CN111357080A - 含钌薄膜的制造方法及由该制造方法制造的含钌薄膜 - Google Patents

含钌薄膜的制造方法及由该制造方法制造的含钌薄膜 Download PDF

Info

Publication number
CN111357080A
CN111357080A CN201880072781.1A CN201880072781A CN111357080A CN 111357080 A CN111357080 A CN 111357080A CN 201880072781 A CN201880072781 A CN 201880072781A CN 111357080 A CN111357080 A CN 111357080A
Authority
CN
China
Prior art keywords
ruthenium
thin film
containing thin
compound
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880072781.1A
Other languages
English (en)
Other versions
CN111357080B (zh
Inventor
金铭云
李相益
赵晟佑
韩美贞
林幸墩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DNF Co Ltd
Original Assignee
DNF Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DNF Co Ltd filed Critical DNF Co Ltd
Priority claimed from PCT/KR2018/013160 external-priority patent/WO2019088722A1/ko
Publication of CN111357080A publication Critical patent/CN111357080A/zh
Application granted granted Critical
Publication of CN111357080B publication Critical patent/CN111357080B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01044Ruthenium [Ru]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供含钌薄膜的制造方法及由该制造方法制造的含钌薄膜,本发明的含钌薄膜的制造方法通过利用钌(0)系烃化合物和特定的反应气体,从而能够用简单的工序容易地制造纯度高的薄膜。

Description

含钌薄膜的制造方法及由该制造方法制造的含钌薄膜
技术领域
本发明涉及含钌薄膜的制造方法及由该制造方法制造的含钌薄膜,更详细而言,涉及使作为薄膜蒸镀前体的钌(0)系烃化合物与作为特定的反应气体的碘、烷基碘(alkyliodide)、碘化硅烷(silyl iodide)或它们的混合物进行反应而制造含钌薄膜的方法及由它制造的含钌薄膜。
背景技术
最近,作为半导体装置的薄膜电极材料,利用多种金属、非金属或过渡金属化合物。
其中,金属钌或钌氧化物由于低电阻、大的功函数(work function)以及热稳定性、化学稳定性而广泛用于半导体元件。特别是,金属钌的电特性比钌氧化物优异,优选用作半导体装置的薄膜电极材料。
因此,钌(Ru)薄膜在半导体元件的布线结构中用作晶种层(seed layer),或者用作晶体管的栅极或电容器等的电极等,随着半导体元件的高集成化和小型化,用于半导体元件的钌(Ru)薄膜也要求提高了的均匀性和涂布性。
另一方面,在半导体元件中,作为薄膜沉积法,正在研究利用了分子束外延生长法(Molecular Beam Epitaxy,MBE)、化学气相沉积法(Chemical Vapor Deposition,CVD)和物理气相沉积法(Physical Vapor Deposition,PVD)等的方法。最近,随着半导体元件的少量化,设计规则减少,因而作为满足低温工序、精密的厚度控制、薄膜的均匀性和涂布性的蒸镀方法,正在广泛研究利用了基于自限表面反应机理(self-limiting s urfacereaction mechanism)的原子层沉积法(Atomic Layer Deposition,ALD)的薄膜形成。
观察利用原子层沉积法而制造钌薄膜的方法,以往,作为钌原料物质,适用Ru(OD)3[三(2,4-辛二酮合)钌(Ⅲ)(tris(2,4-octanedionato)Ruthenium(Ⅲ))]、Ru(EtCP)2[双(乙基环戊二烯)钌(bis(ethylcyclopentadienyl)Ruthenium(Ⅱ))]等。但是,由于其中的Ru(OD)3内含氧,因此,使得在反应基板上蒸镀纯钌变得困难,进而,存在在基板的一部分形成RuOx的问题。
另外,Ru(EtCP)2的情况下,由于环戊二烯(Cyclopentadiene)系列的特性,钌原子难以切断化学键而独立地存在,因此不仅存在在钌薄膜中残留大量杂质的问题,而且难以分解,因而使用O2等离子体进行蒸镀时形成RuO2膜,因此存在为了得到Ru膜而需要再次利用H2进行还原的工序的问题。为此,Ru(0)化合物的情况下,虽然通过调节反应气体O2的量,减少了RuOx薄膜的形成,但问题仍然未被解决。
因此,需要用简单的工序减少薄膜内的杂质的含量而制造纯度高的含钌薄膜的方法。
发明内容
技术课题
本发明为了解决如上所述的问题,提供使用钌(0)系烃化合物作为含钌薄膜蒸镀用前体的同时使用特定的反应气体的含钌薄膜的制造方法及由该制造方法制造的含钌薄膜。
另外,本发明提供包含钌(0)系烃化合物和特定的反应气体的含钌薄膜蒸镀用组合物。
解决课题的手段
本发明提供使用钌(0)系烃化合物作为前体的同时使用特定的反应气体并以简单的工序制造纯度高的含钌薄膜的方法。
本发明的含钌薄膜的制造方法的特征在于,包括使用作为薄膜蒸镀用前体的钌(0)系烃化合物和作为反应气体的碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物而制造含钌薄膜的步骤。
根据本发明的一实施例的含钌薄膜的制造方法可以通过原子层沉积(ALD)法、气相沉积(CVD)法、有机金属化学气相沉积法(MOCV D)、低压气相沉积法(LPCVD)、等离子体增强气相沉积法(PECVD)、或等离子体增强原子层沉积法(PEALD)进行。
优选地,根据本发明的一实施例的含钌薄膜的制造方法包括:
a)将安装在腔室内的基板的温度维持在80至500℃的步骤;
b)注入载气和钌(0)系烃化合物的步骤;以及
c)注入作为碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物的反应气体而在上述基板上制造含钌薄膜的步骤。
优选地,根据本发明的一实施例的反应气体相对于钌(0)系烃化合物1摩尔可以使用0.1至200摩尔。
根据本发明的一实施例的含钌薄膜的制造方法在c)步骤之后可以进一步包括进行热处理的步骤,热处理可以在200至700℃进行。
优选地,根据本发明的一实施例的钌(0)系烃化合物可以由下述化学式1表示。
[化学式1]
Figure BDA0002484322500000031
(在上述化学式1中,
L是中性配体,所述中性配体为从具有1个至4个双键的碳原子数2至10的非环状烯烃化合物、碳原子数3至10的环状烯烃化合物、包含1个至4个选自氮或氧中的杂原子的碳原子数2至8的非环状或环状杂烯烃类似结构化合物、或者含羰基化合物中选择的1种化合物;
R1至R6各自独立地为氢或(C1-C7)烷基。)
更优选地,根据本发明的一实施例的化学式1的钌(0)系烃化合物可以由下述化学式1-1或1-2表示。
[化学式1-1]
Figure BDA0002484322500000041
[化学式1-2]
Figure BDA0002484322500000042
(在化学式1-1和1-2中,
R1至R10各自独立地为氢或(C1-C7)烷基,
A1为单键或-(CR11R12)m-,R11和R12各自独立地为氢或(C1-C7)烷基,m为1至3的整数,
A2为-(CR11R12)n-,R11和R12各自独立地为氢或(C1-C7)烷基,n为1至3的整数。)
优选地,根据本发明的一实施例的钌(0)系烃化合物可以由下述化学式2或化学式3表示。
[化学式2]
Figure BDA0002484322500000043
[化学式3]
Figure BDA0002484322500000051
(在化学式2和3中,
R1至R6各自独立地为氢或(C1-C7)烷基,
R7至R10各自独立地为氢或(C1-C7)烷基,
A1为单键或-(CR11R12)m-,R11和R12各自独立地为氢或(C1-C7)烷基,m为1至3的整数。)
优选地,根据本发明的一实施例的反应气体可以为I2、CH3I、CH2I2、CHI3、CH3CH2I、CH3CHI2、ICH2CH2I、CH3CH2CH2I、CH3CHICH3、ICH2CH2CH2或SiH2I2,上述载气可以为选自氮(N2)、氢、氩和氦中的一种或两种以上。
另外,本发明提供一种含钌薄膜蒸镀用组合物,其中,包含钌(0)系烃前体化合物和作为碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物的反应气体。
优选地,根据本发明的含钌薄膜蒸镀用组合物的一实施例的反应气体相对于钌(0)系烃化合物1摩尔可以使用0.1至200摩尔,钌(0)系烃化合物可以为选自上述化学式1、化学式2和化学式3所表示的钌(0)系烃化合物中的任一种或两种以上。
优选地,根据本发明的含钌薄膜蒸镀用组合物的一实施例的反应气体可以为I2、CH3I、CH2I2、CHI3、CH3CH2I、CH3CHI2、ICH2CH2I、CH3CH2CH2I、CH3CHICH3、ICH2CH2CH2或SiH2I2
另外,本发明提供利用根据本发明的一实施例的上述含钌薄膜蒸镀用组合物制造的含钌薄膜,上述制造的含钌薄膜的电阻率可以为100μΩ·cm以下,氧的含量可以为3at%以下。
优选地,根据本发明的一实施例的本发明的含钌薄膜中的碳的含量可以为3at%以下。
发明效果
本发明的含钌薄膜的制造方法使用钌(0)系烃化合物作为薄膜蒸镀用前体,并使用属于特定的反应气体的碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物作为反应气体,由于不包含氧,因而不需要另外的还原工序,能够用简单的工序制造含钌薄膜。
另外,本发明的含钌薄膜的制造方法在薄膜厚度为2nm以下的情况下,能够制造表面均匀的薄膜,能够实现高台阶覆盖性(step coverage)且没有空隙(void)地进行间隙填充(gap fill)。
另外,本发明的含钌薄膜的制造方法中,作为反应气体,使用碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物而不使用氧,从而使碳、氧、氢等杂质的含量最小化,从而薄膜的纯度出奇地优异。
另外,本发明的含钌薄膜的制造方法可以将多种钌(0)系烃化合物用作前体。
另外,本发明的含钌薄膜蒸镀用组合物使用属于特定的化合物的碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物作为反应气体,从而利用它形成含钌薄膜时,具有优异的台阶覆盖性和间隙填充性,并且能够容易地得到密度高的高纯度薄膜。
就通过本发明的制造方法制造的含钌薄膜而言,对于半导体元件的小型化导致的具有高长宽比的沟道(trench)、触点(contact)或小孔图案(via pattern)能够均匀地进行蒸镀,并且具有优异的台阶覆盖(step coverage)。
附图说明
图1是表示将实施例1的钌薄膜在氢气氛中进行热处理后通过TEM分析得到的间隙填充(Gap fill)结果的图。
图2是表示实施例2的钌薄膜的通过TEM分析得到的间隙填充结果(a)和台阶覆盖结果(b)的图。
图3是表示实施例2的钌薄膜的通过TEM分析得到的间隙填充结果(a)和台阶覆盖结果(b)的图。
图4是表示实施例1和比较例1至2中制造的薄膜的TEM分析结果的图。
图5是表示实施例7中根据钌前体注入时间的钌薄膜的生长率的图。
图6是表示实施例8至10中根据钌前体注入时间的钌薄膜的生长率的图。
图7是表示实施例11至13和比较例3中根据反应气体的注入时间的钌薄膜的生长率的图。
图8是表示实施例14至16和比较例4中根据基板温度的钌薄膜的生长率的图。
图9是表示实施例15、实施例17和实施例18中根据基板温度的钌薄膜的生长率的图。
图10是表示实施例19中根据工序周期的钌薄膜的厚度的图。
具体实施方式
下面,对本发明的含钌薄膜的制造方法、含钌薄膜蒸镀用组合物以及利用其制造的含钌薄膜进行详细说明,但此时使用的技术用语和科学用语在没有其他定义的情况下具有本领域技术人员通常理解的意思,在下述说明中,将省略对于可能会不必要地混淆本发明的主旨的公知功能和构成的说明。
本说明书中记载的“烷基”和其他包含“烷基”部分的取代基将直链或支链形态均包含在内,具有1至10个碳原子,优选具有1至7个碳原子,更优选具有1至3个碳原子。
另外,本说明书中记载的“烯烃化合物”是非环状或环状的烃化合物,是由包含一个以上的双键的烃衍生的有机基团,
“杂烯烃类似化合物”是在烯烃化合物中包含一个以上的杂原子的烯烃化合物,可以是非环状或环状,杂原子可以选自氮、氧、硫、磷等,可以优选为氧或氮,氧或氮可以包含一个或两个以上。
本说明书中记载的含羰基化合物可以用作钌(0)系烃化合物的配体,只要是具有羰基的化合物,就均可使用,但作为优选的一个例子,可以为CO或乙酰丙酮,但并不限定于此。
本发明提供制造含钌薄膜的方法,该方法通过使用钌(0)系烃化合物作为前体,并使用作为特定的反应气体的碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物,从而不需要另外的还原工序,可以用简单的工序制造高纯度的含钌薄膜,在薄膜厚度为2nm以下的情况下,能够制造表面均匀的薄膜,能够实现高台阶覆盖性且没有空隙(void)地进行间隙填充。
本发明的含钌薄膜的制造方法包括使用作为薄膜蒸镀用前体的钌(0)系烃化合物和作为反应气体的碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物制造含钌薄膜的步骤。
本发明的含钌薄膜的制造方法由于不使用以往使用的反应气体即氧,而能够制造高纯度的薄膜,且由于不需要去除包含于薄膜的氧的另外的还原工序,而能够用简单的工序制造含钌薄膜。
根据本发明的一实施例的含钌薄膜的制造方法可以利用原子层沉积(ALD)法、气相沉积(CVD)法、有机金属化学气相沉积法(MOCVD)、低压气相沉积法(LPCVD)、等离子体增强气相沉积法、(PECVD)或等离子体增强原子层沉积法(PEALD)进行,从为了得到高纯度和优异的物性的方面考虑,可以优选为原子层沉积(ALD)法或气相沉积(CVD)法。
本发明的含钌薄膜的制造方法只要是使作为前体的钌(0)系烃化合物与作为碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物的反应气体进行反应而制造含钌薄膜的方法,就没有限制,优选地,根据本发明的一实施例的含钌薄膜的制造方法可以包括以下步骤:
a)将安装在腔室内的基板的温度维持在80至500℃的步骤;
b)注入载气和钌(0)系烃化合物的步骤;以及
c)注入作为碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物的反应气体而在上述基板上制造含钌薄膜的步骤。
在根据本发明的一实施例的含钌薄膜的制造方法中,为了蒸镀薄膜,用作上述前体的钌(0)系烃化合物可以通过加热等方法变成气体状态而投入工序腔室中。
在根据本发明的一实施例的含钌薄膜的制造方法中,上述反应气体可以通过加热等方法变成气体状态而投入存在吸附有钌(0)系烃化合物的基板的工序腔室中。
在根据本发明的一实施例的含钌薄膜的制造方法中,钌(0)系烃化合物和反应气体可以彼此有机地或者各自独立地供给到腔室中。另外,钌(0)系烃化合物和反应气体可以各自连续地或者不连续地供给到腔室中,不连续的供给可以包括脉冲(pulse)形态。
在根据本发明的一实施例的含钌薄膜的制造方法中,在b)步骤和/或c)步骤之后,为了排除未反应的钌(0)系烃化合物气体或副产物气体或未反应的反应气体,当然还可以进行向腔室内供给非活性气体而进行吹扫的(purging)的步骤。上述非活性气体可以为选自氮(N2)、氩和氦中的一种或两种以上。上述吹扫气体的注入量没有限制,具体而言,可以以800至5000sccm范围的注入量来提供,更具体而言,可以以1000至3000sccm范围的注入量来提供。
即,根据本发明的一实施例的制造方法可以包括a)将安装在腔室内的基板的温度维持在80至500℃的步骤;b)注入载气和钌(0)系烃化合物的步骤;d1)利用非活性气体吹扫腔室内部的吹扫步骤;c)注入作为碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物的反应气体而在上述基板上制造含钌薄膜的步骤;以及d2)利用非活性气体吹扫腔室内部的吹扫步骤。
根据本发明的一实施例的基板只要是在本领域技术人员所认识的范围内能够使用的基板,就均可使用,基板的温度也没有限制,但可以优选为200至400℃,上述温度范围是基于用作前体的钌(0)系烃化合物自身的分解特性以及与用作反应气体的碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物之类的其他物质的反应特性而设定的温度范围。
在本发明的一实施例中,能够使用的基板可以是包含Si、Ge、SiGe、GaP、GaAs、SiC、SiGeC、InAs和InP中的一种以上的半导体材料的基板;SOI(Silicon On Insulator(绝缘体上的硅))基板;石英基板;或显示器用玻璃基板;聚酰亚胺(polyimide)、聚对苯二甲酸乙二醇酯(PET,PolyEthylene Terephthalate)、聚萘二甲酸乙二醇酯(PEN,PolyEthyleneNaphthalate)、聚甲基丙烯酸甲酯(PMMA,Poly Methyl MethAcrylate)、聚碳酸酯(PC,PolyCarbonate)、聚醚砜(PES)、聚酯(Polyester)等挠性塑料基板;钨基板,但并不限定于此。
根据本发明的一实施例的含钌薄膜的制造方法使用钌(0)系烃化合物用作前体,使用碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物作为反应气体,除此以外,相应的薄膜蒸镀条件可以根据作为目标的薄膜的结构或热特性而进行调节。
作为根据本发明的一实施例的蒸镀条件,可以例示作为前体的钌(0)系烃化合物的投入流量、载气的投入流量、压力、RF功率、基板温度等,作为这样的蒸镀条件的非限定性的一个例子,钌(0)系烃化合物的投入流量为1至1000cc/min,载气为1至1000cc/min,反应气体的流量为1至1000cc/min,压力为0.1至100托,RF功率为200至1000W,以及基板温度为80至500℃,优选地,可以在200至400℃的范围内进行调节,但不限定于此。
优选地,根据本发明的一实施例的反应气体相对于钌(0)系烃化合物1摩尔可以使用0.1至200摩尔,但并不限定于此,可以根据薄膜蒸镀条件进行调节。作为一个例子,原子层沉积(ALD)法、等离子体增强原子层沉积法(PEALD)或气相沉积(CVD)法的情况下,优选地,相对于钌(0)系烃化合物1摩尔,可以使用1至100摩尔,更优选为1至50摩尔,更进一步优选为2至30摩尔。
根据本发明的一实施例的含钌薄膜的制造方法在c)步骤之后还可以包括热处理的步骤,热处理可以在200至700℃进行30分钟至4小时,优选在300至600℃进行1小时至2小时,可以在氢气氛下进行。
根据本发明的一实施例的钌(0)系烃化合物只要是可以用作含钌薄膜蒸镀用前体的钌(0)系烃化合物就均可使用,但作为与反应气体即碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物的优选组合,可以为由下述化学式1表示的钌(0)系烃化合物。
[化学式1]
Figure BDA0002484322500000101
(在上述化学式1中,
L是中性配体,所述中性配体为从具有1个至4个双键的碳原子数2至10的非环状烯烃化合物、碳原子数3至10的环状烯烃化合物、包含1个至4个选自氮或氧中的杂原子的碳原子数2至8的非环状或环状杂烯烃类似结构化合物、或者含羰基化合物选择的1种化合物;
R1至R6各自独立地为氢或(C1-C7)烷基。)
优选地,根据本发明的一实施例的上述化学式1中,L可以是从具有1个至4个双键的碳原子数2至10的非环状烯烃化合物、碳原子数3至10的环状烯烃化合物、包含1个至4个氮的碳原子数2至8的非环状或环状杂烯烃类似结构化合物、CO、或者乙酰丙酮中选择的1种中性配体化合物,更优选地,L可以是具有1个至4个双键的碳原子数2至10的非环状烯烃化合物、具有1个至4个双键的碳原子数3至10的环状烯烃化合物、或者CO。
更优选地,根据本发明的一实施例的化学式1的钌(0)系烃化合物可以由下述化学式1-1或化学式1-2表示。
[化学式1-1]
Figure BDA0002484322500000111
[化学式1-2]
Figure BDA0002484322500000112
(在化学式1-1和1-2中,
R1至R10各自独立地为氢或(C1-C7)烷基,
A1为单键或-(CR11R12)m-,R11和R12各自独立地为氢或(C1-C7)烷基,m为1至3的整数,
A2为-(CR11R12)n-,R11和R12各自独立地为氢或(C1-C7)烷基,n为1至3的整数。)
优选地,根据本发明的一实施例的上述化学式1-1或1-2中,R1至R10各自独立地为氢或(C1-C5)烷基,A1为单键或-(CR11R12)m-,A2为-(CR11R12)n-,R11和R12各自独立地为氢或(C1-C5)烷基,m为1至2的整数,n可以为1至2的整数。
在本发明的一实施例种,在与作为反应气体的碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物的优选的组合中,钌(0)系烃化合物可以由下述化学式2或化学式3表示。
[化学式2]
Figure BDA0002484322500000121
[化学式3]
Figure BDA0002484322500000122
(在化学式2和3中,
R1至R6各自独立地为氢或(C1-C7)烷基,
R7至R10各自独立地为氢或(C1-C7)烷基,
A1为单键或-(CR11R12)m-,R11和R12各自独立地为氢或(C1-C7)烷基,m为1至3的整数。)
优选地,在根据本发明的一实施例的上述化学式2或3中,R1至R6各自独立地为氢或(C1-C5)烷基,R7至R10各自独立地为氢或(C1-C5)烷基,A1为单键或-(CR11R12)m-,R11和R12各自独立地为氢或(C1-C5)烷基,m可以为1至2的整数。
更优选地,根据本发明的一实施例的钌(0)系烃化合物可以为选自下述结构中的化合物,但不限于此。
Figure BDA0002484322500000131
(上述R1至R10各自独立地为氢或(C1-C7)烷基。)
优选地,根据本发明的一实施例的反应气体可以为I2、CH3I、CH2I2、CHI3、CH3CH2I、CH3CHI2、ICH2CH2I、CH3CH2CH2I、CH3CHICH3ICH2CH2CH2I或SiH2I2,更优选地,可以为CH3CH2I、CH2I2、ICH2CH2CH2I或SiH2I2
根据本发明的一实施例的含钌薄膜的制造方法中,钌(0)系烃化合物可以与载气一同向腔室供给。具体而言,载气可以为选自氮(N2)、氢、氩和氦中的一种或两种以上,作为与本发明的特定的反应气体的优选的组合,可以是选自氮(N2)、氩和氦中的一种或两种以上的非活性气体。
含钌薄膜只要是能够将钌前体以气态进行供给而制造含钌薄膜的、在本技术领域中本领域技术人员能够认识的范围内能够制造的薄膜就均可使用。作为具体的实质性的一个例子,含钌薄膜可以是通常具有导电性的钌、钌氧化膜、它们的混合模,除此以外,在本领域技术人员能够认识的范围内,可以制造含有钌的高品质的各种薄膜。
另外,本发明提供一种含钌薄膜蒸镀用组合物,其包含钌(0)系烃前体化合物和反应气体,该反应气体是碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物。
优选地,根据本发明的含钌薄膜蒸镀用组合物的一实施例的反应气体相对于钌(0)系烃化合物1摩尔可以使用0.1至200摩尔,优选使用1至100摩尔,更优选使用1至50摩尔,更进一步优选使用2至30摩尔,钌(0)系烃化合物可以是选自上述化学式1、化学式2和化学式3所表示的钌(0)系烃化合物中的一种或两种以上。
优选地,根据本发明的含钌薄膜蒸镀用组合物的一实施例的反应气体可以为I2、CH3I、CH2I2、CHI3、CH3CH2I、CH3CHI2、ICH2CH2I、CH3CH2CH2I、CH3CHICH3、ICH2CH2CH2I或SiH2I2
另外,本发明提供利用根据本发明的一实施例的上述含钌薄膜蒸镀用组合物而制造的含钌薄膜,上述制造的含钌薄膜的电阻率可以为100μΩ·cm以下,优选为50μΩ·cm以下,更优选为30μΩ·cm以下,氧的含量可以为3at%以下,优选为1at%以下。
优选地,根据本发明的一实施例的含钌薄膜的碳的含量可以为3at%以下,优选为1at%以下。
本发明的含钌薄膜通过使用钌(0)系烃化合物和作为特定的反应气体的碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物,从而能够用简单的工序制造高纯度、高密度且具有高耐久性的含钌薄膜。另外,制造含钌薄膜时,作为反应气体,使用碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物而不使用氧,从而在蒸镀工序中下部膜能够不被氧化,在形成之后,也能够使含钌薄膜的下部膜不被氧化。由此,能够防止由在与下部膜的界面形成的氧化物导致的含钌薄膜与下部膜之间的接触电阻的增加。
另外,在制造含钌薄膜时,通过使用钌(0)系烃化合物和作为特定的反应气体的碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物,从而能够提高晶体品质,能够将薄膜的电阻率减少至100μΩ·cm以下、优选为50μΩ·cm以下、更优选为30μΩ·cm以下,能够将薄膜内的氧的含量减少至3at%以下、优选为1at%以下。
以下,利用下述实施例更具体地说明本发明。在此之前,本说明书和权利要求书中使用的用语或词汇不能以通常的或词典上的意思限定性地进行解释,基于发明人为了用最佳的方法说明他自己的发明而可以适当定义用语的概念的原则,应解释为符合本发明的技术思想的意思和概念。
因此,本说明书中记载的实施例和在图中图示的构成只不过是本发明的最优选的一个实施例,并不能代表全部的本发明的技术思想,因此,从本申请的角度考虑,应理解为存在能够代替他们的各种等同物和变形例。
另外,以下的全部实施例使用商用化的喷头(shower head)方式的200mm单晶片型(single wafer type)ALD设备(CN1,Atomic Premium)并利用公知的原子层沉积法(ALD)来进行。另外,也可以使用商用化的喷头方式的200mm单晶片型(single wafer type)CVD(PECVD)设备(C N1,Atomic Premium)并利用公知的等离子体气相化学沉积法来进行。
蒸镀的含钌薄膜利用薄层电阻测试仪(4点探针(4pointprobe),DASOLENG,ARMS-200C)测定了电阻率,通过透射电子显微镜(Transmission Electron Microscope,FEI(荷兰)Tecnai G2F30S-Twin)测定了厚度,利用根据飞行时间的弹性反冲分光分析法(Time ofFlight-Elastic Recoil Detection(TOF-ERD),NEC)分析了薄膜的组成。
[实施例1]含钌薄膜的制造
作为含Ru前体化合物,使用
Figure BDA0002484322500000151
(化合物1),作为反应气体,使用碘乙烷(CH3CH2I),通过原子层沉积法(Atomic layer deposition)形成了含钌薄膜。
首先,硅氧化膜基板维持在250℃,将化合物1填充到不锈钢起泡容器中并维持在110℃。在不锈钢起泡容器内,以氩气(50sccm)作为载气,将蒸气化的化合物1供给3秒钟(0.0015g)而输送至硅氧化膜基板,吸附于硅氧化膜基板。然后,利用氩气(3000sccm),将未反应的化合物1去除1秒钟。然后,将加热至30℃的碘乙烷(CH3CH2I)供给0.1秒钟(0.002g),从而形成了含钌薄膜。最后,利用氩气(3000sccm),去除反应副产物和残留反应气体1秒钟。反应气体(碘乙烷)相对于钌(0)系烃化合物(化合物1)1摩尔使用2.7摩尔。将上述工序作为1个周期,重复进行1500个周期,从而形成了含钌薄膜。形成的钌薄膜在炉(Furnace)内在氢气氛下于450℃热处理2小时后,将通过TEM分析得到的间隙填充结果示于图1。
详细的薄膜制造条件示于下述表1。
[表1]
Figure BDA0002484322500000161
如图1中图示的那样,在实施例1中蒸镀的含钌薄膜在氢气氛中热处理后容易地形成了间隙填充。
[实施例2]含钌薄膜的制造
作为含Ru前体化合物,使用
Figure BDA0002484322500000162
(化合物1),作为反应气体,使用二碘甲烷(CH2I2),通过原子层沉积法(Atomic layer deposition)形成了含钌薄膜。
硅氧化膜基板维持在280℃,将化合物1填充到不锈钢起泡容器中并维持在110℃。在不锈钢起泡容器内,以氩气(50sccm)作为载气,将蒸气化的化合物1供给2秒钟(0.001g)而输送至硅氧化膜基板,吸附于硅氧化膜基板。然后,利用氩气(3000sccm),将未反应的化合物1去除0.5秒钟。然后,将加热至90℃的二碘甲烷(CH2I2)供给0.4秒钟(0.005g),从而形成了含钌薄膜。最后,利用氩气(3000sccm),去除反应副产物和残留反应气体0.1秒钟。反应气体(二碘甲烷)相对于钌(0)系烃化合物(化合物1)1摩尔使用5.9摩尔。将上述工序作为1个周期,重复进行800个周期,从而形成了含钌薄膜。将形成的钌薄膜的通过TEM分析得到的间隙填充结果和台阶覆盖结果示于图2。
详细的反应条件示于下述表2。
[表2]
Figure BDA0002484322500000171
如图2所示,可知在实施例2中制造的含钌薄膜容易形成间隙填充(图2的(a)),台阶覆盖(图2的(b))效果优异。
[实施例3]含钌薄膜的制造
作为含Ru前体化合物,使用
Figure BDA0002484322500000172
(化合物1),作为反应气体,使用二碘甲烷(CH2I2),通过气相沉积(CVD)法形成了含钌薄膜。
硅氧化膜基板维持在280℃,将化合物1填充到不锈钢起泡容器中并维持在110℃。在不锈钢起泡容器内,以氩气(50sccm)作为载气,将蒸气化的化合物1注入反应腔室70分钟(2.1g),同时以氩气(25sccm)作为载气,将加热至90℃的二碘甲烷(CH2I2)注入反应腔室70分钟(52.5g),从而形成了含钌薄膜。为了将腔室压力维持在30托以上,一边注入氩气(5000sccm),一边进行70分钟的工序,从而形成了含钌薄膜。反应气体(二碘甲烷)相对于钌(0)系烃化合物(化合物1)1摩尔适用了25.0摩尔。详细的反应条件示于下述表3。
[表3]
薄膜制造条件 实施例3
基板温度(℃) 280
Ru前体温度(℃) 110
Ru前体气泡气体(sccm) 50
二碘甲烷温度(℃) 90
二碘甲烷气泡气体(sccm) 25
工序压力(托) 30
工序时间(分钟) 70
将实施例3中蒸镀的含钌薄膜的TEM分析结果示于图3,如图3所示,可知能够容易地形成间隙填充(图3的(a)),台阶覆盖也优异(图3的(b))。
[比较例1]含钌薄膜的制造
在实施例1中,作为反应气体,使用氧代替碘乙烷,除此以外,与实施例1同样进行,从而制造了含钌薄膜,具体的含钌薄膜蒸镀条件示于下述表4。
[表4]
Figure BDA0002484322500000191
[比较例2]含钌薄膜的制造
在实施例1中,作为反应气体,使用氢代替碘乙烷,除此以外,与实施例1同样进行,从而制造了含钌薄膜,具体的含钌薄膜蒸镀条件示于表5。
[表5]
Figure BDA0002484322500000192
将比较例1和比较例2中蒸镀的含钌薄膜的TEM分析结果示于图4。如图4所示,使用氧作为反应气体的比较例1的情况下,形成了含钌薄膜,但使用氢作为反应气体的比较例2的情况下,未形成含钌薄膜。
[实施例4]含钌薄膜的制造
作为含Ru前体化合物,使用
Figure BDA0002484322500000193
(化合物1),作为反应气体,使用二碘硅烷(SiH2I2),通过原子层沉积法(Atomic layerdeposition)形成了含钌薄膜。
硅氧化膜基板维持在280℃,将化合物1填充到不锈钢起泡容器中并维持在110℃。在不锈钢起泡容器内,以氩气(50sccm)作为载气,将蒸气化的化合物1供给2秒钟(0.001g)而输送至硅氧化膜基板,吸附于硅氧化膜基板。然后,利用氩气(3000sccm),将未反应的化合物1去除0.5秒钟。然后,将加热至34℃的二碘硅烷(SiH2I2)供给1秒钟(0.003g),从而形成了含钌薄膜。最后,利用氩气(3000sccm),去除反应副产物和残留反应气体约0.1秒钟。反应气体(二碘硅烷)相对于钌(0)系烃化合物(化合物1)1摩尔使用3.4摩尔。将上述工序作为1个周期,重复进行800个周期,从而形成了含钌薄膜。详细的反应条件示于下述表6。
[表6]
Figure BDA0002484322500000201
[实施例5]含钌薄膜的制造
作为含Ru前体化合物,使用
Figure BDA0002484322500000202
(化合物2),作为反应气体,使用二碘甲烷(CH2I2),通过原子层沉积法(Atomic layer deposition)形成了含钌薄膜。
硅氧化膜基板维持在300℃,将化合物2填充到不锈钢起泡容器中并维持在36℃。在不锈钢起泡容器内,以氩气(10sccm)作为载气,将蒸气化的化合物2供给2秒钟(0.002g)而输送至硅氧化膜基板,吸附于硅氧化膜基板。然后,利用氩气(3000sccm)将未反应的化合物2去除5秒钟。然后,将加热至90℃的二碘甲烷(CH2I2)供给0.4秒钟(0.005g),从而形成了含钌薄膜。最后,利用氩气(3000sccm),去除反应副产物和残留反应气体5秒钟。反应气体(二碘甲烷)相对于钌(0)系烃化合物(化合物2)1摩尔使用2.5摩尔。将上述工序作为1个周期,重复800个周期,从而形成了含钌薄膜。
详细的反应条件示于下述表7。
[表7]
Figure BDA0002484322500000213
[实施例6]含钌薄膜的制造
使用
Figure BDA0002484322500000211
((异戊二烯)Ru(CO)3,化合物3)作为含Ru前体化合物,使用二碘甲烷(CH2I2)作为反应气体,通过原子层沉积法(Atomic layer deposition)形成了含钌薄膜。
硅氧化膜基板维持在250℃,将化合物3填充到不锈钢起泡容器中并维持在24℃。在不锈钢起泡容器内,以氩气(50sccm)作为载气,将蒸气化的化合物3供给2秒钟(0.0016g)而输送至硅氧化膜基板,吸附于硅氧化膜基板。然后,利用氩气(3000sccm),将未反应的化合物3去除5秒钟。然后,将加热至90℃的二碘甲烷(CH2I2)供给0.4秒钟(0.005g),从而形成了含钌薄膜。最后,利用氩气(3000sccm),去除反应副产物和残留反应气体5秒钟。反应气体(二碘甲烷)相对于钌(0)系烃化合物(化合物3)1摩尔使用3.0摩尔。将上述工序作为1个周期,重复进行400个周期,从而形成了含钌薄膜。详细的反应条件示于下述表8。
[表8]
Figure BDA0002484322500000221
对上述实施例1至实施例6和比较例1至比较例2中制造的含钌薄膜的电阻率以及所制造的含钌薄膜的组成通过TOF-ERD(Time of Flight-Elastic Recoil Detection,根据飞行时间的弹性反冲分光分析法)进行分析,将其结果示于下述表9。
[表9]
Figure BDA0002484322500000222
如表9所示,使用烷基碘或碘化硅烷作为反应气体的实施例1至6的含钌薄膜的电阻率为18至28μΩ·cm,与使用氢作为反应气体的比较例2相比,电阻率显著地低。
另外,TOF-ERD分析结果,使用烷基碘或碘化硅烷作为反应气体的实施例1至6的含钌薄膜的薄膜内氧含量为0.6at%以下,与使用氧作为反应气体的比较例1相比,薄膜内的氧含量显著地低。
另外,如图1所示,可知根据本发明的实施例1的氢气氛热处理后容易形成间隙填充。
进而,如图2至图3所示,可知本发明的实施例2至3中制造的薄膜的间隙填充容易形成,具有优异的台阶覆盖。
[实施例7]根据在含钌薄膜的制造中使用的钌前体的注入量的生长率分析
在实施例1中,将化合物1的注入时间在0.5秒到5秒内进行变更,除此以外,与实施例1同样进行,从而制造了含钌薄膜。
将利用透射电子显微镜分析的对于在实施例7中制造的含钌薄膜的钌前体的饱和(Saturation)结果示于图5。如图5所示,可以确认从化合物1的注入时间2秒开始达到饱和(Saturation)而含钌薄膜的生长率恒定。
[实施例8]根据在含钌薄膜的制造中使用的钌前体的注入量的生长率分析
在实施例2中,将化合物1的注入时间在0.5秒到5秒内进行变更,除此以外,与实施例2同样进行,从而制造了含钌薄膜。
[实施例9]根据在含钌薄膜的制造中使用的钌前体的注入量的生长率分析
在实施例5中,将化合物2的注入时间在0.5秒到5秒内进行变更,除此以外,与实施例5同样进行,从而制造了含钌薄膜。
[实施例10]含钌薄膜的制造的钌前体饱和(Saturation)
在实施例6中,将化合物3的注入时间在0.5秒到5秒内进行变更,除此以外,与实施例6同样进行,从而制造了含钌薄膜。
将利用透射电子显微镜分析的对于在实施例8至实施例10中制造的含钌薄膜的钌前体的饱和(Saturation)结果示于图6。如图6所示,可以确认从化合物1的注入时间2秒开始、从化合物2的注入时间3秒开始、从化合物3的注入时间2秒开始达到饱和(Saturation)而含钌薄膜的生长率恒定。
[实施例11]根据在含钌薄膜的制造中使用的反应气体的注入量的生长率分析
在实施例1中,将碘乙烷的注入时间在0.1秒到5秒内进行变更,除此以外,与实施例1同样进行,从而制造了含钌薄膜。
[实施例12]根据在含钌薄膜的制造中使用的反应气体的注入量的生长率分析
在实施例2中,将二碘甲烷的注入时间在0.1秒到5秒内进行变更,除此以外,与实施例2同样进行,从而制造了含钌薄膜。
[实施例13]根据在含钌薄膜的制造中使用的反应气体的注入量的生长率分析
在实施例4中,将二碘硅烷的注入时间在0.1秒到5秒内进行变更,除此以外,与实施例4同样进行,从而制造了含钌薄膜。
[比较例3]根据在含钌薄膜的制造中使用的反应气体的注入量的生长率分析
在比较例1中,将氧气的注入时间在0.1秒到5秒内进行变更,除此以外,与比较例1同样进行,从而制造了含钌薄膜。
用透射电子显微镜分析的在实施例11至实施例13和比较例3中制造的含钌薄膜对反应气体的饱和(Saturation)结果示于图7。如图7所示,可以确认从碘乙烷的注入时间0.1秒开始、从二碘甲烷的注入时间0.2秒开始、从二碘硅烷的注入时间0.5秒开始达到饱和(Saturation),从而含钌薄膜的生长率恒定。相反,输入氧作为反应气体的情况下,从氧气的注入时间2秒开始达到饱和,从而含钌薄膜的生长率恒定。
即,可知蒸镀含钌薄膜时,使用烷基碘或碘化硅烷作为反应气体的情况下,与使用氧的情况相比,迅速饱和而含钌薄膜的生长率变得恒定。
[实施例14]根据在含钌薄膜的制造中使用的基板温度的生长率分析
在实施例1中将基板温度在200℃到360℃内进行变更,除此以外,与实施例1同样进行而制造了含钌薄膜。
[实施例15]根据在含钌薄膜的制造中使用的基板温度的生长率分析
在实施例2中将基板温度在200℃到360℃内进行变更,除此以外,与实施例2同样进行而制造了含钌薄膜。
[实施例16]根据在含钌薄膜的制造中使用的基板温度的生长率分析
在实施例4中将基板温度在200℃到360℃内进行变更,除此以外,与实施例4同样进行而制造了含钌薄膜。
[比较例4]根据在含钌薄膜的制造中使用的基板温度的生长率分析
在比较例1中将基板温度在200℃到360℃内进行变更,除此以外,与比较例1同样进行而制造了含钌薄膜。
[实施例17]根据在含钌薄膜的制造中使用的基板温度的生长率分析
在实施例5中将基板温度在200℃到360℃内进行变更,除此以外,与实施例5同样进行而制造了含钌薄膜。
[实施例18]根据在含钌薄膜的制造中使用的基板温度的生长率分析
在实施例6中将基板温度在200℃到360℃内进行变更,除此以外,与实施例6同样进行而制造了含钌薄膜。
用透射电子显微镜分析的实施例14至实施例18和比较例4中制造的含钌薄膜的根据基板温度的生长率饱和区间结果示于图8和图9。实施例14的情况下基板温度在300℃至340℃、实施例15的情况下基板温度在240℃至300℃、实施例16的情况下基板温度在260℃至320℃这样的宽范围的基板温度下含钌薄膜的生长率恒定,但在比较例4的情况下基板温度为240℃至280℃这样的窄范围的基板温度下含钌薄膜的生长率恒定[图8]。
即,确认了像本发明这样将碘乙烷、二碘甲烷、二碘硅烷等烷基碘或碘化硅烷用作反应气体来蒸镀含钌薄膜的情况下,在宽范围的基板温度下含钌薄膜的生长率恒定。
另外,可以确认即使像实施例15、实施例17和实施例18那样改变钌前体化合物的种类,在使用二碘甲烷等烷基碘作为反应气体而蒸镀含钌薄膜时,含钌薄膜的生长率也能够在宽范围的基板温度下恒定。
[实施例19]含钌薄膜的制造的根据蒸镀次数的生长
在实施例2中,将蒸镀次数在10个周期到300个周期内进行变更,除此以外,与实施例2同样进行而制造了含钌薄膜。
将实施例19中制造的含钌薄膜的关于蒸镀次数的薄膜生长结果示于图10。如图10所示,可以确认在蒸镀次数为20个周期以下时,能够进行钌核的生成,从20个周期以上开始钌薄膜能够进行生长。另外,可以确认随着蒸镀次数增加,钌薄膜的生长具有一定斜率。
产业上的利用可能性
本发明的含钌薄膜的制造方法使用钌(0)系烃化合物作为薄膜蒸镀用前体,并使用属于特定的反应气体的碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物作为反应气体,由于不包含氧,因而不需要另外的还原工序,能够用简单的工序制造含钌薄膜。
另外,本发明的含钌薄膜的制造方法在薄膜厚度为2nm以下的情况下,能够制造表面均匀的薄膜,能够实现高台阶覆盖性(step coverage)且没有空隙(void)地进行间隙填充(gap fill)。
另外,本发明的含钌薄膜的制造方法中,作为反应气体,使用碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物而不使用氧,从而使碳、氧、氢等杂质的含量最小化,从而薄膜的纯度出奇地优异。
另外,本发明的含钌薄膜的制造方法可以将多种钌(0)系烃化合物用作前体。
另外,本发明的含钌薄膜蒸镀用组合物使用属于特定的化合物的碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物作为反应气体,从而利用它形成含钌薄膜时,具有优异的台阶覆盖性和间隙填充性,并且能够容易地得到密度高的高纯度薄膜。
就通过本发明的制造方法制造的含钌薄膜而言,对于半导体元件的小型化导致的具有高长宽比的沟道、触点或小孔图案能够均匀地进行蒸镀,并且具有优异的台阶覆盖(step coverage)。

Claims (18)

1.一种含钌薄膜的制造方法,包括利用钌(0)系烃化合物作为薄膜蒸镀用前体并使用碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物作为反应气体而制造含钌薄膜的步骤。
2.根据权利要求1所述的含钌薄膜的制造方法,其中,所述制造方法利用原子层沉积(ALD)法、气相沉积(CVD)法、有机金属化学气相沉积法(MOCVD)、低压气相沉积法(LPCVD)、等离子体增强气相沉积法(PECVD)或等离子体增强原子层沉积法(PEALD)进行。
3.根据权利要求1所述的含钌薄膜的制造方法,其中,所述制造方法包括以下步骤:
a)将安装在腔室内的基板的温度维持在80至500℃的步骤;
b)注入载气和钌(0)系烃化合物的步骤;以及
c)注入反应气体而在所述基板上制造含钌薄膜的步骤,所述反应气体为碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物。
4.根据权利要求1所述的含钌薄膜的制造方法,其中,所述反应气体相对于钌(0)系烃化合物1摩尔使用0.1至200摩尔。
5.根据权利要求3所述的含钌薄膜的制造方法,其中,在所述c)步骤之后还包括热处理的步骤。
6.根据权利要求5所述的含钌薄膜的制造方法,其中,所述热处理在200至700℃进行。
7.根据权利要求1所述的含钌薄膜的制造方法,其中,所述钌(0)系烃化合物为由下述化学式1表示的钌(0)系烃化合物,
化学式1
Figure FDA0002484322490000011
在所述化学式1中,
L是中性配体,所述中性配体为从具有1个至4个双键的碳原子数2至10的非环状烯烃化合物、碳原子数3至10的环状烯烃化合物、包含1个至4个选自氮或氧中的杂原子的碳原子数2至8的非环状或环状杂烯烃类似结构化合物、或者含羰基化合物中选择的1种化合物;
R1至R6各自独立地为氢或(C1-C7)烷基。
8.根据权利要求7所述的含钌薄膜的制造方法,其中,所述化学式1的钌(0)系烃化合物由下述化学式1-1或化学式1-2表示,
化学式1-1
Figure FDA0002484322490000021
化学式1-2
Figure FDA0002484322490000022
在化学式1-1和1-2中,
R1至R10各自独立地为氢或(C1-C7)烷基,
A1为单键或-(CR11R12)m-,R11和R12各自独立地为氢或(C1-C7)烷基,m为1至3的整数,
A2为-(CR11R12)n-,R11和R12各自独立地为氢或(C1-C7)烷基,n为1至3的整数。
9.根据权利要求1所述的含钌薄膜的制造方法,其中,所述钌(0)系烃化合物为由下述化学式2表示的钌(0)系烃化合物,
化学式2
Figure FDA0002484322490000031
在化学式2中,
R1至R6各自独立地为氢或(C1-C7)烷基。
10.根据权利要求1所述的含钌薄膜的制造方法,其中,所述钌(0)系烃化合物为由下述化学式3表示的钌(0)系烃化合物,
化学式3
Figure FDA0002484322490000032
在化学式3中,
R7至R10各自独立地为氢或(C1-C7)烷基,
A1为单键或-(CR11R12)m-,R11和R12各自独立地为氢或(C1-C7)烷基,m为1至3的整数。
11.根据权利要求1所述的含钌薄膜的制造方法,其中,所述反应气体为I2、CH3I、CH2I2、CHI3、CH3CH2I、CH3CHI2、ICH2CH2I、CH3CH2CH2I、CH3CHICH3、ICH2CH2CH2I或SiH2I2
12.根据权利要求3所述的含钌薄膜的制造方法,其中,所述载气为选自氮、氢、氩和氦中的任一种或两种以上。
13.一种含钌薄膜蒸镀用组合物,其中,包含钌(0)系烃前体化合物;以及作为反应气体的碘、(C1-C3)烷基碘、碘化硅烷或它们的混合物。
14.根据权利要求13所述的含钌薄膜蒸镀用组合物,其中,所述反应气体相对于钌(0)系烃化合物1摩尔使用0.1至200摩尔。
15.根据权利要求13所述的含钌薄膜蒸镀用组合物,其中,所述钌(0)系烃化合物为选自下述化学式1、化学式2和化学式3所表示的钌(0)系烃化合物中的一种或两种以上,
化学式1
Figure FDA0002484322490000041
在所述化学式1中,
L是中性配体,所述中性配体为从具有1个至4个双键的碳原子数2至10的非环状烯烃化合物、碳原子数3至10的环状烯烃化合物、包含1个至4个选自氮或氧中的杂原子的碳原子数2至8的非环状或环状杂烯烃类似结构化合物、或者含羰基化合物中选择的1种化合物;
R1至R6各自独立地为氢或(C1-C7)烷基,
化学式2
Figure FDA0002484322490000042
在化学式2中,
R1至R6各自独立地为氢或(C1-C7)烷基,
化学式3
Figure FDA0002484322490000043
在化学式3中,
R7至R10各自独立地为氢或(C1-C7)烷基,
A1为单键或-(CR11R12)m-,R11和R12各自独立地为氢或(C1-C7)烷基,m为1至3的整数。
16.根据权利要求13所述的含钌薄膜蒸镀用组合物,其中,所述反应气体为I2、CH3I、CH2I2、CHI3、CH3CH2I、CH3CHI2、ICH2CH2I、CH3CH2CH2I、CH3CHICH3、ICH2CH2CH2I或SiH2I2
17.一种含钌薄膜,其利用权利要求13至16中任一项所述的含钌薄膜蒸镀用组合物而制造,所述含钌薄膜的电阻率为100μΩ·cm以下,氧的含量为3at%以下。
18.根据权利要求17所述的含钌薄膜,其中,所述含钌薄膜的碳的含量为3at%以下。
CN201880072781.1A 2017-11-01 2018-11-01 含钌薄膜的制造方法及由该制造方法制造的含钌薄膜 Active CN111357080B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20170144420 2017-11-01
KR10-2017-0144420 2017-11-01
KR10-2018-0131423 2018-10-31
KR1020180131423A KR102374140B1 (ko) 2017-11-01 2018-10-31 루테늄함유 박막의 제조방법 및 이로부터 제조된 루테늄함유 박막
PCT/KR2018/013160 WO2019088722A1 (ko) 2017-11-01 2018-11-01 루테늄함유 박막의 제조방법 및 이로부터 제조된 루테늄함유 박막

Publications (2)

Publication Number Publication Date
CN111357080A true CN111357080A (zh) 2020-06-30
CN111357080B CN111357080B (zh) 2024-01-12

Family

ID=66546694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880072781.1A Active CN111357080B (zh) 2017-11-01 2018-11-01 含钌薄膜的制造方法及由该制造方法制造的含钌薄膜

Country Status (5)

Country Link
US (1) US11827650B2 (zh)
JP (2) JP7355746B2 (zh)
KR (1) KR102374140B1 (zh)
CN (1) CN111357080B (zh)
TW (1) TW201932634A (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022031988A (ja) * 2018-11-08 2022-02-24 株式会社Adeka 原子層堆積法による金属ルテニウム薄膜の製造方法
KR102355507B1 (ko) * 2018-11-14 2022-01-27 (주)디엔에프 몰리브덴 함유 박막의 제조방법 및 이로부터 제조된 몰리브덴함유 박막
TW202132605A (zh) * 2020-01-10 2021-09-01 美商應用材料股份有限公司 催化劑增強之無縫釕間隙填充
CN115038810A (zh) 2020-01-31 2022-09-09 田中贵金属工业株式会社 由有机钌化合物构成的化学蒸镀用原料及使用该化学蒸镀用原料的化学蒸镀法
US20230227975A1 (en) * 2021-12-30 2023-07-20 Applied Materials, Inc. Method of depositing metal films
KR20240057762A (ko) * 2022-10-25 2024-05-03 주성엔지니어링(주) 반도체 소자의 전극 형성 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074945A (en) * 1998-08-27 2000-06-13 Micron Technology, Inc. Methods for preparing ruthenium metal films
KR20140131219A (ko) * 2013-05-03 2014-11-12 한국화학연구원 루테늄 전구체, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389913B1 (ko) * 1999-12-23 2003-07-04 삼성전자주식회사 공정조건을 변화시키면서 화학기상 증착법으로 루테늄막을형성하는 방법 및 그에 의해 형성된 루테늄막
US7041596B1 (en) * 2004-04-08 2006-05-09 Novellus Systems, Inc. Surface treatment using iodine plasma to improve metal deposition
WO2009057064A2 (en) * 2007-10-29 2009-05-07 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ruthenium and osmium precursor synthesis method
KR20100064082A (ko) 2008-12-04 2010-06-14 현대자동차주식회사 차량용 모터
DE102009053392A1 (de) 2009-11-14 2011-06-22 Umicore AG & Co. KG, 63457 Verfahren zur Herstellung von Ru(0) Olefin-Komplexen
KR101404714B1 (ko) 2011-10-20 2014-06-20 주식회사 한솔케미칼 단차피복성이 우수한 루테늄 화합물 및 이를 이용하여 증착시킨 박막
KR101703871B1 (ko) * 2014-05-30 2017-02-08 주식회사 유피케미칼 신규 루테늄 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
KR101636491B1 (ko) 2014-07-09 2016-07-05 한국화학연구원 루테늄 화합물, 이의 제조 방법 및 이를 이용하여 박막을 형성하는 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074945A (en) * 1998-08-27 2000-06-13 Micron Technology, Inc. Methods for preparing ruthenium metal films
KR20140131219A (ko) * 2013-05-03 2014-11-12 한국화학연구원 루테늄 전구체, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAE JEONG KIM ET AL.: "Surface roughness reducing effect of iodine sources (CH3I, C2H5I) on Ru and RuO2 composite films grown by MOCVD" *

Also Published As

Publication number Publication date
CN111357080B (zh) 2024-01-12
JP2023139020A (ja) 2023-10-03
TW201932634A (zh) 2019-08-16
JP2021502492A (ja) 2021-01-28
JP7355746B2 (ja) 2023-10-03
US11827650B2 (en) 2023-11-28
KR102374140B1 (ko) 2022-03-17
US20200339617A1 (en) 2020-10-29
KR20190049587A (ko) 2019-05-09

Similar Documents

Publication Publication Date Title
CN111357080B (zh) 含钌薄膜的制造方法及由该制造方法制造的含钌薄膜
KR102355507B1 (ko) 몰리브덴 함유 박막의 제조방법 및 이로부터 제조된 몰리브덴함유 박막
JP6437962B2 (ja) 13族金属又は半金属の窒化物膜の堆積方法
EP2174942B1 (en) Niobium and vanadium organometallic precursors for thin film deposition
JP6781165B2 (ja) ホウ素含有化合物、組成物、及びホウ素含有膜の堆積方法
WO2017143246A1 (en) Deposition of molybdenum thin films using a molybdenum carbonyl precursor
TW201938833A (zh) 用於沉積矽氮化物膜的組合物及含有其之容器
US20130052368A1 (en) Methods for preparing thin films by atomic layer deposition using hydrazines
KR20120028999A (ko) 아미노-금속 및 할로겐화 금속 전구체의 조합을 사용한 금속 질화물 함유 필름 퇴적
KR20090016403A (ko) 실리콘 산화막 증착 방법
EP2310551B1 (en) Method of forming a tantalum-containing layer on a substrate
KR102618533B1 (ko) 루테늄함유 박막증착용 조성물 및 이를 이용하는 루테늄함유 박막의 제조방법
KR20210052027A (ko) 실리콘 전구체 화합물, 이를 포함하는 박막 및 그 박막의 제조방법
KR20160062675A (ko) 신규 니켈-비스베타케토이미네이트 전구체 및 이를 이용한 니켈 함유 필름 증착방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant