CN111223622A - 一种利用Dy制备的钕铁硼永磁材料及其制备方法 - Google Patents
一种利用Dy制备的钕铁硼永磁材料及其制备方法 Download PDFInfo
- Publication number
- CN111223622A CN111223622A CN202010034117.7A CN202010034117A CN111223622A CN 111223622 A CN111223622 A CN 111223622A CN 202010034117 A CN202010034117 A CN 202010034117A CN 111223622 A CN111223622 A CN 111223622A
- Authority
- CN
- China
- Prior art keywords
- iron boron
- neodymium iron
- sample
- permanent magnet
- neodymium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0293—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Hard Magnetic Materials (AREA)
Abstract
本发明提供一种利用Dy制备的钕铁硼永磁材料及其制备方法,其中,该制备方法包括:在钕铁硼再生磁体样品的表面涂覆一层Dy元素粉末,在真空烧结炉内进行烧结,使Dy元素在Nd2Fe14B相晶界上扩散,最终形成壳层结构的钕铁硼永磁材料。本发明的Dy在钕铁硼晶界扩散合成性能更优异的永磁材料。钕铁硼再生磁体表面涂覆一层Dy元素粉末,在真空烧结炉内进行烧结,使Dy元素在Nd2Fe14B相晶界上扩散合成具有重稀土包裹Nd2Fe14B相的核‑壳结构的永磁体材料,可以显著提高钕铁硼再生磁体的矫顽力、磁能积、居里温度等优点。
Description
技术领域
本发明涉及材料技术领域,尤其涉及一种利用Dy制备的钕铁硼永磁材料及其制备方法。
背景技术
自Park等人发现晶界扩散技术对钕铁硼矫顽力优异的改善效果以来,吸引了大量的专家学者开展钕铁硼重稀土晶界扩散技术研究。重稀土Dy、Tb元素具有高的各向异性场,传统工艺主要在熔炼过程添加,Dy、Tb元素均匀分布整个晶粒内部,其替代Nd后提高了磁体矫顽力,但是,由于Dy、Tb元素与铁为反铁磁耦合,部分替代Nd元素后反而降低了铁原子磁矩,从而造成剩磁下降的现象。
钕铁硼废料再生磁体结构成分较熔炼工艺生产的磁体要复杂,目前对于再生磁体晶界扩散的研究较少。因此,研究并掌握钕铁硼废料相配套的晶界扩散技术,对实现钕铁硼废料的高质量利用具有非常重要的意义。
发明内容
本发明的目的在于解决上述现有技术存在的缺陷,提供一种可以在基本不影响剩磁的情况下,显著提升钕铁硼再生磁体矫顽力的方法。
本发明是这样实现的:
一种利用Dy制备的钕铁硼永磁材料的制备方法,包括:
在钕铁硼再生磁体样品的表面涂覆一层Dy元素粉末,在真空烧结炉内进行烧结,使Dy元素在Nd2Fe14B相晶界上扩散,最终形成壳层结构的富含Dy钕铁硼磁体成品,(Nd,Re)2Fe14B,其中RE=Dy,Tb;
所述钕铁硼再生磁体样品为Nd2Fe14B相;其分子式的化学计量比为:Nd2、Fe14、B1;
所述钕铁硼永磁材料的主要成分是Nd2Fe14B化合物和少量团聚的富Nd相;所述钕铁硼再生磁体样品的百分比含量为:Nd2Fe14B化合物的含量在95-97%;富Nd相的含量在3-5%。
进一步地,如上所述的利用Dy制备的钕铁硼永磁材料的制备方法,包括以下步骤:
(1)取钕铁硼再生磁体样品,将将样品加工成一定的规格,其中用取向方向为扩散方向;
(2)样品经表面处理后,烘干待用;
(3)以氟化镝DyF3作为扩散源,氟化镝沉淀物烘干后,与无水酒精按一定比例配成悬浮液,待用;
(4)将悬浮液涂覆在样品表面,涂覆量通过悬浊液的浓度和涂覆次数来进行微调,涂覆量为0.2~1.5wt%。
(5)涂覆好的样品放进真空烧结炉内进行保温烧结,使Dy元素在Nd2Fe14B相晶界上均匀扩散,Dy有效扩散量占整个磁体样品体积的0.32wt%。
进一步地,如上所述的利用Dy制备的钕铁硼永磁材料的制备方法,所述表面处理包括:酸洗、除油、除锈。
进一步地,如上所述的利用Dy制备的钕铁硼永磁材料的制备方法,所述步骤(4)中涂覆量为0.6wt%。
进一步地,如上所述的利用Dy制备的钕铁硼永磁材料的制备方法,步骤(5)中烧结温度为910℃。
根据如上任一方法制备得到的钕铁硼永磁材料。
有益效果:
本发明的Dy在钕铁硼晶界扩散合成性能更优异的永磁材料。钕铁硼再生磁体表面涂覆一层Dy元素粉末,在真空烧结炉内进行烧结,使Dy元素在Nd2Fe14B相晶界上扩散合成具有重稀土包裹Nd2Fe14B相的核-壳结构的永磁体材料,可以显著提高钕铁硼再生磁体的矫顽力、磁能积、居里温度等优点。
本专利经过大量实验得出以下结论。结果显示:
1、在一定扩散温度和时间下,重稀土扩散量有最大值,当DyF3涂覆量占样品体积的0.6wt%时,重稀土Dy有效扩散量达到0.32wt%,矫顽力增加了5.40kOe,继续提高涂覆量不能改善磁体性能。
2、样品在910℃时矫顽力达到最大值23.85kOe,此时矫顽力增加了5.15kOe。提高温度或降低温度均不能获得最佳的性能。
3、在扩散时间小于6h时,磁体矫顽力线性增加,继续延长扩散时间,磁体性能基本保持不变。当扩散时间为8h时,磁体矫顽力为增加值最高,其增加值为5.83kOe,较原磁体提高了31.5%。
4、经过扩散后,再生磁体矫顽力从18.71kOe提高到24.56kOe,提高了31.27%。通过EPMA分析显示,高含量的氧、大块团聚富钕相的存在改变了晶界镝元素的含量及分布,减小了重稀土与主相晶粒接触的表面,是导致再生磁体扩散效果差的主要原因。
附图说明
图1为再生磁体Dy扩散前后的被散射图;
图2为涂覆量与重稀土扩散量与扩散后矫顽力的关系图;
图3为扩散温度与Dy扩散后剩磁和矫顽力的关系图;
图4为扩散时间与扩散后再生磁体剩磁、矫顽力的关系图;
图5为再生磁体钕铁硼晶界扩散Dy前后性能对比图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的钕铁硼永磁材料,是经过钕铁硼磁体生产工艺线生产出来的钕铁硼永磁体优质产品。该生产线包括烧结工艺环节,其目的是在高温下实现原子的迁移使粉末颗粒之间发生黏结,使合金性能发生量和质的变化,粉末之间的黏结强度增加达到要求的合金性能。钕铁硼磁体样品的主要成分是Nd2Fe14B化合物(含量95-97%)和少量团聚的富Nd相(含量3-5%)。样品必须达到这样的成分比例才能达到本发明阐述的效果。
实施例1:
制备Dy晶界扩散于钕铁硼磁体合成具有重稀土包裹Nd2Fe14B相的核-壳结构永磁材料的方法,各项磁性能最优的工艺参数包含下述主要步骤:
(1)取来钕铁硼再生磁体样品,根据烧结炉模具规格为:12.5mm×12.5mm×4mm,又考虑到涂覆后,样品的厚度增加大约0.5mm,所以将样品加工成12.5mm×12.5mm×3.5mm规格样品,其中用取向方向为扩散方向;
(2)样品经表面处理(酸洗、除油、除锈)后,烘干待用;
(3)以氟化镝(DyF3)作为扩散源,氟化镝沉淀物烘干后,与无水酒精按一定比例配成悬浮液,待用;
(4)将悬浮液涂覆在样品表面。涂覆量主要通过悬浊液的浓度和涂覆次数来进行微调,涂覆量为0.2~1.5wt%;
(5)涂覆好的样品放进真空烧结炉内进行烧结,使Dy元素在Nd2Fe14B相晶界上扩散。烧结温度在880~950℃,扩散时间在2~10h进行试验探索最佳工艺参数。
(6)将扩散后的样品抛光,使用电子探针(EPMA)观察扩散层组织变化;
(7)测扩散后样品的各项磁性能,包括剩磁Br、矫顽力Hcj、磁能积等BH。
所述表面处理过程包括使用10%的稀盐酸浸泡5min,使表面的锈斑分解,并使用超声仪清洗去除表面的油和锈斑。
所述氟化镝(DyF3)采用湿法工艺生产,反应式如下:
DyCl3+3HF→DyF3↓+3HC
所述扩散技术控制,对4.0mm厚度规格样品进行扩散试验,初始涂覆量占样品体积的0.6wt%,扩散温度为900℃,扩散时间为6h。分别改变样品厚度、涂覆量、扩散温度和时间,观察扩散条件变化对矫顽力的影响。
产品扩散系数和磁性能参数的检测:
镝元素在钕铁硼中的扩散系数较小,其扩散过程遵循菲克第一定律,钕铁硼的扩散系数可以用式表示:
其中,D0为频率因子,Q为扩散活化能,R为扩散速率,T为扩散温度。可见镝元素的扩散受到了温度驱动。
磁性能参数:1.内禀矫顽力Hcj:铁磁体正向磁化到技术饱和后,为使磁化强度降低至零所需要的反向磁场强度,用Hcj表示,其单位是A/m。2.剩余磁感应强度Br:当磁场由饱和时的H减少至0,B并非沿原来的磁化曲线返回,而是滞后于H的变化,当H=0时,B=Br称为剩余磁感应强度。3.磁能积(BH):退磁曲线上任何一点的B和H的乘积即BH,是衡量磁体所储存能量大小的重要参数之一。
产品检测:NIM-10000H是一种全微机自动控制,专门用于大块稀土永磁无损检测装置。该设备采用H线圈+磁通计取代高斯计测量磁场,应用于高矫顽力磁体测量,目的是克服高场下Hall片非线性的缺点,提高测量精度,另外H线圈测量法消除了人为因素的影响。测量大块钕铁硼样品时,磁场由电磁铁和可调双向稳流电源产生,磁场H采用霍耳探头及集成电路组成的线路测量,B和J的测量,由电子积分器所测的磁通量计算而得。
性能测试结果:
图1为使用电子探针检测出Dy扩散前后的对比,由图中可以清晰看出Dy沿着Nd2Fe14B相的晶界扩散,形成核-壳结构的钕铁硼永磁体。
图2为Dy元素不同涂量对磁体矫顽力的影响,当涂覆量为0.6wt%时,重稀土扩散量达到0.32wt%,矫顽力增加了5.40kOe。图3为扩散温度对磁体矫顽力的影响,发现在910℃时,矫顽力最大。图4为扩散时间对磁体矫顽力的影响,发现扩散时间在8h时,矫顽力增加最大。图5为经过扩散后,再生磁体矫顽力从18.71kOe提高到24.56kOe,提高了31.27%。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (6)
1.一种利用Dy制备的钕铁硼永磁材料的制备方法,其特征在于,包括:
在钕铁硼再生磁体样品的表面涂覆一层Dy元素粉末,在真空烧结炉内进行烧结,使Dy元素在Nd2Fe14B相晶界上扩散,最终形成壳层结构的富含Dy钕铁硼磁体成品,(Nd,Re)2Fe14B,其中RE=Dy,Tb;
所述钕铁硼再生磁体样品为Nd2Fe14B相;其分子式的化学计量比为:Nd2、Fe14、B1;
所述钕铁硼永磁材料的主要成分是Nd2Fe14B化合物和少量团聚的富Nd相;所述钕铁硼再生磁体样品的百分比含量为:Nd2Fe14B化合物的含量在95-97%;富Nd相的含量在3-5%。
2.根据权利要求1所述的利用Dy制备的钕铁硼永磁材料的制备方法,其特征在于,包括以下步骤:
(1)取钕铁硼再生磁体样品,将将样品加工成一定的规格,其中用取向方向为扩散方向;
(2)样品经表面处理后,烘干待用;
(3)以氟化镝DyF3作为扩散源,氟化镝沉淀物烘干后,与无水酒精按一定比例配成悬浮液,待用;
(4)将悬浮液涂覆在样品表面,涂覆量通过悬浊液的浓度和涂覆次数来进行微调,涂覆量为0.2~1.5wt%。
(5)涂覆好的样品放进真空烧结炉内进行保温烧结,使Dy元素在Nd2Fe14B相晶界上均匀扩散、且Dy有效扩散量占整个磁体样品体积的0.32wt%。
3.根据权利要求2所述的利用Dy制备的钕铁硼永磁材料的制备方法,其特征在于,所述表面处理包括:酸洗、除油、除锈。
4.根据权利要求2所述的利用Dy制备的钕铁硼永磁材料的制备方法,其特征在于,所述步骤(4)中涂覆量为0.6wt%。
5.根据权利要求2所述的利用Dy制备的钕铁硼永磁材料的制备方法,其特征在于,步骤(5)中烧结温度为910℃。
6.根据权利要求1-5任一方法制备得到的钕铁硼永磁材料。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210124421.XA CN114420437A (zh) | 2020-01-13 | 2020-01-13 | 一种利用Dy制备的钕铁硼永磁材料及其制备方法 |
CN202010034117.7A CN111223622A (zh) | 2020-01-13 | 2020-01-13 | 一种利用Dy制备的钕铁硼永磁材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010034117.7A CN111223622A (zh) | 2020-01-13 | 2020-01-13 | 一种利用Dy制备的钕铁硼永磁材料及其制备方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210124421.XA Division CN114420437A (zh) | 2020-01-13 | 2020-01-13 | 一种利用Dy制备的钕铁硼永磁材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111223622A true CN111223622A (zh) | 2020-06-02 |
Family
ID=70829550
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010034117.7A Pending CN111223622A (zh) | 2020-01-13 | 2020-01-13 | 一种利用Dy制备的钕铁硼永磁材料及其制备方法 |
CN202210124421.XA Pending CN114420437A (zh) | 2020-01-13 | 2020-01-13 | 一种利用Dy制备的钕铁硼永磁材料及其制备方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210124421.XA Pending CN114420437A (zh) | 2020-01-13 | 2020-01-13 | 一种利用Dy制备的钕铁硼永磁材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN111223622A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114864268A (zh) * | 2022-06-07 | 2022-08-05 | 安徽吉华新材料有限公司 | 一种高矫顽力再生磁体的制备方法 |
CN114566373B (zh) * | 2022-03-18 | 2023-09-29 | 中国计量大学 | 一种高性能Nd2Fe14B磁体材料的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102483980A (zh) * | 2010-03-04 | 2012-05-30 | Tdk株式会社 | 稀土烧结磁体和电动机 |
CN104681225A (zh) * | 2013-12-03 | 2015-06-03 | 湖南稀土金属材料研究院 | 一种提高烧结钕铁硼材料性能的处理方法 |
CN107275029A (zh) * | 2016-04-08 | 2017-10-20 | 沈阳中北通磁科技股份有限公司 | 一种用钕铁硼废料生产的高性能钕铁硼永磁铁及制造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101303717B1 (ko) * | 2008-02-20 | 2013-09-04 | 가부시키가이샤 알박 | 스크랩 자석의 재생 방법 |
JP5218368B2 (ja) * | 2009-10-10 | 2013-06-26 | 株式会社豊田中央研究所 | 希土類磁石材およびその製造方法 |
CN109256274A (zh) * | 2017-07-14 | 2019-01-22 | 中国科学院宁波材料技术与工程研究所 | 低重稀土高矫顽力钕铁硼磁体的制备方法 |
CN110444381A (zh) * | 2018-05-04 | 2019-11-12 | 中国科学院宁波材料技术与工程研究所 | 一种高性能晶界扩散钕铁硼磁体及其制备方法 |
CN110428948A (zh) * | 2019-08-09 | 2019-11-08 | 桂林电子科技大学 | 一种高矫顽力的Nd-Ce-Y-Fe-B五元合金薄带永磁材料 |
-
2020
- 2020-01-13 CN CN202010034117.7A patent/CN111223622A/zh active Pending
- 2020-01-13 CN CN202210124421.XA patent/CN114420437A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102483980A (zh) * | 2010-03-04 | 2012-05-30 | Tdk株式会社 | 稀土烧结磁体和电动机 |
CN104681225A (zh) * | 2013-12-03 | 2015-06-03 | 湖南稀土金属材料研究院 | 一种提高烧结钕铁硼材料性能的处理方法 |
CN107275029A (zh) * | 2016-04-08 | 2017-10-20 | 沈阳中北通磁科技股份有限公司 | 一种用钕铁硼废料生产的高性能钕铁硼永磁铁及制造方法 |
Non-Patent Citations (3)
Title |
---|
HAJIME NAKAMURA等: "Magnetic Properties of Extremely Small Nd-Fe-B Sintered Magnets", 《IEEE TRANSACTIONS ON MAGNETICS》 * |
WEIXIAO JI等: "Coercivity enhancement of recycled Nd–Fe–B sintered magnets by grain boundary diffusion with DyH3 nano-particles", 《PHYSICA B》 * |
刘仲武: "《永磁材料基本原理与先进技术》", 30 June 2017 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114566373B (zh) * | 2022-03-18 | 2023-09-29 | 中国计量大学 | 一种高性能Nd2Fe14B磁体材料的制备方法 |
CN114864268A (zh) * | 2022-06-07 | 2022-08-05 | 安徽吉华新材料有限公司 | 一种高矫顽力再生磁体的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114420437A (zh) | 2022-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4525425B2 (ja) | フッ化物コート膜形成処理液,フッ化物コート膜形成方法及び磁石 | |
Sagawa et al. | Magnetic hardening mechanism in sintered R–Fe–B permanent magnets | |
CN104112580A (zh) | 一种稀土永磁体的制备方法 | |
JPS6274048A (ja) | 永久磁石材料及びその製造方法 | |
Zhu et al. | Magnetic properties and microstructures of terbium coated and grain boundary diffusion treated sintered Nd-Fe-B magnets by magnetron sputtering | |
Ming et al. | Enhanced magnetic performance of sintered Nd-Fe-B magnets by Dy-Co film grain boundary diffusion | |
CN101845637A (zh) | 钕铁硼磁体晶界扩散工艺 | |
JP2012099523A (ja) | 異方性希土類焼結磁石及びその製造方法 | |
Du et al. | Coercivity enhancement of the sintered Nd-Ce-Fe-B magnet via grain boundary diffusion with Tb70Fe30 alloy | |
CN111223622A (zh) | 一种利用Dy制备的钕铁硼永磁材料及其制备方法 | |
CN106920671A (zh) | 一种提高钕铁硼磁体重稀土渗透效果的方法 | |
Rieger et al. | Micromagnetic analysis applied to melt-spun NdFeB magnets with small additions of Ga and Mo | |
Liu et al. | Reutilization of Dy strips in rotating diffusion to enhance coercivity of sintered Nd-Fe-B magnets | |
Yu et al. | Microstructure optimization and coercivity enhancement of Nd-Fe-B magnet by double-step diffusion with Pr60Cu20Al20 alloy and Tb metal | |
Zhang et al. | The excess loss analysis of an easy-plane FeSiAl@ SiO2 soft magnetic composite with high permeability | |
Vasilenko et al. | Magnetics hysteresis properties and microstructure of high-energy (Nd, Dy)–Fe–B magnets with low oxygen content | |
Kim et al. | Spin reorientation and magnetocrystalline anisotropy of (Nd1− xPrx) 2Fe14B | |
Vasilenko et al. | Magnetic hysteresis properties and microstructure of high-coercivity (Nd, Dy)–Fe–B magnets with Dy less than 10 wt% and low oxygen | |
Sagawa et al. | Coercivity and microstructure of R-Fe-B sintered permanent magnets | |
Hou et al. | Tailoring the diffusion depth and microstructure of RE-Fe-B magnets by low-pressure grain boundary diffusion process | |
CN115472372A (zh) | 一种钕铁硼磁材及其制备方法 | |
Zhao et al. | Coercivity Enhancement of Sintered Nd-Fe-B Magnets by Diffusing Tb4O7 Based on Suspension Plasma Spraying | |
Cao et al. | Study on the Corrosion Resistance of (Nd, Dy)–Fe–B Magnets Obtained by Grain Boundary Diffusion Method | |
Fujii et al. | Interstitial alloys as hard magnetic materials | |
JPS62120002A (ja) | 耐食性のすぐれた永久磁石 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200602 |
|
RJ01 | Rejection of invention patent application after publication |