CN111380926B - 气体感测器及其制备方法 - Google Patents

气体感测器及其制备方法 Download PDF

Info

Publication number
CN111380926B
CN111380926B CN201911357815.4A CN201911357815A CN111380926B CN 111380926 B CN111380926 B CN 111380926B CN 201911357815 A CN201911357815 A CN 201911357815A CN 111380926 B CN111380926 B CN 111380926B
Authority
CN
China
Prior art keywords
substrate
semiconductor layer
electrode
passivation layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911357815.4A
Other languages
English (en)
Other versions
CN111380926A (zh
Inventor
张炜炽
林欣桦
施博理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Publication of CN111380926A publication Critical patent/CN111380926A/zh
Application granted granted Critical
Publication of CN111380926B publication Critical patent/CN111380926B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4141Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种气体感测器,其包括:基板;底栅极,其位于在基板的一表面;绝缘层,其位于在所述基板具有所述底栅极的表面上且完全覆盖所述底栅极;半导体层,其位于所述绝缘层远离所述基板的一侧;相互间隔的源极和漏极,均与半导体层连接;钝化层,其覆盖所述半导体层;以及顶栅极,其位于所述钝化层远离所述基板的表面且与所述源极和漏极均间隔设置,所述顶栅极的材质为导电的气体敏感材料。本发明还提供气体感测器的制备方法。所述气体感测器利用吸附气体改变顶栅极的电势,从而影响所述漏极的电流,进而可以根据漏极的电流变化侦测气体,所述气体感测器具有较快的感测速度且感测更加精准。

Description

气体感测器及其制备方法
技术领域
本发明涉及一种气体感测器及该气体感测器的制备方法。
背景技术
现有的一种气体传感器300,如图1所示,其包括基板101以及位于所述基板上的薄膜晶体管(TFT)。所述薄膜晶体管包括依次层叠在所述基板101上的栅极103、半导体层105、以及源极102和漏极104,其中所述栅极103和所述半导体层105之间还设置有绝缘层107以使二者相互隔离。所述源极102和所述漏极104分别连接于所述半导体层105的相对两侧。所述气体传感器的外表面,本实施例中,所述半导体层105远离所述栅极103的表面涂有分析物层109。某种气体可能会与分析物层109中的物质发生反应而形成特定的产物,并且产物可能会逐渐扩散到栅极和绝缘体之间的界面中,从而使TFT中的电极电压发生变化,进而可以检测出气体。但是,产物扩散到TFT中可能要花费较长的时间,导致气体感测速度慢。
发明内容
本发明一方面提供一种气体感测器,其包括:
基板;
底栅极,其位于在基板的一表面;
绝缘层,其位于在所述基板具有所述底栅极的表面上且完全覆盖所述底栅极;
半导体层,其位于所述绝缘层远离所述基板的一侧;
相互间隔的源极和漏极,均与半导体层连接;
钝化层,其覆盖所述半导体层;以及
顶栅极,其位于所述钝化层远离所述基板的表面且与所述源极和漏极均间隔设置,所述顶栅极的材质为导电的气体敏感材料。
本发明另一方面提供一种气体感测器的制备方法,其包括:
提供一基板并在所述基板的一表面上形成底栅极;
在所述基板上沉积一绝缘层完全覆盖所述底栅极;
在所述绝缘层远离所述基板的一侧形成一半导体层;
在所述半导体层远离所述基板的一侧形成钝化层,在所述钝化层中开设相互间隔的两个通孔使所述半导体层局部露出;
在所述钝化层远离所述基板的一侧形成间隔设置的源极和漏极,所述源极和所述漏极还分别延伸到一通孔内以连接所述半导体层;以及
在所述钝化层远离所述基板的一侧形成一顶栅极,所述顶栅极的材质为导电的气体敏感材料。
本发明另一方面还提供一种气体感测器的制备方法,其包括:
提供一基板并在所述基板的一表面上形成底栅极;
在所述基板上沉积一绝缘层完全覆盖所述底栅极;
在所述绝缘层远离所述基板的一侧形成一半导体层;
在所述半导体层远离所述基板的一侧形成相互间隔的源极和漏极连接所述半导体层;
在所述半导体层上形成完全覆盖所述源极和漏极以及所述半导体层的钝化层;以及
在所述钝化层远离所述基板的一侧形成一顶栅极。
本发明的气体感测器不需要设置分析物层在其外表面,可有效避免气体与分析物层反应的产物影响所述气体感测器的性能;同时所述气体感测器利用吸附气体改变顶栅极的电势,从而影响所述漏极的电流,进而可以根据漏极的电流变化侦测气体,所述气体感测器具有较快的感测速度且感测更加精准。
附图说明
图1是现有技术的气体传感器的剖面示意图。
图2是本发明第一实施例的气体感测器的剖面示意图。
图3是本发明第二实施例的气体感测器的剖面示意图。
图4A和图4B为图2所示的气体感测器的电学性能图表。
图5为是本发明第一实施例的气体感测器的制备流程图。
图6为是本发明第二实施例的气体感测器的制备流程图。
主要元件符号说明
气体感测器 100、200
气体传感器 300
栅极 103
分析物层 109
基板 10、101
底栅极 20
绝缘层 30、107
半导体层 40、105
钝化层 50
源极 61、102
漏极 63、104
顶栅极 70
具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
附图中示出了本发明的实施例,本发明可以通过多种不同形式实现,而并不应解释为仅局限于这里所阐述的实施例。相反,提供这些实施例是为了使本发明更为全面和完整的公开,并使本领域的技术人员更充分地了解本发明的范围。为了清晰可见,在图中,层和区域的尺寸被放大了。
除非另外定义,这里所使用的所有术语(包括技术和科学术语)具有与本发明所述领域的普通技术人员所通常理解的含义相同的含义。还应当理解,比如在通用的辞典中所定义的那些的术语,应解释为具有与它们在相关领域的环境中的含义相一致的含义,而不应以过度理想化或过度正式的含义来解释,除非在本文中明确地定义。
请参阅图2,本发明第一实施方式的气体感测器100包括依次层叠设置的基板10、底栅极20、绝缘层30、半导体层40、钝化层50、源极61和漏极63。所述底栅极20局部覆盖所述基板10的一表面。所述绝缘层30形成在所述基板10具有所述底栅极20的表面上且完全覆盖所述底栅极20。所述半导体层40覆盖所述绝缘层30远离所述基板10的一侧。所述钝化层50位于所述绝缘层30上且完全覆盖所述半导体层40。所述源极61和所述漏极63分别从所述钝化层50远离所述基板10的一侧延伸并贯穿所述钝化层50从而与所述半导体层40直接接触。所述源极61和所述漏极63位于所述半导体层40远离所述基板10的表面,且相互间隔设置。所述源极61和所述漏极63位于所述半导体层40的相对两端。所述气体感测器100还包括顶栅极70,所述顶栅极70位于所述钝化层50远离所述基板10的表面。所述顶栅极70与所述源极61和漏极63均间隔设置。沿所述气体感测器100的厚度方向所述半导体层40在所述基板10上的投影与所述底栅极20在所述基板10上的投影为重叠的,所述顶栅极70在所述基板10上的投影与所述底栅极20在所述基板10上的投影至少为部分重叠的。
请参阅图3,本发明第二实施方式的气体感测器200包括依次层叠设置的基板10、底栅极20、绝缘层30、半导体层40、源极61和漏极63、钝化层50、以及顶栅极70。所述底栅极20局部覆盖所述基板10的一表面。所述绝缘层30形成在所述基板10具有所述底栅极20的表面上且完全覆盖所述底栅极20。所述半导体层40局部覆盖所述绝缘层30远离所述基板10的一侧。所述源极61和所述漏极63位于所述半导体层40远离所述基板10的表面,且相互间隔设置。所述源极61和所述漏极63位于所述半导体层40的相对两端。所述钝化层50位于所述绝缘层30上且完全覆盖所述半导体层40、所述源极61和所述漏极63。所述顶栅极70位于所述钝化层50远离所述基板10的表面。所述顶栅极70与所述源极61和漏极63均间隔设置。沿所述气体感测器200的厚度方向,所述半导体层40在所述基板10上的投影与所述底栅极20在所述基板10上的投影为重叠的;所述顶栅极70在所述基板10上的投影与所述底栅极20在所述基板10上的投影至少为部分重叠的。
上述两个实施例中,所述顶栅极70为直接接触待测气体的,因此所述顶栅极70需保证为外露的,以可以与待检测的气体直接接触。所述顶栅极70的表面不需要设置任何的分析物层。所述顶栅极70的材质为导电的气体敏感材料。所述气体敏感材料是指接触某种或某类气体其物理、化学性能发生改变的材料。本实施例中,所述顶栅极70的材质为能够吸附气体从而改变其电势,例如纳米金和纳米铂。
所述基板10采用本领域常规使用的各种电性绝缘材料,例如玻璃、石英和塑料。在一些实施例中,基板10可以是陶瓷和/或硅材料。
所述半导体层40的材质本领域常规使用的各种半导体材料,例如硅、铟镓锌氧化物、铟锌锡氧化物、铟镓锡氧化物、铟铝锌氧化物等。
所述绝缘层30和所述钝化层50采用本领域常规使用的各种电性绝缘材料,例如氧化硅、氮化硅、氮氧化硅、氧化铝、氧化钇、氧化铪、氧化锆、氮化铝、氮氧化铝、氧化钛、钛酸钡、钛酸铅,或上述物质的组合。
所述源极61和漏极63以及底栅极20为本领域常规使用的各种导电材料,例如铝、银、金、钴、铬、铜、铟、锰、钼、镍、钕、钯、铂、钛、钨、锌,以及上述物质的混合物/合金。为了实现更高的光学效率,在一些实施例中,导电材料可选自诸如氧化铟锡、氧化铟锌、铝掺杂氧化锌的透明导电材料或上述物质的组合。
图2和图3所示的气体感测器100,200的主要结构均为具有两个栅极的TFT。如图4A和图4B所示的曲线图为对图2或图3所示的具有双栅极的TFT进行的电压和电流测试。图4A中横坐标代表底栅极的电压(Vg),纵坐标代表漏极的电流(Id)的对数(log2)。图4B中横坐标代表底栅电极的电压(Vg),纵坐标代表漏极的电流(Id)的平方根。图4A和图4B分别示出了多条Id-Vg曲线,其中每一条曲线对应的是顶栅极的电压保持恒定不变,随着底栅极的电压变化,漏极的电流的变化,其中沿着横坐标的方向从左至右的曲线分别对应顶栅极的电压为20V、15V、10V、5V、0V、-5V、-10V、-15V、以及-20V。即图4A和图4B分别示出随着顶栅极的电压、底栅极的电压与漏极的电流三者之间的关系。研究人员发现,Id-Vg曲线是随着顶栅极电压的变化而变化。
本发明实施例的气体感测器100,200,正是利用随着顶栅极70的电压的变化,底栅极20的电压与漏极63的电流之间的关系进行侦测气体的。使用所述气体感测器100,200进行气体侦测时,所述底栅极20被施加一恒定的工作电压(不等于零)且所述源极61被施加一电压信号,而所述顶栅极70未施加电压(零电势),此时所述半导体层40将由半导体性能转化为导体性能,而所述源极61和所述漏极63电性导通,因此电流依次从所述源极61、半导体层40、所述漏极63流过。如果气体分子被吸附在所述顶栅极70,则所述顶栅极70的电势将发生变化不再等于零,而所述底栅极的电压保持不变,则所述漏极的电流将根据图4A和图4B中的Id-Vg曲线变化。由此,可以根据漏电极的电流变化来检测气体。
公式I_ratio=Id/Id_0,其中Id_0代表顶栅极电势为零时漏极的电流;Id代表当所述气体感测器被放置在一检测气体环境下的漏极的电流。
本发明的气体感测器不需要设置分析物层在其外表面,可有效避免气体与分析物层反应产物影响所述气体感测器的性能;同时所述气体感测器利用吸附气体改变顶栅极的电势,从而影响所述漏极的电流,进而可以根据漏极的电流变化侦测气体,所述气体感测器具有较快的感测速度且感测更加精准。
请参阅图5,本发明实施例一的气体感测器的制备方法包括如下步骤。
步骤S1:提供一基板并在所述基板的一表面上形成底栅极。
步骤S2:在所述基板上沉积一绝缘层完全覆盖所述底栅极。
步骤S3:在所述绝缘层远离所述基板的一侧形成一半导体层。
步骤S4-1:在所述半导体层远离所述基板的一侧形成钝化层,并在所述钝化层中开设两个相互间隔的通孔使所述半导体层局部露出。
步骤S5-1:在所述钝化层远离所述基板的一侧形成间隔设置的源极和漏极,所述源极和所述漏极还分别延伸到一通孔内以连接所述半导体层。
步骤S6:在所述钝化层远离所述基板的一侧形成一顶栅极。
请参阅图6,本发明实施例二的气体感测器的制备方法包括如下步骤。
步骤S1:提供一基板并在所述基板的一表面上形成底栅极。
步骤S2:在所述基板上沉积一绝缘层完全覆盖所述底栅极。
步骤S3:在所述绝缘层远离所述基板的一侧形成一半导体层。
步骤S4-2:在所述半导体层远离所述基板的一侧形成相互间隔的源极和漏极以连接所述半导体层。
步骤S5-2:在所述半导体层上形成完全覆盖所述源极、所述漏极以及所述半导体层的钝化层。
步骤S6:在所述钝化层远离所述基板的一侧形成一顶栅极。
步骤S1具体可包括:在所述基板的一表面形成一导电层,对所述导电层进行图案化以形成局部覆盖所述基板的表面的底栅极。
步骤S3具体可包括:在所述述绝缘层远离所述基板的表面形成一半导体材料层,对所述半导体材料层进行图案化以形成局部覆盖所述绝缘层的半导体层。
步骤S4-2具体可包括:在所述半导体层远离所述基板的一侧形成一导电层,对所述导电层进行图案化以形成相互间隔设置的源极和漏极。
步骤S6具体可包括:在所述钝化层远离所述基板的一侧形成一导电层,对所述导电层进行图案化以形成顶栅极,所述顶栅极的材质为导电的气体敏感材料。所述气体敏感材料是指接触某种或某类气体其物理、化学性能发生改变的材料。本实施例中,所述顶栅极70的材质为能够吸附气体从而改变其电势,例如纳米金和纳米铂。
以上实施例仅用以说明本发明的技术方案而非限制,图示中出现的上、下、左及右方向仅为了方便理解,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (9)

1.一种气体感测器,其特征在于,包括:
基板;
底栅极,位于基板的一表面;
绝缘层,位于所述基板具有所述底栅极的表面上且完全覆盖所述底栅极;
半导体层,位于所述绝缘层远离所述基板的一侧;
相互间隔的源极和漏极,均位于所述半导体层远离所述基板的一侧与所述半导体层连接;
钝化层,位于所述半导体层远离所述基板的一侧,覆盖所述半导体层,所述钝化层为电性绝缘材料;以及
顶栅极,位于所述钝化层远离所述基板的表面且与所述源极和漏极均间隔设置,所述顶栅极的材质为导电的气体敏感材料,所述顶栅极用于吸附气体从而改变电势。
2.如权利要求1所述的气体感测器,其特征在于,所述顶栅极的材质为纳米金或纳米铂。
3.如权利要求1所述的气体感测器,其特征在于,所述源极和所述漏极分别从所述钝化层远离所述基板的一侧延伸并贯穿所述钝化层从而与所述半导体层接触连接。
4.如权利要求1所述的气体感测器,其特征在于,所述钝化层位于所述绝缘层上且完全覆盖所述半导体层、所述源极和所述漏极。
5.如权利要求1所述的气体感测器,其特征在于,沿所述气体感测器的厚度方向,所述半导体层在所述基板上的投影与所述底栅极在所述基板上的投影为重叠的,所述顶栅极在所述基板上的投影与所述底栅极在所述基板上的投影至少为部分重叠的。
6.一种气体感测器的制备方法,其特征在于,包括:
提供一基板并在所述基板的一表面上形成底栅极;
在所述基板上沉积一绝缘层完全覆盖所述底栅极;
在所述绝缘层远离所述基板的一侧形成一半导体层;
在所述半导体层远离所述基板的一侧形成钝化层,在所述钝化层中开设相互间隔的两个通孔使所述半导体层局部露出,所述钝化层为电性绝缘材料;
在所述钝化层远离所述基板的一侧形成间隔设置的源极和漏极,所述源极和所述漏极还分别延伸到一通孔内以连接所述半导体层;以及
在所述钝化层远离所述基板的一侧形成一顶栅极,所述顶栅极的材质为导电的气体敏感材料,所述顶栅极用于吸附气体从而改变电势。
7.如权利要求6所述的气体感测器的制备方法,其特征在于,在所述钝化层远离所述基板的一侧形成顶栅极包括在所述钝化层上形成材质为纳米金或纳米铂的顶栅极。
8.一种气体感测器的制备方法,其特征在于,包括:
提供一基板并在所述基板的一表面上形成底栅极;
在所述基板上沉积一绝缘层完全覆盖所述底栅极;
在所述绝缘层远离所述基板的一侧形成一半导体层;
在所述半导体层远离所述基板的一侧形成相互间隔的源极和漏极连接所述半导体层;
在所述半导体层上形成完全覆盖所述源极和漏极以及所述半导体层的钝化层,所述钝化层为电性绝缘材料;以及
在所述钝化层远离所述基板的一侧形成一顶栅极,所述顶栅极的材质为导电的气体敏感材料,所述顶栅极用于吸附气体从而改变电势。
9.如权利要求8所述的气体感测器的制备方法,其特征在于在所述钝化层远离所述基板的一侧形成顶栅极包括在所述钝化层上形成材质为纳米金或纳米铂的顶栅极。
CN201911357815.4A 2018-12-28 2019-12-25 气体感测器及其制备方法 Active CN111380926B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862785708P 2018-12-28 2018-12-28
US62/785708 2018-12-28

Publications (2)

Publication Number Publication Date
CN111380926A CN111380926A (zh) 2020-07-07
CN111380926B true CN111380926B (zh) 2023-05-26

Family

ID=71123805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911357815.4A Active CN111380926B (zh) 2018-12-28 2019-12-25 气体感测器及其制备方法

Country Status (3)

Country Link
US (1) US10937881B2 (zh)
CN (1) CN111380926B (zh)
TW (1) TWI740325B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102413888B1 (ko) * 2020-10-29 2022-06-28 성균관대학교산학협력단 가스분자 흡착유도 물질을 포함한 전계 가변형 가스 센서 및 그 제조 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW510967B (en) * 2001-12-24 2002-11-21 Nat Cheng Kyng University Metal-insulator-semiconductor transistor hydrogen sensor and its manufacture method
TWI274152B (en) * 2004-11-05 2007-02-21 Univ Nat Cheng Kung Hydrogen sensor device and method for fabricating the same
KR20070121761A (ko) * 2005-03-18 2007-12-27 나노-프로프리어터리, 인크. 게이트형 가스 센서
TWI269034B (en) * 2005-06-30 2006-12-21 Univ Nat Cheng Kung Field effect transistor type hydrogen sensor
KR100777265B1 (ko) * 2006-03-30 2007-11-20 고려대학교 산학협력단 나노 입자를 이용한 전면 게이트 박막 트랜지스터 및 그제조 방법
TW200809189A (en) * 2006-08-15 2008-02-16 Univ Nat Cheng Kung Resistance type of semiconductor type for hydrogen sensor and the operation system thereof
TW200931660A (en) * 2008-01-11 2009-07-16 Univ Nat Cheng Kung Hydrogen sensor and method for producing the same
DE102009045475B4 (de) * 2009-10-08 2023-06-29 Robert Bosch Gmbh Gassensitive Halbleitervorrichtung sowie deren Verwendung
WO2016047340A1 (ja) * 2014-09-24 2016-03-31 富士フイルム株式会社 ガスセンサ、有機トランジスタ
CN105720105A (zh) * 2014-12-02 2016-06-29 昆山国显光电有限公司 一种底栅型薄膜晶体管及其制备方法
CN104867959B (zh) * 2015-04-14 2017-09-26 深圳市华星光电技术有限公司 双栅极氧化物半导体tft基板的制作方法及其结构
CN105911125A (zh) * 2016-04-14 2016-08-31 塔力哈尔·夏依木拉提 一种提高场效应晶体管式气体传感器选择性的方法
US10734131B2 (en) * 2016-06-08 2020-08-04 Lg Chem, Ltd. Organic transistor and gas sensor
WO2018084602A1 (ko) * 2016-11-02 2018-05-11 주식회사 엘지화학 가스감지센서
CN107064272B (zh) * 2017-04-17 2019-11-26 京东方科技集团股份有限公司 气敏感测设备与系统以及检测环境中的氧气的方法
CN109030564B (zh) * 2018-06-04 2021-05-11 深圳大学 一种晶体管型甲醛传感器及其制作方法

Also Published As

Publication number Publication date
TWI740325B (zh) 2021-09-21
TW202028735A (zh) 2020-08-01
US10937881B2 (en) 2021-03-02
CN111380926A (zh) 2020-07-07
US20200209187A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
CN100431169C (zh) 场效应晶体管及使用该晶体管的显示器件
TWI422818B (zh) 氫離子感測場效電晶體及其製造方法
US9921677B1 (en) Method for fabricating touch display device
TWI511202B (zh) 薄膜電晶體的製造方法、薄膜電晶體、顯示裝置、感測器以及x線數位攝影裝置
CN109682863A (zh) 基于TMDCs-SFOI异质结的气体传感器及其制备方法
KR101359735B1 (ko) 연장된 게이트 전극이 형성된 전계효과 트랜지스터형 신호변환기를 이용한 투명성 이온 감지 센서칩 및 이의 제조방법
KR20120037838A (ko) 트랜지스터 및 이를 포함하는 전자소자
CN103915444B (zh) 一种阵列基板及其制备方法、液晶显示面板
KR20110000917A (ko) 온도 및 다중 가스 감응 센서 어레이 및 이의 제조방법
US20090127622A1 (en) Transparent thin-film transistor and manufacturing method of the transistor
KR102316202B1 (ko) 트리플 게이트 구조의 이온전계효과 트랜지스터 기반 고성능 바이오 센서
CN105699463A (zh) 一种化学场效应晶体管气敏传感器及其制造方法
CN111380926B (zh) 气体感测器及其制备方法
EP3217167A1 (en) Humidity sensors with transistor structures and piezoelectric layer
CN104600077A (zh) 用于液晶显示装置的阵列基板及其制造方法
US20140061728A1 (en) Gate Biasing Electrodes For FET Sensors
JP2016103577A (ja) 半導体バイオセンサ装置
CN102386250A (zh) 光传感器、光传感器制造方法及显示装置
KR20120023561A (ko) 산화물 반도체 박막, 박막 트랜지스터 및 박막 트랜지스터를 구비한 장치
KR101330221B1 (ko) 탄소나노튜브를 이용한 이온 농도 측정용 센서 및 그 제조방법
US8431001B2 (en) Ion sensor for measuring ion concentration of a solution
Bhatt et al. High sensitivity of dual gate ISFETs using HfO2 and HfO2/Y2O3 gate dielectrics
KR102711669B1 (ko) 동일 평면 상의 대칭형 이온 게이트 트랜지스터, 이의 제조방법 및 이를 포함하는 이온 센서
Takechi et al. Sensor applications of InGaZnO thin-film transistors
TWI518791B (zh) 氧化物半導體薄膜之製造方法及由該製造方法所製造之氧化物半導體薄膜、薄膜電晶體、以及具備薄膜電晶體之裝置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant