CN111253605A - 耐高温磺化聚酰亚胺-聚酰亚胺复合膜及其制备方法 - Google Patents

耐高温磺化聚酰亚胺-聚酰亚胺复合膜及其制备方法 Download PDF

Info

Publication number
CN111253605A
CN111253605A CN202010198966.6A CN202010198966A CN111253605A CN 111253605 A CN111253605 A CN 111253605A CN 202010198966 A CN202010198966 A CN 202010198966A CN 111253605 A CN111253605 A CN 111253605A
Authority
CN
China
Prior art keywords
polyimide
composite membrane
sulfonated
membrane
sulfonated polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010198966.6A
Other languages
English (en)
Inventor
翟凤霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sushui Energy Technology Suzhou Co Ltd
Original Assignee
Sushui Energy Technology Suzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sushui Energy Technology Suzhou Co Ltd filed Critical Sushui Energy Technology Suzhou Co Ltd
Priority to CN202010198966.6A priority Critical patent/CN111253605A/zh
Publication of CN111253605A publication Critical patent/CN111253605A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种耐高温磺化聚酰亚胺‑聚酰亚胺复合膜及其制备方法,提供的磺化聚酰亚胺‑聚酰亚胺复合膜通过在磺化聚酰亚胺基膜上刮涂聚酰亚胺溶液制得。该复合膜主结构都是聚酰亚胺,相容性好,耐高温性能好;所以可以集高导电率、高阻醇性能于一体;利用该复合膜制得的膜电极,具有良好的电池性能。

Description

耐高温磺化聚酰亚胺-聚酰亚胺复合膜及其制备方法
技术领域
本发明涉及质子交换膜领域,具体是涉及一种耐高温磺化聚酰亚胺-聚酰亚胺复合膜及其制备方法。
背景技术
燃料电池因其效率高,无噪音等特点,日益受到全球的关注,按照隔膜的不同,燃料电池又可分为质子交换膜燃料电池、固体氧化物燃料电池、熔融碳酸盐燃料电池等;而质子交换膜燃料电池因其操作温度在200℃以内,被认为最有潜力大面积推广的技术,因此更是受到广泛的关注;作为质子交换膜燃料电池的核心部件,质子交换膜是人们关注的焦点;
Figure BDA0002418649330000011
系列全氟磺酸膜是目前应用最为广泛的商业化质子交换膜,具有质子导电率高,抗自由基氧化性优异等优点;然而其高昂的造价以及较高的燃料透过率一定程度上限制了其发展。开发相对低廉的磺化碳氢聚合物膜则是人类探索的其中一条道路,其中磺化聚酰亚胺是一类综合性能良好的替代材料,但其抗自由基氧化性较差,在专利《磺化聚酰亚胺-Nafion复合膜及其制备方法》中我们尝试利用磺化聚酰亚胺-Nafion复合技术提高抗自由基性能,但由于Nafion的特性,其制成的膜电极(MEA)高温性能表现一般,鉴于此,本发明设计了该磺化聚酰亚胺-聚酰亚胺复合结构。
发明内容
为了解决上述技术问题,本发明提出一种耐高温磺化聚酰亚胺-聚酰亚胺复合膜及其制备方法。磺化聚酰亚胺-聚酰亚胺复合膜以磺化聚酰亚胺为基膜,两侧各有一层聚酰亚胺微孔层。制备时加入造孔剂,形成聚酰亚胺的微孔结构,同时由于基膜和微孔层主链都是聚酰亚胺结构,相容性非常好,可使氢离子透过的界面阻力非常小。同时因微孔层的存在,大大降低了甲醇与磺化聚酰亚胺的接触,从而提高其使用寿命。同时鉴于聚酰亚胺的耐高温性,制得的膜电极(MEA)高温性能有了大幅提高。
本发明的技术方案是这样实现的:
一种耐高温磺化聚酰亚胺-聚酰亚胺复合膜,其结构包括磺化聚酰亚胺膜基膜,以及基膜两侧复合的聚酰亚胺微孔层。
一种耐高温磺化聚酰亚胺-聚酰亚胺复合膜的制备方法,包括以下步骤:
(1)基膜的制备:将磺化聚酰亚胺溶解在有机溶剂中,配置成质量浓度为2%-15%的铸膜液,过滤后待用,将玻璃板清洗干净后置于50-90℃的加热平台上,后将铸膜液浇筑其上,后于80-150℃真空烘箱中干燥,得到的膜在乙醇中充分洗涤,之后烘干后得到一定厚度的磺化聚酰亚胺基膜。
(2)聚酰亚胺溶液的配置:将聚酰亚胺树脂和造孔剂溶解在有机溶剂中,二者的质量比介于1:0.5~2之间,配置成质量浓度为1%-10%的铸膜液,过滤后备用;
(3)复合膜的制备:将基膜固定在玻璃板上,采用刮涂的方法分别在基膜两侧上涂覆一层聚酰亚胺溶液,并于50-80℃鼓风烘箱中干燥4-8h,随后在100-130℃真空烘箱中热处理1-5h,在基膜两侧均形成一层聚酰亚胺微孔层,得到的复合膜在乙醇中充分洗涤,烘干后得到所述磺化聚酰亚胺-聚酰亚胺复合膜。
进一步的,磺化聚酰亚胺的离子交换容量(IEC)为1.0-2.5mmol/g。
进一步的,步骤(1)中的有机溶剂为间甲酚、1-甲基吡咯烷酮、N,N-二甲基乙酰胺、二甲基亚砜中的一种。
进一步的,步骤(2)中造孔剂和聚酰亚胺树脂的质量为1:2-2:1。
进一步的,步骤(2)中的有机溶剂为、1-甲基吡咯烷酮、N,N-二甲基甲酰胺中的一种。
进一步的,基膜厚度为10-50μm,聚酰亚胺层厚度为5-30μm。
本发明的有益效果是:本发明公开了一种耐高温磺化聚酰亚胺-聚酰亚胺复合膜及其制备方法,提供的磺化聚酰亚胺-聚酰亚胺复合膜通过在磺化聚酰亚胺基膜上刮涂聚酰亚胺溶液制得。该复合膜主结构都是聚酰亚胺,相容性好,耐高温性能好;所以可以集高导电率、高阻醇性能于一体;利用该复合膜制得的膜电极,具有良好的电池性能。
附图说明
图1为本发明磺化聚酰亚胺-聚酰亚胺复合膜的结构示意图;
图2为本发明实施例1中的磺化聚酰亚胺-聚酰亚胺复合膜以及商业化的Nafion212膜组装的单电池的极化曲线以及寿命曲线。
具体实施方式
为了能够更清楚地理解本发明的技术内容,特举以下实施例详细说明,其目的仅在于更好理解本发明的内容而非限制本发明的保护范围。
实施例1
将离子交换容量(IEC)为1.73的磺化聚酰亚胺树脂溶解在间甲酚中,配置成质量浓度为2-15%的铸膜液,优选的,本实施例中的最佳质量浓度为10%。将玻璃板清洗干净后置于50-90℃的加热平台上,后将铸膜液浇筑其上;优选的,本实例采用的实验条件为80℃,后于80-150℃真空烘箱中干燥,优选的,本案例实施的条件为80℃,得到的膜在乙醇中充分洗涤,之后烘干后得到一定厚度的磺化聚酰亚胺基膜。
将聚酰亚胺树脂和造孔剂溶解在1-甲基吡咯烷酮中,配置成质量浓度为1-10%的铸膜液,优选的,本实施例的造孔剂和聚酰亚胺树脂比例为1:2,最佳质量浓度为5%。
将磺化聚酰亚胺基膜固定在玻璃板上,采用刮涂的方法在分别在基膜两侧上涂覆一层聚酰亚胺溶液,并于50-80℃鼓风烘箱中干燥4-8h,随后在100-130℃真空烘箱中热处理1-5h,在基膜两侧均形成一层聚酰亚胺微孔层。优选的,本实施例采用的温度分别为60℃和120℃,采用的时间分别为3h和2h。得到的复合膜在乙醇中充分洗涤,烘干后得到磺化聚酰亚胺-聚酰亚胺复合膜。本实施例中磺化聚酰亚胺基膜的厚度为35μm,复合膜的厚度为42μm,即聚酰亚胺层的厚度为7μm。
实施例2
将离子交换容量(IEC)为1.73的磺化聚酰亚胺树脂溶解在间甲酚中,配置成质量浓度为2-15%的铸膜液,优选的,本实施例中的最佳质量浓度为10%。将玻璃板清洗干净后置于50-90℃的加热平台上,后将铸膜液浇筑其上;优选的,本实例采用的实验条件为80℃,后于80-150℃真空烘箱中干燥,优选的,本案例实施的条件为80℃,得到的膜在乙醇中充分洗涤,之后烘干后得到一定厚度的磺化聚酰亚胺基膜。
将聚酰亚胺树脂和造孔剂溶解在1-甲基吡咯烷酮中,配置成质量浓度为1-10%的铸膜液,优选的,本实施例的造孔剂和聚酰亚胺树脂比例为1:2,最佳质量浓度为,10%。
将磺化聚酰亚胺基膜固定在玻璃板上,采用刮涂的方法在分别在基膜两侧上涂覆一层聚酰亚胺溶液,并于50-80℃鼓风烘箱中干燥4-8h,随后在100-130℃真空烘箱中热处理1-5h,在基膜两侧均形成一层聚酰亚胺微孔层,优选的,本实施例采用的温度分别为60℃和120℃,采用的时间分别为3h和2h。得到的复合膜在乙醇中充分洗涤,烘干后得到所述磺化聚酰亚胺-聚酰亚胺复合膜。
将聚酰亚胺树脂溶解在1-甲基吡咯烷酮中,配置成质量浓度为1-10%的铸膜液,优选的,本实施例的最佳质量浓度为10%。
将磺化聚酰亚胺基膜固定在玻璃板上,采用刮涂的方法在分别在基膜两侧上涂覆一层聚酰亚胺溶液,并于50-80℃鼓风烘箱中干燥4-8h,随后在100-130℃真空烘箱中热处理1-5h,在基膜两侧均形成一层聚酰亚胺微孔层,优选的,本实施例采用的温度分别为60℃和120℃,采用的时间分别为3h和2h。得到的复合膜在乙醇中充分洗涤,烘干后得到所述磺化聚酰亚胺-聚酰亚胺复合膜。本实施例中磺化聚酰亚胺基膜的厚度为35μm,复合膜的厚度为47μm,即聚酰亚胺层的厚度为12μm。
图1为本发明制得的磺化聚酰亚胺-聚酰亚胺复合膜的结构模型,中间层为磺化聚酰亚胺基膜1,两侧为聚酰亚胺微孔层2。该复合膜主结构都是聚酰亚胺,相容性好,耐高温性能好;所以可以集高导电率、高阻醇性能于一体;利用该复合膜制得的膜电极,具有良好的电池性能。
图2为本发明实施例1中的磺化聚酰亚胺基膜M1、磺化聚酰亚胺-聚酰亚胺复合膜M2以及商业化的Nafion212膜组装的单电池的极化曲线以及功率密度,以及老化曲线,由图可知磺化聚酰亚胺-聚酰亚胺复合膜组装的单电池表现出了良好的电池性能以及使用寿命。
以上实施例是参照附图,对本发明的优选实施例进行详细说明,本领域的技术人员通过对上述实施例进行各种形式上的修改或变更,但不背离本发明的实质的情况下,都落在本发明的保护范围之内。

Claims (7)

1.一种耐高温的磺化聚酰亚胺-聚酰亚胺复合膜,其特征在于,所述复合膜以磺化聚酰亚胺膜作为基膜,基膜两侧复合一层聚酰亚胺微孔层。
2.一种磺化聚酰亚胺-聚酰亚胺复合膜的制备方法,其特征在于,包括以下步骤:
(1)基膜的制备:将磺化聚酰亚胺溶解在有机溶剂中,配置成质量浓度为2%-15%的铸膜液,过滤后待用,将玻璃板清洗干净后置于50-90℃的加热平台上,后将铸膜液浇筑在玻璃板上,后于80-150℃真空烘箱中干燥,得到的膜在乙醇中充分洗涤,之后烘干后得到一定厚度的磺化聚酰亚胺基膜;
(2)聚酰亚胺溶液的配置:将聚酰亚胺树脂和造孔剂溶解在有机溶剂中,二者的配比介于1:2-2:1之间,配置成质量浓度为1%-10%的铸膜液,过滤后备用;
(3)复合膜的制备:将基膜固定在玻璃板上,采用刮涂的方法分别在基膜两侧上涂覆一层聚酰亚胺溶液,随后在100-150℃真空烘箱中热处理1-5h,在基膜两侧均形成一层聚酰亚胺微孔层,得到的复合膜在乙醇中充分洗涤,烘干后得到磺化聚酰亚胺-聚酰亚胺复合膜。
3.根据权利要求2所述的磺化聚酰亚胺-聚酰亚胺复合膜的制备方法,其特征在于,所述磺化聚酰亚胺的离子交换容量为1.0-2.5mmol/g。
4.根据权利要求2所述的磺化聚酰亚胺-聚酰亚胺复合膜的制备方法,其特征在于,步骤(1)中的有机溶剂为间甲酚、1-甲基吡咯烷酮、N,N-二甲基乙酰胺、二甲基亚砜中的一种。
5.根据权利要求2所述的磺化聚酰亚胺-聚酰亚胺复合膜的制备方法,其特征在于,步骤(2)中的有机溶剂为1-甲基吡咯烷酮、N,N-二甲基甲酰胺中的一种。
6.根据权利要求2所述的磺化聚酰亚胺-聚酰亚胺复合膜的制备方法,其特征在于,步骤(1)中的造孔剂主要为碳酸氢铵、草酸铵、聚乙二醇、聚乙烯醇、聚丙烯胺中的一种。
7.根据权利要求2所述的磺化聚酰亚胺-聚酰亚胺复合膜的制备方法,其特征在于,所述基膜厚度为10-50μm,所述聚酰亚胺微孔层厚度为5-20μm。
CN202010198966.6A 2020-03-20 2020-03-20 耐高温磺化聚酰亚胺-聚酰亚胺复合膜及其制备方法 Pending CN111253605A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010198966.6A CN111253605A (zh) 2020-03-20 2020-03-20 耐高温磺化聚酰亚胺-聚酰亚胺复合膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010198966.6A CN111253605A (zh) 2020-03-20 2020-03-20 耐高温磺化聚酰亚胺-聚酰亚胺复合膜及其制备方法

Publications (1)

Publication Number Publication Date
CN111253605A true CN111253605A (zh) 2020-06-09

Family

ID=70954833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010198966.6A Pending CN111253605A (zh) 2020-03-20 2020-03-20 耐高温磺化聚酰亚胺-聚酰亚胺复合膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111253605A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356075A (ja) * 2003-03-28 2004-12-16 Sumitomo Chem Co Ltd 高分子電解質複合膜の連続的製造方法及び装置
US20100279204A1 (en) * 2007-12-25 2010-11-04 Takenori Isomura Separation membrane for direct liquid fuel type fuel cell & production method thereof
US20150064602A1 (en) * 2012-03-29 2015-03-05 Kolon Industries, Inc. Polymer electrolyte membrane, a method for fabricating the same, and a membrane-electrode assembly including the same
CN108428917A (zh) * 2018-01-13 2018-08-21 素水能源科技(上海)有限公司 磺化聚酰亚胺-Nafion复合膜及其制备方法
US20190348657A1 (en) * 2016-09-28 2019-11-14 Sepion Technologies, Inc. Electrochemical cells with ionic sequestration provided by porous separators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356075A (ja) * 2003-03-28 2004-12-16 Sumitomo Chem Co Ltd 高分子電解質複合膜の連続的製造方法及び装置
US20100279204A1 (en) * 2007-12-25 2010-11-04 Takenori Isomura Separation membrane for direct liquid fuel type fuel cell & production method thereof
US20150064602A1 (en) * 2012-03-29 2015-03-05 Kolon Industries, Inc. Polymer electrolyte membrane, a method for fabricating the same, and a membrane-electrode assembly including the same
US20190348657A1 (en) * 2016-09-28 2019-11-14 Sepion Technologies, Inc. Electrochemical cells with ionic sequestration provided by porous separators
CN108428917A (zh) * 2018-01-13 2018-08-21 素水能源科技(上海)有限公司 磺化聚酰亚胺-Nafion复合膜及其制备方法

Similar Documents

Publication Publication Date Title
US10923754B2 (en) Polymer blend proton exchange membrane and method for manufacturing the same
Lee et al. Polymer electrolyte membranes for fuel cells
CN109524699B (zh) 具有高电导率的交联型高温质子交换膜及其制备方法
JP5713335B2 (ja) ポリスルホン系重合体、これを含む高分子電解質膜、これを含む膜−電極接合体、これを採用した燃料電池、及び前記重合体の製造方法
WO2011046233A1 (ja) 高分子電解質膜、膜-電極接合体、及び固体高分子形燃料電池
CN100355132C (zh) 一种燃料电池用复合质子交换膜的合成方法
KR100969011B1 (ko) 고온용 고분자 블렌드 전해질 막과 이의 제조 방법
KR101063215B1 (ko) 고분자 전해질 연료전지용 강화 복합막
Higa et al. Characteristics and direct methanol fuel cell performance of polymer electrolyte membranes prepared from poly (vinyl alcohol-b-styrene sulfonic acid)
CN105161738A (zh) 钒电池用复合膜及其连续化生产的方法和用途
KR101085358B1 (ko) 실란계 화합물을 포함하는 탄화수소계 고분자막, 이의 제조방법, 이를 포함하는 막-전극 어셈블리 및 연료전지
KR101441411B1 (ko) 연료전지용 복합체 전해질 막, 이의 제조방법 및 이를 포함하는 연료전지
US20060105215A1 (en) Novel membrane and membrane electrode assemblies
Jiang et al. A new long-side-chain sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide)(PPO)/polybenzimidazole (PBI) amphoteric membrane for vanadium redox flow battery
CN100499238C (zh) 一种有机-无机复合型质子交换膜及其制备方法
KR100506096B1 (ko) 말단 술폰산기를 포함하는 고분자 및 이를 채용한 고분자전해질과 연료 전지
US20090110997A1 (en) Ion-conductive material, solid polymer electrolyte membrane and fuel cell
KR101342597B1 (ko) 연료전지용 고분자 전해질막, 그 제조방법 및 이를 채용한연료전지
CN111253605A (zh) 耐高温磺化聚酰亚胺-聚酰亚胺复合膜及其制备方法
JP2010103079A (ja) 高分子電解質、膜電極接合体および燃料電池
CN101864085A (zh) 用于燃料电池的共价交联质子交换膜的制造方法
CN109103483B (zh) 一种用于全钒液流电池的两性离子膜
JP7006085B2 (ja) 触媒層付き電解質膜、中間層インク、中間層デカールおよび固体高分子形燃料電池
CN105826580A (zh) 一种非对称性电池用复合隔膜
Ying et al. Research progress of polymer electrolyte membrane for high temperature proton exchange membrane fuel cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200609