CN111272533A - 一种研究高温超导材料氧元素扩散机制的样品制备方法 - Google Patents

一种研究高温超导材料氧元素扩散机制的样品制备方法 Download PDF

Info

Publication number
CN111272533A
CN111272533A CN202010154262.9A CN202010154262A CN111272533A CN 111272533 A CN111272533 A CN 111272533A CN 202010154262 A CN202010154262 A CN 202010154262A CN 111272533 A CN111272533 A CN 111272533A
Authority
CN
China
Prior art keywords
oxygen
diffusion
sample
temperature superconducting
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010154262.9A
Other languages
English (en)
Inventor
索红莉
刘晶
马麟
刘敏
王毅
张小龙
纪耀堂
崔瑾
张晨曦
周宇琦
武鑫宇
刘壮壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202010154262.9A priority Critical patent/CN111272533A/zh
Publication of CN111272533A publication Critical patent/CN111272533A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q

Abstract

一种研究高温超导材料氧元素扩散机制的样品制备方法属于高温超导材料制备技术领域。选用已有的高温超导材料,并保证表面没有隔绝氧扩散的其他材料。通过物理沉积的方式在材料表面镀上一定厚度的金属作为隔绝金属层,这层金属具有极低的氧扩散速率且不与高温超导材料发生反应。随后去除掉某一个方向的金属,使氧元素在一定温度下可以通过指定方向扩散进高温超导材料,从而为研究氧元素在高温超导材料中沿不同方向扩散的速率和机制提供最适合的样品制备方式。

Description

一种研究高温超导材料氧元素扩散机制的样品制备方法
技术领域
本发明涉及一种超导材料的制备方法,特别涉及一种用于研究高温超导材料氧扩散机制的样品的制备方法。
背景技术
超导技术是一项综合性的高技术,可广泛用于能源、医疗、交通、科学研究及国防军工等重大工程方面,并将会对国民经济和人类社会的发展产生巨大的推动作用。以Bi2Sr2Ca2Cu3O10(Bi2223)为代表的第一代高温超导材料和YBa2Cu3O7-x(YBCO)为代表的第二代高温超导材料,由于材料其高的转变温度,高的载流能力、低的交流损失的等优点成为目前最有可能大规模工业应用的一种超导材料。由于两代高温超导材料都是钡铜氧类陶瓷结构,其中氧含量对超导性能有着非常重要的影响,而氧元素在高温下会快速离开超导材料,较大程度的氧缺陷会直接导致材料完全失去超导性能。在两代高温超导材料的材料合成、线带材制备以及强电应用中,不可避免的存在一定温度的热处理,从而导致一定程度的氧缺陷。如何快速有效的弥补这种氧缺陷,是高温超导材料中的重要研究课题。
从晶格角度来说不论Bi2223还是YBCO都是c轴远远大于a/b轴的晶体结构,因此,氧元素在c轴和a/b轴的扩散速率是完全不同的。从材料制备角度来说,不论Bi2223还是YBCO为了承载高传输电流,都需要一定的织构,因此在宏观角度上,不同的几何方向上的氧元素扩散速率也是不同的。尤其是YBCO会制备成薄带,成品具有极大的几何各向异性,更加使得氧元素的扩散速率差别极大。但是对于高温超导材料中氧扩散机制的问题始终没有得到透彻的研究,主要我们无法控制氧元素沿指定方向扩散,因此无法直接研究氧元素在不同的晶面或材料不同的几何方向上的扩散机制。
发明内容
本发明的目的是开发一种全新的用于研究高温超导材料氧扩散机制的样品制备方法,为研究不同方向上氧扩散速率和机制提供有效的样品。
本发明提供的样品制备方法,其主要特征在于:选用已有的高温超导材料,通过物理沉积的方式在材料表面镀上一定厚度的金属,金、铂或金铂合金。这层金属具有极低的氧扩散速率且不与高温超导材料发生反应,随后去除掉某一个方向的金属,使氧元素在一定温度下可以通过指定方向扩散进高温超导材料,具体包括以下步骤:
(1)选取要进行氧扩散研究的高温超导材料,材料种类包括Bi2Sr2Ca2Cu3O10(Bi2223),Bi2Sr2CaCu3O8(Bi2212)和REBa2Cu3O7-x(RE为稀土元素,REBCO),材料形状包括单晶、块材、线材和带材。选取样品时,确保样品表面没有阻碍氧元素扩散的其它材料,如果有阻碍氧元素扩散的其他材料,需要进行去除;
(2)通过物理沉积的方法在(1)步骤中选取的高温超导材料所有表面均匀镀上一层低氧元素扩散的隔绝金属层。为防止隔绝金属层与高温超导材料发生反应,金属类型的选择为金、铂和金铂合金。为了有效隔绝氧元素的扩散同时兼顾经济性,金属层的厚度为100nm到5μm。镀膜的物理沉积方法可以选择为脉冲激光沉积(PLD)和磁控溅射沉积两种,在沉积时,务必保证样品台水冷至100摄氏度以下,以防止在沉积薄膜中氧元素不可控的流失;
YBCO超导层在300度空气中就会缓慢失去氧。本专利就是为了研究氧的失去和补充。我们必须严格控制任何一个环节,保证不会出实验中不会出现我们不可控的氧流失现象。
(3)将镀好隔绝金属层的样品在空气中进行热处理使其可控失氧,随后通过物理方法移除样品某一特定方向上的额隔绝金属层,打开特定方向的氧扩散通道,为之后研究氧扩散速率和机制做好样品制备。
根据过往实验表明,500nm到1μm就可以有效的阻止氧扩散了。这个厚度没有明确的指标,只要完全覆盖了就行。但是采用磁控溅射和脉冲激光沉积两种方法,在比较薄的薄膜中,形态不一样。有时候300nm也可以完全覆盖。厚度只是想表达,这一层金属完全把YBCO层覆盖住而已。
以YBCO商业带材为选择材料的样品制备流程图如图1所示:商业的YBCO带材外部全方位包裹Cu这种无法使氧元素扩散的材料,所以首先通过化学刻蚀的方法移除Cu覆盖层。在完全暴露出YBCO层可以使氧元素从不同方向扩散之后,通过物理沉积的方法在样品表面所有方向均匀镀上金隔绝层,至此YBCO商业带材三个方向上均无法进行氧扩散。根据实验需求,通过物理方法将某一个特定方向的金隔绝层去除,使得在特定方向上可以使氧元素对YBCO进行定向扩散,从而研究氧元素扩散机制和速率。
与现有的样品制备技术相比,本发明具有以下有益的效果:
本发明采用的特殊的制备流程允许我们对各种形式的第一代和第二代高温超导材料进行氧元素扩散机制的研究,并且通过均匀覆盖隔绝金属层并移除某一个方向的制备过程,允许我们对高温超导材料沿不同方向的扩散机制和速度进行精准研究,这是以往任何样品制备流程无法做到的。
附图说明
图1、氧扩散样品制备路线示意图;
图2、YBCO超导带材850℃空气中热处理2小时后的M-T曲线;
图3、YBCO超导带材在500℃、1atm的氧分压下热处理5小时后的M-T曲线。
具体实施方式
以下结合附图和具体实施方式进一步说明本发明。
实施例1:选用商业YBCO超导带材为目标样品,通过化学刻蚀的方法移除表面的Cu覆盖层和Ag覆盖层。通过激光脉冲沉积的方式在YBCO超导带材表面每个方向均匀镀上厚度为5μm的Au作为隔绝金属层。将样品850℃空气中热处理2小时,通过磁测量法测得样品的超导转变如图2所示,其转变曲线非常的缓慢,证明YBCO样品中存在大量氧缺陷。随后将超导带材在长度和厚度平面上的金隔绝层通过物理方法去除,随后在500℃、1atm的氧分压下热处理5小时,通过磁测量法测得样品的超导转变如图3所示,其转变恢复为非常锐利。因此证明,氧元素可以通过去除掉金隔绝层的方向对YBCO超导带材进行扩散。
实施例2:选用Bi2223圆柱形块材作为目标样品,由于样品为纯Bi2223块材,表面不存在其他阻碍氧元素扩散的材料,无需进行处理。通过磁控溅射的方法在Bi2223块材表面均匀镀上100nm的Pt作为隔绝金属层。将样品750℃空气中热处理2小时,通过磁测量法测得样品的超导转变,其转变曲线非常的缓慢,证明Bi2223样品中存在大量氧缺陷。随后将圆柱形块材圆形表面的隔绝金属层去除掉,随后在500℃、1atm的氧分压下热处理10小时,通过磁测量法测得样品的超导转变,其转变恢复为非常锐利。因此证明,氧元素可以通过去除掉金隔绝层的方向对Bi2223块材进行扩散。

Claims (4)

1.一种研究高温超导材料氧元素扩散机制的样品制备方法,其特征在于:
选用已有的高温超导材料,通过物理沉积的方式在材料表面镀上一定厚度的金属,金、铂或金铂合金,随后去除掉某一个方向的金属,使氧元素在一定温度下通过指定方向扩散进高温超导材料。
2.根据权利要求1所述的制备方法,其特征在于,包括以下步骤:
(1)选取要进行氧扩散研究的高温超导材料,材料形状包括单晶、块材、线材和带材;选取样品时,确保样品表面没有阻碍氧元素扩散的其它材料,如果有阻碍氧元素扩散的其他材料,需要进行去除;
(2)通过物理沉积的方法在(1)步骤中选取的高温超导材料所有表面均匀镀上一层低氧元素扩散的隔绝金属层;金属类型的选择为金、铂或金铂合金;金属层的厚度为100nm到5μm;
(3)将镀好隔绝金属层的样品在空气中进行热处理使其可控失氧,随后通过物理方法移除样品某一特定方向上的额隔绝金属层,打开特定方向的氧扩散通道,为之后研究氧扩散速率和机制做好样品制备。
3.根据权利要求1所述的制备方法,其特征在于,
镀膜的物理沉积方法为脉冲激光沉积或磁控溅射沉积,在沉积时,务必保证样品台水冷至100摄氏度以下。
4.根据权利要求1所述的制备方法,其特征在于,
YBCO带材外部全方位包裹Cu这种无法使氧元素扩散的材料,所以首先通过化学刻蚀的方法移除Cu覆盖层;在完全暴露出YBCO层可以使氧元素从不同方向扩散之后,通过物理沉积的方法在样品表面所有方向均匀镀上金隔绝层,至此YBCO商业带材三个方向上均无法进行氧扩散;通过物理方法将某一个特定方向的金隔绝层去除,使得在特定方向上使氧元素对YBCO进行定向扩散,从而研究氧元素扩散机制和速率。
CN202010154262.9A 2020-03-07 2020-03-07 一种研究高温超导材料氧元素扩散机制的样品制备方法 Pending CN111272533A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010154262.9A CN111272533A (zh) 2020-03-07 2020-03-07 一种研究高温超导材料氧元素扩散机制的样品制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010154262.9A CN111272533A (zh) 2020-03-07 2020-03-07 一种研究高温超导材料氧元素扩散机制的样品制备方法

Publications (1)

Publication Number Publication Date
CN111272533A true CN111272533A (zh) 2020-06-12

Family

ID=71004152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010154262.9A Pending CN111272533A (zh) 2020-03-07 2020-03-07 一种研究高温超导材料氧元素扩散机制的样品制备方法

Country Status (1)

Country Link
CN (1) CN111272533A (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87210305U (zh) * 1987-07-23 1988-07-06 北京有色金属研究总院 金属氧化物超导带材
CN88101210A (zh) * 1987-03-13 1988-09-21 株式会社东芝 化合物超导体导线及其制造方法
JPH0393685A (ja) * 1989-09-04 1991-04-18 Dowa Mining Co Ltd 酸化物超電導バルクの表面安定化処理法
JPH07335051A (ja) * 1994-06-02 1995-12-22 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 安定化層を備えた酸化物超電導テープ及びその製造方法
JP2000106043A (ja) * 1998-07-30 2000-04-11 Sumitomo Electric Ind Ltd 酸化物超電導素線とそれを集合した酸化物超電導導体およびそれらの製造方法
JP2001351444A (ja) * 2000-06-07 2001-12-21 Toshiba Corp 酸化物超電導体及びその製造方法
US20050079116A1 (en) * 2001-06-22 2005-04-14 Fujikura Ltd. Oxide superconducting conductor and its production method
CN1719553A (zh) * 2005-05-20 2006-01-11 清华大学 一种高温超导覆膜导体及其制备方法
JP2012022882A (ja) * 2010-07-14 2012-02-02 Fujikura Ltd 酸化物超電導導体用基材及びその製造方法と酸化物超電導導体及びその製造方法
CN102751040A (zh) * 2012-05-29 2012-10-24 电子科技大学 高温超导双面带材及制备方法
JP2013012321A (ja) * 2011-06-28 2013-01-17 Fujikura Ltd 酸化物超電導導体とその製造方法
CN103985479A (zh) * 2014-04-28 2014-08-13 赵遵成 一种低成本高温超导涂层导体带材的制备方法
KR101459583B1 (ko) * 2013-09-11 2014-11-10 주식회사 서남 초전도체 및 이의 제조 방법
JP2015103348A (ja) * 2013-11-22 2015-06-04 株式会社フジクラ 酸化物超電導線材の製造方法
JP2017103178A (ja) * 2015-12-04 2017-06-08 株式会社フジクラ 超電導線材および超電導線材の製造方法
CN108342757A (zh) * 2018-02-05 2018-07-31 苏州新材料研究所有限公司 一种电镀铜制备高温超导带材保护层的方法
CN109741878A (zh) * 2018-12-19 2019-05-10 西部超导材料科技股份有限公司 一种高温超导材料的制备方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88101210A (zh) * 1987-03-13 1988-09-21 株式会社东芝 化合物超导体导线及其制造方法
CN87210305U (zh) * 1987-07-23 1988-07-06 北京有色金属研究总院 金属氧化物超导带材
JPH0393685A (ja) * 1989-09-04 1991-04-18 Dowa Mining Co Ltd 酸化物超電導バルクの表面安定化処理法
JPH07335051A (ja) * 1994-06-02 1995-12-22 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 安定化層を備えた酸化物超電導テープ及びその製造方法
JP2000106043A (ja) * 1998-07-30 2000-04-11 Sumitomo Electric Ind Ltd 酸化物超電導素線とそれを集合した酸化物超電導導体およびそれらの製造方法
JP2001351444A (ja) * 2000-06-07 2001-12-21 Toshiba Corp 酸化物超電導体及びその製造方法
US20050079116A1 (en) * 2001-06-22 2005-04-14 Fujikura Ltd. Oxide superconducting conductor and its production method
CN1719553A (zh) * 2005-05-20 2006-01-11 清华大学 一种高温超导覆膜导体及其制备方法
JP2012022882A (ja) * 2010-07-14 2012-02-02 Fujikura Ltd 酸化物超電導導体用基材及びその製造方法と酸化物超電導導体及びその製造方法
JP2013012321A (ja) * 2011-06-28 2013-01-17 Fujikura Ltd 酸化物超電導導体とその製造方法
CN102751040A (zh) * 2012-05-29 2012-10-24 电子科技大学 高温超导双面带材及制备方法
KR101459583B1 (ko) * 2013-09-11 2014-11-10 주식회사 서남 초전도체 및 이의 제조 방법
JP2015103348A (ja) * 2013-11-22 2015-06-04 株式会社フジクラ 酸化物超電導線材の製造方法
CN103985479A (zh) * 2014-04-28 2014-08-13 赵遵成 一种低成本高温超导涂层导体带材的制备方法
JP2017103178A (ja) * 2015-12-04 2017-06-08 株式会社フジクラ 超電導線材および超電導線材の製造方法
CN108342757A (zh) * 2018-02-05 2018-07-31 苏州新材料研究所有限公司 一种电镀铜制备高温超导带材保护层的方法
CN109741878A (zh) * 2018-12-19 2019-05-10 西部超导材料科技股份有限公司 一种高温超导材料的制备方法

Similar Documents

Publication Publication Date Title
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
KR100418279B1 (ko) 2축 배향조직을 가진 제품 및 그의 제조방법
CN100395847C (zh) 一种高温超导覆膜导体及其制备方法
Watanabe et al. Progress and future prospects of research and development on coated conductors in Japan
EP2460197B1 (en) Superconducting article with prefabricated nanostructure for improved flux pinning
JP3854551B2 (ja) 酸化物超電導線材
CN102610322B (zh) 高温超导涂层导体双层缓冲层结构及其动态沉积方法
JP4602911B2 (ja) 希土類系テープ状酸化物超電導体
JP5415696B2 (ja) 機能が向上された厚膜超伝導フィルム
JP4316070B2 (ja) 高強度配向多結晶金属基板および酸化物超電導線材
CN102409298B (zh) 第二代高温超导带材中超导层的连续化快速激光镀膜方法
JP5799081B2 (ja) 単層コーティングによる酸化物厚膜
JP2008514545A5 (zh)
JP2002150855A (ja) 酸化物超電導線材およびその製造方法
EP2410586B1 (en) Method for producing a HTS coated conductor and HTS coated conductor with reduced losses
CN102251219B (zh) 制备ysz缓冲层的多通道激光镀膜方法
CN111272533A (zh) 一种研究高温超导材料氧元素扩散机制的样品制备方法
KR970009739B1 (ko) 고온초전도박막의 제조방법
Matsuda et al. Transmission electron microscopic studies on growth mechanism of YBa2Cu3O7− y films formed by advanced trifluoroacetates metalorganic deposition process
Nigro et al. Fabrication of LaAlO3/Pt (100)/Hastelloy C276 and CeO2 (100)/Pt (100)/Hastelloy C276 multilayers by metallorganic chemical vapor deposition
CN102286711A (zh) 双轴织构镍-钨金属基带的多通道快速原位退火方法
Willis et al. Superconductivity program for electric systems, Superconductivity Technology Center, Los Alamos National Laboratory, annual progress report for fiscal year 1997
JP2004319256A (ja) 銀テープとその製造方法及び超電導線材
Podkletnov et al. Superconducting high-Jc coatings on copper substrates by RF magnetron sputtering
Lehndorff Conductor Preparation and Phase Evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200612