻掺杂外延层、位于过渡区的第二轻掺杂外延层和位于终端区的第三轻掺杂外延层;所述第一轻掺杂外延层为矩形,其宽度为W1,第二轻掺杂外延层为梯形,第三轻掺杂外延层为矩形,其宽度为W1',W1<W1';
当俯视所述超级结器件时,所述第一导电类型掺杂立柱(002)包括位于元胞区的、宽度为W2的矩形区域,位于过渡区的梯形区域和位于终端区的、宽度为W2'的矩形区域,W2>W2';
当俯视所述超级结器件时,所述第二导电类型掺杂立柱(003)包括位于元胞区的、宽度为W3的矩形区域,位于过渡区的梯形区域和位于终端区的、宽度为W3'的矩形区域,W3>W3'。
2.根据权利要求1所述的超级结器件,其特征在于,W2'=(0.2~0.8)W2; W3'=(0.2~0.8)W3; W1'= W1+(0.1~0.4)W2+(0.1~0.4)W3
3.根据权利要求1所述的超级结器件,其特征在于,W2'=0.5W2; W3'=0.5W3; W1'= W1+0.25W2+0.25W3
4.根据权利要求1所述的超级结器件,其特征在于,W2=W3,W2'=W3'。
CN202010471397.8A 2020-05-29 2020-05-29 一种超级结器件 Pending CN111384155A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010471397.8A CN111384155A (zh) 2020-05-29 2020-05-29 一种超级结器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010471397.8A CN111384155A (zh) 2020-05-29 2020-05-29 一种超级结器件

Publications (1)

Publication Number Publication Date
CN111384155A true CN111384155A (zh) 2020-07-07

Family

ID=71219222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010471397.8A Pending CN111384155A (zh) 2020-05-29 2020-05-29 一种超级结器件

Country Status (1)

Country Link
CN (1) CN111384155A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790714A (zh) * 2004-12-13 2006-06-21 株式会社电装 半导体器件及制造其的方法
DE102006055885A1 (de) * 2006-11-27 2008-05-29 Infineon Technologies Austria Ag Verfahren zum Dotieren eines Halbleiterkörpers und hiermit dotiertes Halbleiterbauelement
JP2012160752A (ja) * 2012-04-06 2012-08-23 Toshiba Corp 電力用半導体素子
CN104134684A (zh) * 2013-05-01 2014-11-05 英飞凌科技奥地利有限公司 基于填充结构、含补偿层的补偿结构的超级结半导体器件
CN104347715A (zh) * 2013-07-31 2015-02-11 英飞凌科技奥地利有限公司 包括边缘端接的半导体器件
CN104992963A (zh) * 2015-07-24 2015-10-21 杭州士兰微电子股份有限公司 超结结构的半导体器件及其制造方法、光刻版
CN106057888A (zh) * 2015-04-02 2016-10-26 富士电机株式会社 半导体装置以及半导体装置的制造方法
CN106057866A (zh) * 2015-04-02 2016-10-26 富士电机株式会社 半导体装置及半导体装置的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790714A (zh) * 2004-12-13 2006-06-21 株式会社电装 半导体器件及制造其的方法
DE102006055885A1 (de) * 2006-11-27 2008-05-29 Infineon Technologies Austria Ag Verfahren zum Dotieren eines Halbleiterkörpers und hiermit dotiertes Halbleiterbauelement
JP2012160752A (ja) * 2012-04-06 2012-08-23 Toshiba Corp 電力用半導体素子
CN104134684A (zh) * 2013-05-01 2014-11-05 英飞凌科技奥地利有限公司 基于填充结构、含补偿层的补偿结构的超级结半导体器件
CN104347715A (zh) * 2013-07-31 2015-02-11 英飞凌科技奥地利有限公司 包括边缘端接的半导体器件
CN106057888A (zh) * 2015-04-02 2016-10-26 富士电机株式会社 半导体装置以及半导体装置的制造方法
CN106057866A (zh) * 2015-04-02 2016-10-26 富士电机株式会社 半导体装置及半导体装置的制造方法
CN104992963A (zh) * 2015-07-24 2015-10-21 杭州士兰微电子股份有限公司 超结结构的半导体器件及其制造方法、光刻版

Similar Documents

Publication Publication Date Title
US7626233B2 (en) LDMOS device
JP4132102B2 (ja) 高いブレークダウン電圧と低いオン抵抗を兼ね備えたトレンチ型mosfet
US9412811B2 (en) Semiconductor device having localized charge balance structure and method
CN107482061B (zh) 超结器件及其制造方法
US10923563B2 (en) Power device
TW201238059A (en) Improved schottky rectifier
CN109686781B (zh) 一种多次外延的超结器件制作方法
CN107093622B (zh) 一种具有半绝缘多晶硅层的纵向超结双扩散金属氧化物半导体场效应管
US9184278B2 (en) Planar vertical DMOS transistor with a conductive spacer structure as gate
TW200947564A (en) Semiconductor device and method of forming a semiconductor device
CN101043053A (zh) 具有改善性能的功率半导体器件和方法
US9178054B2 (en) Planar vertical DMOS transistor with reduced gate charge
JP2005510061A (ja) トレンチ・ゲート半導体装置とその製造方法
CN114464670B (zh) 一种超低比导的超结mosfet及其制备方法
CN109713029B (zh) 一种改善反向恢复特性的多次外延超结器件制作方法
CN113488389B (zh) 一种沟槽栅双层超结vdmosfet半导体器件及其制备方法
CN103515443A (zh) 一种超结功率器件及其制造方法
CN110212026B (zh) 超结mos器件结构及其制备方法
TW200304188A (en) Semiconductor component and manufacturing method
CN102522338B (zh) 高压超结mosfet结构及p型漂移区形成方法
CN111384155A (zh) 一种超级结器件
CN106684120B (zh) 一种可提高耐压的局部非平衡超结结构
CN111129151A (zh) 一种碳化硅半积累型沟道mosfet器件及其制备方法
CN117497421B (zh) 具有隔绝结构的超结mosfet及其制备方法、芯片
CN112563142B (zh) 一种提高uis能力的超结mosfet制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200707