CN111302706A - 一种高柔韧性磁介复合基板材料及其制备方法和应用 - Google Patents

一种高柔韧性磁介复合基板材料及其制备方法和应用 Download PDF

Info

Publication number
CN111302706A
CN111302706A CN202010172783.7A CN202010172783A CN111302706A CN 111302706 A CN111302706 A CN 111302706A CN 202010172783 A CN202010172783 A CN 202010172783A CN 111302706 A CN111302706 A CN 111302706A
Authority
CN
China
Prior art keywords
sintering
hexagonal ferrite
ferrite
ball
polydimethylsiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010172783.7A
Other languages
English (en)
Other versions
CN111302706B (zh
Inventor
肖明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Xingkang Electronic Technology Co ltd
Original Assignee
Jiangxi Chongheng Industrial Porcelain Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Chongheng Industrial Porcelain Technology Co Ltd filed Critical Jiangxi Chongheng Industrial Porcelain Technology Co Ltd
Priority to CN202010172783.7A priority Critical patent/CN111302706B/zh
Publication of CN111302706A publication Critical patent/CN111302706A/zh
Application granted granted Critical
Publication of CN111302706B publication Critical patent/CN111302706B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/30Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds
    • C04B26/32Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/66Cobaltates containing alkaline earth metals, e.g. SrCoO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0263Hardening promoted by a rise in temperature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00422Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/50Flexible or elastic materials
    • C04B2111/506Bendable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明提供了一种高柔韧性磁介复合基板材料及其制备方法和应用,其中,高柔韧性磁介复合基板材料其由主相材料和辅助相材料按质量百分比为1:0.5~1.5复合而成,主相材料为起始磁导率大于15和截止频率大于1GHz的六角晶系铁氧体,所述六角晶系铁氧体配方分子式为(Ba0.5+ySr0.5‑y)3Co1.6+xZn0.4‑xFe23O41,其中x的取值范围为‑0.1~0.1,y的取值范围为‑0.2~0.2,辅助相材料为聚二甲基硅氧烷(PDMS);掺杂剂为WO3,掺杂量为0.1~0.3wt%。该材料是一种很好的具有高柔韧性的磁介基板材料,其适用于300MHz~5GHz微带天线应用的无机/有机复合柔性磁介基板材料。

Description

一种高柔韧性磁介复合基板材料及其制备方法和应用
【技术领域】
本发明涉及电子材料技术领域,具体地说,是涉及一种适用于 300MHz~5GHz微带天线应用的无机/有机复合柔性磁介基板材料及其制备方法。
【背景技术】
微带天线是二十世纪七十年代初出现的一种新型天线,具有体积小、重量轻、剖面低、容易与载体共形、与集成电路的兼容性好、容易实现双频段、双极化工作等优点。根据微带天线的结构设计计算公式,其基板尺寸大小与电磁场在介质基板内的波长成正比。由于在低频下电磁波的波长很长,因此采用传统介质基板加工的低频微带天线尺寸很大,并且频率越低,尺寸越大。
为了缩小较低频段微带天线的尺寸、质量和体积,一种方式是提高天线基板材料的有效介电常数εeff,但采取这种方式,不仅容易激起表面波,而且高介电常数基板会束缚电场,使天线的辐射效率大大降低。根据天线谐振频率关系式
Figure RE-GDA0002468469250000011
可知,提高天线介质基板的有效磁导率μeff,同样也可达到降低天线基板尺寸的效果,并且还不易激起表面波并有利于天线能量的辐射。此外,由于微带天线的带宽主要受基板介电常数大小的影响,而与磁导率大小无关,介电常数越小越有利于提高天线带宽。因此,在同等尺寸下,采取磁介材料制备的天线也比采用纯介电材料制备的天线具有更宽的带宽。因此,将磁介材料应用到天线基板上具有十分重要的现实意义。此外,在一些特殊的应用领域,对基板的柔韧性也有很高的要求,譬如可穿戴设备中的发射或接收天线,由于天线形状不规则及天线基板弯曲不平整,因此最好采用的天线基板材料具有很好的柔韧性,可以根据应用场景的变化进行变形。但是,目前国内外研究机构和企业研发的磁介天线基板材料大多采用纯陶瓷来实现,因为这样可以获得较高的磁导率和介电常数,但同时也面临着适用频段较低(一般在500MHz以下,有的甚至仅在100MHz以下适用),且无任何柔韧性。如新加坡HwaChong Institution的M.L.S.Teo和 L.B.Kong等人采用Li0.50Fe2.50O4铁氧体和Mg1- xCuxFe1.98O4铁氧体进行适当离子替代或掺杂的方式来获得磁介的陶瓷材料。(M.L.S.Teo,L.B.Kong,et al. “Development of magneto-dielectric materials based on Li-ferrite ceramics: Ⅰ,Ⅱ,Ⅲ”,J.Alloys.Comp.,vol.559(2008)557-566,567-575,576-582; L.B.Kong,Z.W.Li,“Magneto-dielectric properties of Mg-Cu-Co FerriteCeramics:Ⅰ,Ⅱ”,J.Am.Ceram.Soc.,vol.90(2007)3106-3112,2104-2112)以及法国国家实验室的A.Thakur等人采用纳米制粉技术制备的纳米量级的 Ni0.5Zn0.3Co0.2Fe2O4铁氧体陶瓷材料(A.Thakur,A.Chevalier,et al.“Low-loss spinel nanoferrite with matchingpermeability and permittivity in the ultrahigh frequency range”,J.Appl.Phys.,vol.108(2010)014301)。以及电子科技大学苏桦等人采用NiCuZn复合BaTiO3或基于Co2Z铁氧体研发的陶瓷基磁介基板材料(Hua Su,Xiaoli Tang,et al,Low-loss NiCuZn ferritewith matching permeability and permittivity by two-step sintering process,Journal of Applied Physics,Vol.113,17B301,2013;Qi Xia,Hua Su,etal.Miniaturized T-DMB antenna based on low loss magneto-dielectric materialsfor mobile handset applications,Journal ofApplied Physics,2012,Vol.112,043915)。此外,电子科技大学苏桦也申请了多项将铁氧体和有机介质复合制备磁介材料的专利,如“一种微带天线复合基板材料及其制备方法(ZL201110235563.5)”和“一种微带天线有机复合基板材料及其制备方法(ZL201410431104.8)”等,使得磁介材料的适用频率有了很大的提高,但天线的柔韧性相比纯陶瓷的磁介材料而言也只略有些改善(可接近达到PCB覆铜板的柔韧性要求),还是难以满足诸如可穿戴设备等应用场景对天线基板弯曲变形的柔韧性要求。
【发明内容】
鉴于此,本发明要解决的技术问题,在于提供一种高柔韧性磁介复合基板材料及其制备方法,该材料是具有高柔韧性的磁介基板材料,其适用于 300MHz~5GHz微带天线应用的无机/有机复合柔性磁介基板材料,除了可用于天线中外,在需要磁介性能的柔性吸波材料领域也有很好的应用前景,且该方法操作简单并适合于批量化生产。
第一方面,本发明提供了一种高柔韧性磁介复合基板材料,其由主相材料和辅助相材料按质量百分比为1:0.5~1.5复合而成,所述主相材料为起始磁导率大于15和截止频率大于1GHz的六角晶系铁氧体,所述六角晶系铁氧体配方分子式为(Ba0.5+ySr0.5-y)3Co1.6+ xZn0.4-xFe23O41,其中x的取值范围为 -0.1~0.1,y的取值范围为-0.2~0.2;所述辅助相材料为聚二甲基硅氧烷 (PDMS),该材料是一种柔性有机高分子材料;其中掺杂剂为WO3,掺杂量为0.1~0.3wt%。
第二方面,本发明提供了一种高柔韧性磁介复合基板材料的制备方法,包括六角晶系铁氧体制备、聚二甲基硅氧烷制备和混合过程;
所述六角晶系铁氧体制备包括下述步骤:
步骤一:以Fe2O3、BaCO3、SrCO3、ZnO和Co2O3为初始原料,按照六角晶系铁氧体配方分子式(Ba0.5+ySr0.5-y)3Co1.6+xZn0.4-xFe23O41(x=-0.1~0.1; y=-0.2~0.2)中金属元素的摩尔比例折算出Fe2O3、BaCO3、SrCO3、ZnO和 Co2O3的质量百分比,进行称料、混料、第一次球磨后烘干;
步骤二:将步骤一所得的第一次球磨烘干料过筛后在烧结钵中压实打孔,按3℃/分的升温速率升至1240~1260℃预烧温度进行预烧,保温时间为 2~3小时,随炉冷却至室温得到铁氧体预烧料;
步骤三:将步骤二所得铁氧体预烧料掺杂0.1~0.3wt%的WO3后进行第二次球磨,第二次球磨后粉料的平均粒度控制在0.8~1.2微米,然后将第二次球磨料烘干;
步骤四:将步骤三所得的第二次球磨烘干料后在烧结钵中压实打孔,按 2℃/分的升温速率升至1200~1220℃烧结温度进行烧结,保温时间为2~3小时,随炉冷却至室温得到铁氧体烧结料;
步骤五:将步骤四所得的铁氧体烧结料进行第三次球磨,第三次球磨后粉料的平均粒度控制在1~2微米,再将第三次球磨料烘干即得六角晶系铁氧体;
所述聚二甲基硅氧烷制备过程如下:
所述聚二甲基硅氧烷(PDMS)是根据质量比10:1的比例称量二甲基硅氧烷(PDMS)前驱物(美国Dowcorning SYLGARD184硅橡胶)和二甲基硅氧烷(PDMS)固化剂(美国Dowcorning SYLGARD184硅橡胶),然后在室温条件下机械搅拌混合直至形成透明均匀的溶液即得;
所述混合过程如下:
将所述六角晶系铁氧体制备中所得的六角晶系铁氧体粉料颗粒过120 目筛后,按不同的质量百分比加入到所述聚二甲基硅氧烷制备中所得的二甲基硅氧烷(PDMS)溶液中,所述六角晶系铁氧体粉料和二甲基硅氧烷 (PDMS)溶液质量比为1:0.5~1.5,采用机械搅拌的方法进行均匀混合,然后经真空脱泡处理后,放入100℃烘箱中进行固化成基板,基板的厚度由浇筑的六角晶系铁氧体粉料与二甲基硅氧烷(PDMS)复合后的总质量决定。
第三方面,本发明提供了一种高柔韧性磁介复合基板材料的应用,将第一方面提供的高柔韧性磁介复合基板材料应用于可穿戴设备中。
本发明的优点在于:本发明是一种将起始磁导率大于15和截止频率大于1GHz的六角晶系铁氧体粉料与聚二甲基硅氧烷(PDMS)进行复合,制备具有很好柔韧性的磁介天线基板材料的方法,该方法操作简单并适合于批量化生产。基于该方法我们制备的长为2厘米,宽为1厘米,厚度为2毫米的基板,可以沿长边方向实现180度完全的对折,柔韧性极佳,柔韧性远远超过以前纯陶瓷体系的磁介材料和铁氧体与有机树脂等复合得到的磁介材料,因此在可穿戴设备等需要基板弯曲变形的场景应用前景很好。为了测试基板的磁介性能,可分别将基板切割成圆片和圆环形的标样。经测试,该材料在1GHz测试时,其磁导率在1.7~2.8之间,介电常数在4~6之间,频段内介电损耗低于0.01,磁损耗低于0.2;根据斯洛克定律推断其磁导率的截止频率在8GHz以上,因此其适用频率至少可到3~5GHz。该材料是一种很好的具有高柔韧性的磁介基板材料,除了可用于天线中外,在需要磁介性能的柔性吸波材料领域也有很好的应用前景。
【附图说明】
下面参照附图结合实施例对本发明作进一步的说明。
图1为本发明一种高柔韧性磁介复合基板材料的制备方法流程图。
【具体实施方式】
本发明实施例通过提供一种将起始磁导率大于15和截止频率大于 1GHz的六角晶系铁氧体粉料与聚二甲基硅氧烷(PDMS)进行复合,制备具有很好柔韧性的磁介天线基板材料的方法,该方法操作简单并适合于批量化生产,其柔韧性远远超过以前纯陶瓷体系的磁介材料和铁氧体与有机树脂等复合得到的磁介材料,因此在可穿戴设备等需要基板弯曲变形的场景应用前景很好。
本发明实施例中的技术方案为解决上述问题,总体思路如下:所述主相材料为起始磁导率大于15和截止频率大于1GHz的六角晶系铁氧体,所述六角晶系铁氧体配方分子式为(Ba0.5+ySr0.5-y)3Co1.6+xZn0.4-xFe23O41,其中x的取值范围为-0.1~0.1,y的取值范围为-0.2~0.2,其中铁氧体中采用Zn部分替代Co是为了在兼顾高截止频率的前提下尽量提升六角晶系铁氧体材料的起始磁导率;采用比正分配方中24个Fe离子略低的23个Fe离子的配方设计方案则是为提高铁氧体材料的电阻率,降低介电损耗。而适量的Sr替代Ba 也是有助于提升铁氧体材料的起始磁导率。
为了更好地理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
实施例1-3
本实施例1-3为一种高柔韧性磁介复合基板材料的具体实施例,具体如下:
一种高柔韧性磁介复合基板材料,其由主相材料和辅助相材料按质量百分比为1:0.5~1.5复合而成,所述主相材料为起始磁导率大于15和截止频率大于1GHz的六角晶系铁氧体,所述六角晶系铁氧体配方分子式为 (Ba0.5+ySr0.5-y)3Co1.6+xZn0.4-xFe23O41,其中x的取值范围为-0.1~0.1,y的取值范围为-0.2~0.2,所述辅助相材料为聚二甲基硅氧烷(PDMS);
掺杂剂为WO3,掺杂量为0.1~0.3wt%。
其高柔韧性磁介复合基板材料的制备方法,请参阅图1所示,包括六角晶系铁氧体制备、聚二甲基硅氧烷制备和混合过程;
所述六角晶系铁氧体制备包括下述步骤:
步骤一:以Fe2O3、BaCO3、SrCO3、ZnO和Co2O3为初始原料,按照六角晶系铁氧体配方分子式(Ba0.5+ySr0.5-y)3Co1.6+xZn0.4-xFe23O41(x=-0.1~0.1; y=-0.2~0.2)中金属元素的摩尔比例折算出Fe2O3、BaCO3、SrCO3、ZnO和 Co2O3的质量百分比,进行称料、混料、第一次球磨后烘干;
步骤二:将步骤一所得的第一次球磨烘干料过筛后在烧结钵中压实打孔,按3℃/分的升温速率升至1240~1260℃预烧温度进行预烧,保温时间为 2~3小时,随炉冷却至室温得到铁氧体预烧料;
步骤三:将步骤二所得铁氧体预烧料掺杂0.1~0.3wt%的WO3后进行第二次球磨,第二次球磨后粉料的平均粒度控制在0.8~1.2微米,然后将第二次球磨料烘干;
步骤四:将步骤三所得的第二次球磨烘干料后在烧结钵中压实打孔,按 2℃/分的升温速率升至1200~1220℃烧结温度进行烧结,保温时间为2~3小时,随炉冷却至室温得到铁氧体烧结料;
步骤五:将步骤四所得的铁氧体烧结料进行第三次球磨,第三次球磨后粉料的平均粒度控制在1~2微米,再将第三次球磨料烘干即得六角晶系铁氧体;
所述聚二甲基硅氧烷制备过程如下:
所述聚二甲基硅氧烷(PDMS)是根据质量比10:1的比例称量二甲基硅氧烷(PDMS)前驱物(美国Dowcorning SYLGARD184硅橡胶)和二甲基硅氧烷(PDMS)固化剂(美国Dowcorning SYLGARD184硅橡胶),然后在室温条件下机械搅拌混合直至形成透明均匀的溶液即得;
所述混合过程如下:
将所述六角晶系铁氧体制备中所得的六角晶系铁氧体粉料颗粒过120 目筛后,按不同的质量百分比加入到所述聚二甲基硅氧烷制备中所得的二甲基硅氧烷(PDMS)溶液中,所述六角晶系铁氧体粉料和二甲基硅氧烷(PDMS)溶液质量比为1:0.5~1.5,采用机械搅拌的方法进行均匀混合,然后经真空脱泡处理后,放入100℃烘箱中进行固化成基板,基板的厚度由浇筑的六角晶系铁氧体粉料与二甲基硅氧烷(PDMS)复合后的总质量决定。
实施例1中,主相材料和辅助相材料按质量百分比为1:0.5,六角晶系铁氧体配方分子式(Ba0.5+ySr0.5-y)3Co1.6+xZn0.4-xFe23O41的x=-0.1,y=-0.2。
掺杂剂WO3的掺杂量为0.1wt%。
所述六角晶系铁氧体制备包括下述步骤:
步骤一:以Fe2O3、BaCO3、SrCO3、ZnO和Co2O3为初始原料,将x=-0.1, y=-0.2代入六角晶系铁氧体配方分子式,代入后的配方分子式为 (Ba0.3Sr0.7)3Co1.5Zn0.5Fe23O41中折算出Fe2O3、BaCO3、SrCO3、ZnO和Co2O3的质量百分比,进行称料、混料、第一次球磨后烘干;
步骤二:将步骤一所得的第一次球磨烘干料过筛后在烧结钵中压实打孔,按3℃/分的升温速率升至1240℃预烧温度进行预烧,保温时间为2小时,随炉冷却至室温得到铁氧体预烧料;
步骤三:将步骤二所得铁氧体预烧料掺杂0.1wt%的WO3后进行第二次球磨,第二次球磨后粉料的平均粒度控制在0.8~1.2微米,然后将第二次球磨料烘干;
步骤四:将步骤三所得的第二次球磨烘干料后在烧结钵中压实打孔,按 2℃/分的升温速率升至1200℃烧结温度进行烧结,保温时间为2小时,随炉冷却至室温得到铁氧体烧结料;
步骤五:将步骤四所得的铁氧体烧结料进行第三次球磨,第三次球磨后粉料的平均粒度控制在1~2微米,再将第三次球磨料烘干即得六角晶系铁氧体;
所述聚二甲基硅氧烷制备过程如下:
所述聚二甲基硅氧烷(PDMS)是根据质量比10:1的比例称量二甲基硅氧烷(PDMS)前驱物(美国Dowcorning SYLGARD184硅橡胶)和二甲基硅氧烷(PDMS)固化剂(美国Dowcorning SYLGARD184硅橡胶),然后在室温条件下机械搅拌混合直至形成透明均匀的溶液即得;
所述混合过程如下:
将所述六角晶系铁氧体制备中所得的六角晶系铁氧体粉料颗粒过120 目筛后,按不同的质量百分比加入到所述聚二甲基硅氧烷制备中所得的二甲基硅氧烷(PDMS)溶液中,所述六角晶系铁氧体粉料和二甲基硅氧烷 (PDMS)溶液质量比为1:0.5,采用机械搅拌的方法进行均匀混合,然后经真空脱泡处理后,放入100℃烘箱中进行固化成基板,基板的厚度由浇筑的六角晶系铁氧体粉料与二甲基硅氧烷(PDMS)复合后的总质量决定。
实施例2中,主相材料和辅助相材料按质量百分比为1:1,六角晶系铁氧体配方分子式(Ba0.5+ySr0.5-y)3Co1.6+xZn0.4-xFe23O41的x=0,y=0。
掺杂剂WO3的掺杂量为0.2wt%。
所述六角晶系铁氧体制备包括下述步骤:
步骤一:以Fe2O3、BaCO3、SrCO3、ZnO和Co2O3为初始原料,将x=0, y=0代入六角晶系铁氧体配方分子式,代入后的配方分子式为 (Ba0.5Sr0.5)3Co1.6Zn0.4Fe23O41中折算出Fe2O3、BaCO3、SrCO3、ZnO和Co2O3的质量百分比,进行称料、混料、第一次球磨后烘干;
步骤二:将步骤一所得的第一次球磨烘干料过筛后在烧结钵中压实打孔,按3℃/分的升温速率升至1250℃预烧温度进行预烧,保温时间为2.5 小时,随炉冷却至室温得到铁氧体预烧料;
步骤三:将步骤二所得铁氧体预烧料掺杂0.2wt%的WO3后进行第二次球磨,第二次球磨后粉料的平均粒度控制在0.8~1.2微米,然后将第二次球磨料烘干;
步骤四:将步骤三所得的第二次球磨烘干料后在烧结钵中压实打孔,按2℃/分的升温速率升至1210℃烧结温度进行烧结,保温时间为2.5小时,随炉冷却至室温得到铁氧体烧结料;
步骤五:将步骤四所得的铁氧体烧结料进行第三次球磨,第三次球磨后粉料的平均粒度控制在1~2微米,再将第三次球磨料烘干即得六角晶系铁氧体;
所述聚二甲基硅氧烷制备过程如下:
所述聚二甲基硅氧烷(PDMS)是根据质量比10:1的比例称量二甲基硅氧烷(PDMS)前驱物(美国Dowcorning SYLGARD184硅橡胶)和二甲基硅氧烷(PDMS)固化剂(美国Dowcorning SYLGARD184硅橡胶),然后在室温条件下机械搅拌混合直至形成透明均匀的溶液即得;
所述混合过程如下:
将所述六角晶系铁氧体制备中所得的六角晶系铁氧体粉料颗粒过120 目筛后,按不同的质量百分比加入到所述聚二甲基硅氧烷制备中所得的二甲基硅氧烷(PDMS)溶液中,所述六角晶系铁氧体粉料和二甲基硅氧烷 (PDMS)溶液质量比为1:1,采用机械搅拌的方法进行均匀混合,然后经真空脱泡处理后,放入100℃烘箱中进行固化成基板,基板的厚度由浇筑的六角晶系铁氧体粉料与二甲基硅氧烷(PDMS)复合后的总质量决定。
实施例3中,主相材料和辅助相材料按质量百分比为1:1.5,六角晶系铁氧体配方分子式(Ba0.5+ySr0.5-y)3Co1.6+xZn0.4-xFe23O41的x=0.1,y=0.2。
掺杂剂WO3的掺杂量为0.3wt%。
所述六角晶系铁氧体制备包括下述步骤:
步骤一:以Fe2O3、BaCO3、SrCO3、ZnO和Co2O3为初始原料,将x=0.1, y=0.2代入六角晶系铁氧体配方分子式,代入后的配方分子式为 (Ba0.7Sr0.3)3Co1.7Zn0.3Fe23O41中折算出Fe2O3、BaCO3、SrCO3、ZnO和Co2O3的质量百分比,进行称料、混料、第一次球磨后烘干;
步骤二:将步骤一所得的第一次球磨烘干料过筛后在烧结钵中压实打孔,按3℃/分的升温速率升至1260℃预烧温度进行预烧,保温时间为3小时,随炉冷却至室温得到铁氧体预烧料;
步骤三:将步骤二所得铁氧体预烧料掺杂0.3wt%的WO3后进行第二次球磨,第二次球磨后粉料的平均粒度控制在0.8~1.2微米,然后将第二次球磨料烘干;
步骤四:将步骤三所得的第二次球磨烘干料后在烧结钵中压实打孔,按 2℃/分的升温速率升至1220℃烧结温度进行烧结,保温时间为3小时,随炉冷却至室温得到铁氧体烧结料;
步骤五:将步骤四所得的铁氧体烧结料进行第三次球磨,第三次球磨后粉料的平均粒度控制在1~2微米,再将第三次球磨料烘干即得六角晶系铁氧体;
所述聚二甲基硅氧烷制备过程如下:
所述聚二甲基硅氧烷(PDMS)是根据质量比10:1的比例称量二甲基硅氧烷(PDMS)前驱物(美国Dowcorning SYLGARD184硅橡胶)和二甲基硅氧烷(PDMS)固化剂(美国Dowcorning SYLGARD184硅橡胶),然后在室温条件下机械搅拌混合直至形成透明均匀的溶液即得;
所述混合过程如下:
将所述六角晶系铁氧体制备中所得的六角晶系铁氧体粉料颗粒过120 目筛后,按不同的质量百分比加入到所述聚二甲基硅氧烷制备中所得的二甲基硅氧烷(PDMS)溶液中,所述六角晶系铁氧体粉料和二甲基硅氧烷 (PDMS)溶液质量比为1:1.5,采用机械搅拌的方法进行均匀混合,然后经真空脱泡处理后,放入100℃烘箱中进行固化成基板,基板的厚度由浇筑的六角晶系铁氧体粉料与二甲基硅氧烷(PDMS)复合后的总质量决定。
将各实施例的基板切割成圆片和圆环形的标样,得到高柔韧性磁介复合基板材料制备样品,经测试,在1GHz时的磁介性能如下所示:
表1实施案例磁介性能
Figure RE-GDA0002468469250000101
Figure RE-GDA0002468469250000111
可见,对于几个实施案例,在1GHz时其样品的磁导率在1.7~2.8之间,介电常数在4~6之间,频段内介电损耗低于0.01,磁损耗低于0.2;根据斯洛克定律推断其磁导率的截止频率在8GHz以上,因此其适用频率至少可到 3~5GHz。
将上述各实施例获得的材料制成长为2厘米,宽为1厘米,厚度为2 毫米的基板,可以沿长边方向实现180度完全的对折。可见,本发明实施例的方案,可以获得柔韧性极佳的磁介基板材料,该柔韧性远远超过以前纯陶瓷体系的磁介材料和铁氧体与有机树脂等复合得到的磁介材料,因此在可穿戴设备等需要基板弯曲变形的场景应用前景很好。
实施例4
将本发明的高柔韧性磁介复合基板材料制成长为2厘米,宽为1厘米,厚度为2毫米的基板,可以沿长边方向实现180度完全的对折,这样的柔韧性方便于各种形状的加工,应用于可穿戴设备中,制成弯曲部件。
本发明的优点在于:本发明是一种将起始磁导率大于15和截止频率大于1GHz的六角晶系铁氧体粉料与聚二甲基硅氧烷(PDMS)进行复合,制备具有很好柔韧性的磁介天线基板材料的方法,该方法操作简单并适合于批量化生产。且柔韧性远远超过以前纯陶瓷体系的磁介材料和铁氧体与有机树脂等复合得到的磁介材料,因此在可穿戴设备等需要基板弯曲变形的场景应用前景很好。该材料在1GHz测试时,其磁导率在1.7~2.8之间,介电常数在4~6之间,频段内介电损耗低于0.01,磁损耗低于0.2;该材料是一种很好的具有高柔韧性的磁介基板材料,除了可用于天线中外,在需要磁介性能的柔性吸波材料领域也有很好的应用前景。
虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。

Claims (5)

1.一种高柔韧性磁介复合基板材料,其特征在于:其由主相材料和辅助相材料按质量百分比为1:0.5~1.5复合而成,所述主相材料为起始磁导率大于15和截止频率大于1GHz的六角晶系铁氧体,所述六角晶系铁氧体配方分子式为(Ba0.5+ySr0.5-y)3Co1.6+xZn0.4-xFe23O41,其中x的取值范围为-0.1~0.1,y的取值范围为-0.2~0.2,所述辅助相材料为聚二甲基硅氧烷;
掺杂剂为WO3,掺杂量为0.1~0.3wt%。
2.如权利要求1所述的一种高柔韧性磁介复合基板材料,其特征在于:所述六角晶系铁氧体按如下方法制得:
以Fe2O3、BaCO3、SrCO3、ZnO和Co2O3为初始原料,按照六角晶系铁氧体配方分子式(Ba0.5+ ySr0.5-y)3Co1.6+xZn0.4-xFe23O41中金属元素的摩尔比例折算出Fe2O3、BaCO3、SrCO3、ZnO和Co2O3的质量百分比,进行称料、混料、第一次球磨后烘干;
然后将所得的第一次球磨烘干料过筛后在烧结钵中压实打孔,按3℃/分的升温速率升至1240~1260℃预烧温度进行预烧,保温2~3小时后,随炉冷却至室温得到铁氧体预烧料;
所得铁氧体预烧料掺杂0.1%~0.3wt%的WO3后进行第二次球磨,第二次球磨后粉料的平均粒度控制在0.8~1.2微米,然后将第二次球磨料烘干;
所得的第二次球磨烘干料后在烧结钵中压实打孔,按2℃/分的升温速率升至1200~1220℃烧结温度进行烧结,保温2~3小时后,随炉冷却至室温得到铁氧体烧结料;
最后所获得的铁氧体烧结料进行第三次球磨,第三次球磨后粉料的平均粒度控制在1~2微米,再将第三次球磨料烘干后即得六角晶系铁氧体。
3.如权利要求1所述的一种高柔韧性磁介复合基板材料,其特征在于:所述聚二甲基硅氧烷是根据质量比10:1的比例称量二甲基硅氧烷的前驱物和固化剂,然后在室温条件下机械搅拌混合直至形成透明均匀的溶液即得。
4.一种高柔韧性磁介复合基板材料的制备方法,其特征在于:包括六角晶系铁氧体制备、聚二甲基硅氧烷制备和混合过程;
所述六角晶系铁氧体制备包括下述步骤:
步骤一:以Fe2O3、BaCO3、SrCO3、ZnO和Co2O3为初始原料,按照六角晶系铁氧体配方分子式(Ba0.5+ySr0.5-y)3Co1.6+xZn0.4-xFe23O41中金属元素的摩尔比例折算出Fe2O3、BaCO3、SrCO3、ZnO和Co2O3的质量百分比,进行称料、混料、经第一次球磨后烘干;其中,x=-0.1~0.1,y=-0.2~0.2;
步骤二:将步骤一所得的第一次球磨烘干料过筛后在烧结钵中压实打孔,按3℃/分的升温速率升至1240~1260℃预烧温度进行预烧,保温2~3小时后,随炉冷却至室温得到铁氧体预烧料;
步骤三:将步骤二所得铁氧体预烧料掺杂0.1~0.3wt%的WO3后进行第二次球磨,第二次球磨后粉料的平均粒度控制在0.8~1.2微米,然后将第二次球磨料烘干;
步骤四:将步骤三所得的第二次球磨烘干料后在烧结钵中压实打孔,按2℃/分的升温速率升至1200~1220℃烧结温度进行烧结,保温2~3小时后,随炉冷却至室温得到铁氧体烧结料;
步骤五:将步骤四所得的铁氧体烧结料进行第三次球磨,第三次球磨后粉料的平均粒度控制在1~2微米,再将第三次球磨料烘干即得六角晶系铁氧体;
所述聚二甲基硅氧烷制备过程如下:
所述聚二甲基硅氧烷是根据质量比10:1的比例称量二甲基硅氧烷前驱物和二甲基硅氧烷固化剂,然后在室温条件下机械搅拌混合直至形成透明均匀的溶液即得;
所述混合过程如下:
将所述六角晶系铁氧体制备中所得的六角晶系铁氧体粉料颗粒过120目筛后,按不同的质量百分比加入到所述聚二甲基硅氧烷制备中所得的二甲基硅氧烷溶液中,所述六角晶系铁氧体粉料和二甲基硅氧烷溶液质量比为1:0.5~1.5,采用机械搅拌的方法进行均匀混合,然后经真空脱泡处理后,放入100℃烘箱中进行固化成基板,基板的厚度由浇筑的六角晶系铁氧体粉料与二甲基硅氧烷复合后的总质量决定。
5.一种高柔韧性磁介复合基板材料的应用,其特征在于:将如权利要求1至3任一项的高柔韧性磁介复合基板材料应用于可穿戴设备中。
CN202010172783.7A 2020-03-12 2020-03-12 一种高柔韧性磁介复合基板材料及其制备方法和应用 Active CN111302706B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010172783.7A CN111302706B (zh) 2020-03-12 2020-03-12 一种高柔韧性磁介复合基板材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010172783.7A CN111302706B (zh) 2020-03-12 2020-03-12 一种高柔韧性磁介复合基板材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111302706A true CN111302706A (zh) 2020-06-19
CN111302706B CN111302706B (zh) 2021-07-20

Family

ID=71160562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010172783.7A Active CN111302706B (zh) 2020-03-12 2020-03-12 一种高柔韧性磁介复合基板材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111302706B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116864293A (zh) * 2023-08-02 2023-10-10 山东春光磁电科技有限公司 一种高频铁氧体材料制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102408202A (zh) * 2011-08-17 2012-04-11 电子科技大学 一种微带天线复合基板材料及其制备方法
CN103304186A (zh) * 2013-07-03 2013-09-18 电子科技大学 一种铁氧体基复合磁介天线基板材料及其制备方法
CN104194345A (zh) * 2014-09-19 2014-12-10 大连海事大学 一种具有磁极性的聚二甲基硅氧烷及其制备方法
CN105322297A (zh) * 2014-07-30 2016-02-10 三星电机株式会社 磁介质天线
CN108475568A (zh) * 2016-01-18 2018-08-31 罗杰斯公司 包括六角铁氧体纤维的磁介电材料、制备方法及其用途
KR102053530B1 (ko) * 2018-05-25 2019-12-06 울산과학기술원 플렉서블 하이브리드 시트 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102408202A (zh) * 2011-08-17 2012-04-11 电子科技大学 一种微带天线复合基板材料及其制备方法
CN103304186A (zh) * 2013-07-03 2013-09-18 电子科技大学 一种铁氧体基复合磁介天线基板材料及其制备方法
CN105322297A (zh) * 2014-07-30 2016-02-10 三星电机株式会社 磁介质天线
CN104194345A (zh) * 2014-09-19 2014-12-10 大连海事大学 一种具有磁极性的聚二甲基硅氧烷及其制备方法
CN108475568A (zh) * 2016-01-18 2018-08-31 罗杰斯公司 包括六角铁氧体纤维的磁介电材料、制备方法及其用途
KR102053530B1 (ko) * 2018-05-25 2019-12-06 울산과학기술원 플렉서블 하이브리드 시트 및 이의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116864293A (zh) * 2023-08-02 2023-10-10 山东春光磁电科技有限公司 一种高频铁氧体材料制备工艺
CN116864293B (zh) * 2023-08-02 2024-05-24 山东春光磁电科技有限公司 一种高频铁氧体材料制备工艺

Also Published As

Publication number Publication date
CN111302706B (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
CN103304186B (zh) 一种铁氧体基复合磁介天线基板材料及其制备方法
CN101870584B (zh) 一种钼基超低温烧结微波介质陶瓷材料的制备方法
CN102875148B (zh) 可低温烧结的微波介电陶瓷LiCa3(Mg1-xZnx) V3O12及制备方法
CN104193224B (zh) 一种微带天线有机复合基板材料及其制备方法
CN102408202B (zh) 一种微带天线复合基板材料及其制备方法
CN108358632B (zh) 一种超低温烧结高Q×f值微波介质材料及其制备方法
CN101823880B (zh) 一种硅铍石型钼基钨基超低温烧结微波介质陶瓷材料及其制备方法
Zheng et al. Novel high-frequency magneto-dielectric properties of CaO–SiO 2 Co-doped NiZnCo spinel ferrites for RF and microwave device applications
CN113651609A (zh) 一种微波铁氧体材料及其制备方法与应用
CN109231967A (zh) Bi2O3-B2O3二元体系微波介质陶瓷材料及其制备方法
Xu et al. Influence of LZN nanoparticles on microstructure and magnetic properties of bi-substituted LiZnTi low-sintering temperature ferrites
CN111302706B (zh) 一种高柔韧性磁介复合基板材料及其制备方法和应用
CN101462872B (zh) 一种低频微带天线基板材料及其制备方法
CN109467432A (zh) 一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法
CN103044025A (zh) 钼基低温烧结温度稳定型微波介质陶瓷材料及其制备方法
CN104710176B (zh) 超低温烧结温度稳定型钒基微波介质陶瓷材料及其制备方法
CN109053189A (zh) 一种低介电常数高性能微波介质陶瓷材料、制备方法及应用
CN109354495A (zh) 镁锆铌锑系微波介质陶瓷及制备方法和应用
CN106587976A (zh) 一种镁铁氧体基磁介材料及其制备方法
CN105542156A (zh) 一种导电聚苯胺纳米复合微波吸收材料的制备方法
CN102838346A (zh) 一种以尖晶石铁氧体为母体的天线基板材料及其制备方法
Deng Microwave absorbing properties of La1-x Ba x MnO3 (x= 0.1, 0.2, 0.3, 0.4, 0.5) nano-particles
Liu et al. Ultra-low temperature sintered (1–x) BaV2O6-xLiF ceramics for ULTCC and 5 G millimeter-wave antenna applications
CN109534815A (zh) 改性BaO-TiO2-La2O3介电陶瓷的制备方法
CN103467092A (zh) 一种温度稳定型低温烧结ltcc微波介质陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240403

Address after: Building 2, 2nd Floor, Research and Innovation Electronics, No. 96 Gangbian Avenue, Ganzhou Economic and Technological Development Zone, Ganzhou City, Jiangxi Province, 341003

Patentee after: JIANGXI XINGKANG ELECTRONIC TECHNOLOGY Co.,Ltd.

Country or region after: China

Address before: 341003 1st floor, building 15, standard workshop, Xiangjiang science and Technology Park, 168 Xiangjiang Avenue, Ganzhou economic and Technological Development Zone, Ganzhou City, Jiangxi Province

Patentee before: Jiangxi chongheng industrial porcelain Technology Co.,Ltd.

Country or region before: China