CN111138206A - 一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫及其制备方法 - Google Patents

一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫及其制备方法 Download PDF

Info

Publication number
CN111138206A
CN111138206A CN202010028587.2A CN202010028587A CN111138206A CN 111138206 A CN111138206 A CN 111138206A CN 202010028587 A CN202010028587 A CN 202010028587A CN 111138206 A CN111138206 A CN 111138206A
Authority
CN
China
Prior art keywords
continuous
network structure
sic nanowire
dimensional network
amorphous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010028587.2A
Other languages
English (en)
Other versions
CN111138206B (zh
Inventor
王红洁
蔡志新
苏磊
牛敏
卢德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202010028587.2A priority Critical patent/CN111138206B/zh
Publication of CN111138206A publication Critical patent/CN111138206A/zh
Application granted granted Critical
Publication of CN111138206B publication Critical patent/CN111138206B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • C04B38/0041Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter the particulate matter having preselected particle sizes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/47Oils, fats or waxes natural resins
    • C04B41/478Bitumen, asphalt, e.g. paraffin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明公开了一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫及其制备方法,将碳源溶液分散到SiC纳米线连续三维网络结构中,SiC纳米线表面的非晶碳层作为SiC纳米线之间的粘结剂,形成一个连续的三维多孔网络结构泡沫,泡沫中非晶碳层在SiC纳米线上分布均匀,且与SiC有良好的界面结合。该制备方法简单易行、对设备要求低、可量产;经该方法制得的泡沫质量轻、吸收频带宽,保证了SiC纳米线连续三维结构的稳定性。作为吸波剂泡沫,当吸波层厚度为3.0mm时,泡沫取得了10.1GHz(7.9‑18GHz)的有效吸收带宽,覆盖了整个X和Ku波段,有望实现在工业上的推广使用。

Description

一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫及其 制备方法
技术领域
本发明属于吸波材料领域,涉及一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫及其制备方法。
背景技术
随着现代信息技术的迅猛发展,电磁波干扰污染日趋严重,电磁波吸收材料在可穿戴智能电子、国防安全等领域发挥着越来越重要的作用。传统的电磁波吸收材料通常在透波聚合物基体中加入吸波颗粒填料,使其具有实际应用价值。这些材料具有高效的电磁波吸收性能,但仅限于特定的频带,面对越来越复杂频段的电磁波干扰污染则是一个明显缺点。为了实现宽频带吸收,研究人员设计并制备了具有多组分和/或多层结构的电磁波吸收剂。然而,这些材料的制备工艺复杂,其有效吸收频带很难达到雷达波(2-18GHz)带宽的80%。通过微结构设计,例如,通过构建高孔隙率和导电结构,以及使用基于碳纳米结构的材料,实现了更宽波段的电磁波吸收。然而,这些碳基电磁波吸收材料的最小RL(大于-30dB)仍然过高,这主要是由于它们在空气/吸收体界面处的介电常数引起的阻抗失配和缺乏有效的能量耗散途径所致。因此,制备同时具有高效吸收和宽吸收带的电磁波吸收材料是一个迫切的需求,但仍然是一个挑战。
碳化硅材料,作为一种传统的介电型吸波剂,由于其具有可以调谐的介电性能,得到了广泛的应用。但是越来越复杂的电磁环境对吸波材料提出了更高的要求:不仅要具备较宽的吸收能力,还应该满足厚度薄、质量轻、吸收强的需要。SiC纳米线由于其低密度、高纵横比、良好的机械柔韧性、优异的热稳定性和化学稳定性以及适合于宽带吸收的介电特性而受到越来越多的关注。而纯碳化硅由于其损耗小、吸收强度低、在基体中添加量大的缺点,已经不能满足“薄、轻、宽、强”特点的要求。因此,研究者正致力于新型吸波剂的研究开发。
碳材料由于具有密度低、结构稳定、导电导热性好的优点,在吸波材料领域表现出了很好的应用前景。碳的掺入是提高SiC纳米线材料导电性的有效途径。结合SiC/C复合材料的高孔结构,可以大大提高其电磁吸收性能。这是由于特殊的网状导电网络优化了阻抗匹配,提高了微波损耗。
然而,由于目前常规的做法是将SiC纳米线覆碳、分散后再通过冷冻干燥等方法制备成SiC/C复合材料,由于复杂的制备过程,不可避免的造成SiC纳米线的损伤和聚集,难以形成真正的连续结构,导致其吸收性能低于预期。除此之外,现有大多数的碳基吸波剂在基体中的添加仍然在30wt%以上,有效吸收频带仍在6GHz以下,轻质和宽频的性能还有待进一步的提高。因此,如何采用低成本的原料,通过简单的合成工艺,大批量制备出轻质、宽频的电磁吸波剂就成为了开发新型吸波材料亟待解决的问题。
发明内容
为了克服上述现有技术的缺点,本发明设计了一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的制备方法,并将其应用于电磁波吸收领域,该制备方法易于操作,实施条件简单,可用于工业化生产;获得的特殊结构的泡沫密度小,有效吸收频段宽,并且具有可靠的结构稳定性。
为了达到上述目的,本发明采用以下技术方案予以实现:
本发明公开了一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫,由SiC纳米线相互搭接构筑形成孔径分布范围广且可调的连续三维网络结构;其中,SiC纳米线表面包覆有非晶碳层;所述SiC纳米线的长度为100~1000μm,直径为20~50nm,非晶碳层的厚度为10~30nm。
进一步地,当吸波层厚度为3.0mm时,该超长三维SiC纳米线覆碳构筑的连续网络结构泡沫具有10.1GHz的有效吸收带宽,能够覆盖整个X和Ku波段。基于该特性,所述非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫能够作为电磁波吸收材料被广泛应用。
本发明还公开了一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的制备方法,包括以下步骤:
1)以糖类物质作为碳源,以糖类可溶性液体为溶剂,将二者混合均匀配制成碳源溶液;
2)将碳源溶液分散到SiC纳米线连续三维网络结构中,使碳源均匀包覆在网络结构中的SiC纳米线表面,并构筑节点,得到碳源修饰SiC纳米线连续三维网络结构的薄膜,然后进行干燥处理;
3)将步骤2)得到的干燥产物进行形状设计并裁剪冲压成规则的薄膜,将薄膜叠加成块体置于高度可控的热压模具中,于无氧惰性气氛中碳化处理,获得非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫。
优选地,步骤1)中,碳源溶液的质量浓度为0.5wt%~5wt%。
进一步优选地,通过控制碳源溶液浓度调控包覆在SiC连续三维网络结构中SiC纳米线表面非晶碳层的厚度,从而调控非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的吸波性能和力学性能。
优选地,糖类物质选择果糖、葡糖糖和蔗糖中的一种或几种;糖类可溶性液体选择蒸馏水和二甲基甲酰胺中的一种或两种。
优选地,步骤2)中,采用喷雾法、负压浸渍法或压滤/抽滤法将碳源溶液均匀地包覆在SiC纳米线连续三维网络结构中的SiC纳米线表面。
优选地,步骤2)中,干燥处理是在40~140℃下,处理1~5h;步骤3)中,碳化处理温度为500~1300℃,保温时间为1~5h。
优选地,步骤3)中,高度可控的热压模具用来调控最终产物即非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的密度,将密度控制在36~180mg/cm3之间。
本发明还公开了上述的非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫作为电磁波吸收材料的应用。
优选地,当吸波层厚度为3.0mm时,该超长三维SiC纳米线连续网络结构覆碳泡沫具有10.1GHz的有效吸收带宽,能够覆盖整个X和Ku波段。
与现有技术相比,本发明具有以下有益效果:
本发明公开的一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫由非晶碳包覆的SiC纳米线构筑成的连续三维网络,非晶碳层可作为SiC纳米线表面提高电磁损耗的路径,又可以构筑SiC纳米线之间的搭接点,保证三维连续多孔网络结构的结构可靠性。该泡沫中的非晶碳层在SiC纳米线上连续均匀分布,且与SiC有良好的界面结合。作为吸波剂泡沫,当吸波层厚度为3.0mm时,泡沫取得了10.1GHz(7.9-18GHz)的有效吸收带宽,覆盖了整个X和Ku波段,有望实现在工业上的推广使用。
本发明公开的上述一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的制备方法,能够有效避免传统覆碳工艺及SiC纳米线分散的繁杂步骤对结构的损害,该制备方法采用直接碳化法,通过低温下碳源的流动性实现碳源的均匀包覆,碳源液体自身的粘性可对包覆碳源的超长SiC纳米线构筑搭接点,随之高温下碳化获得碳层厚度可调、泡沫形状可设计、泡沫密度可调的目标产物;经该方法制备的泡沫完美继承了原始的SiC网络结构,保护了SiC纳米线连续三维网络结构的完整性,并在此基础上显著增强了其电磁吸收性能和力学性能。
附图说明
图1为本发明方法实施例1流程图;
图2为本发明实施例1中非晶碳修饰前后SiC纳米线连续三维网络结构吸波泡沫的XRD图;
图3为本发明实施例1中非晶碳修饰前、后SiC纳米线连续三维网络结构吸波泡沫的SEM照片;其中,a为修饰前;b为修饰后;
图4为本发明实施例1所得的非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的TEM照片及成分分析;其中,a为TEM照片;b为成分分析;c为界面;
图5为本发明实施例1所得的非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的吸波性能图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
本发明所用的SiC纳米线连续三维网络结构是采用ZL2016105664296发明专利所公开的技术制备的,制备方法为:
将甲基三甲氧基硅烷20g、二甲基二甲氧基硅烷5g、去离子水10g和酒精10g均与混合后,加入5mL硝酸作为催化剂搅拌10min后获得硅氧烷溶胶。再把高纯石墨碳毡浸入到硅氧烷溶胶中负压浸渍20min让硅氧烷在碳毡中交联,随之取出碳毡置于100℃鼓风干燥箱中干燥24h,获得硅氧烷干凝胶包覆的碳毡。将收集的碳毡置于气压炉氩气0.2MPa保护下1450℃保温2h裂解,随炉冷却后在石墨壁上获得超长SiC纳米线。SiC纳米线的长度为100~1000μm,直径为20~50nm,密度为5mg/cm3~50mg/cm3
实施例1
本发明第一实施例提出的制备方法,如图1所示,所述方法制备过程如下:
选取葡萄糖以作为碳源,以蒸馏水为溶剂,两者以一定比例均匀混合成浓度为1wt%碳源溶液;将碳源溶液以喷雾法分散到SiC纳米线连续三维网络结构中,使碳源均匀地包覆在SiC纳米线表面,并构筑更多的节点,得到SiC@碳源构筑的薄膜,并在温度为40℃,干燥时长为2h下进行干燥处理;将干燥产物进行形状设计并裁剪冲压,随之将薄膜叠加成块体进行热压处理,在无氧惰性气氛中碳化处理,热处理温度为500℃,保温时间5h,得到非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫。
本实施例所用的SiC纳米线连续三维网络结构非晶修饰前后的XRD如图2所示,可知制备的泡沫的主要成分仍是SiC;另外还有少量非晶碳。图3中a为未修饰非晶碳的SiC纳米线连续三维网络结构;图3中b为采用该方法获得的非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫SEM照片,该材料具有相互连通的三维网络状结构,并且非晶碳均匀的包覆着纳米线网络,在纳米线之间构建更多的节点,同时保证了纳米线连续网络结构的完整性。图4的TEM图片进一步说明了泡沫的网络结构以及非晶碳的均匀包覆,与SEM图相符;除此之外,通过元素线扫和高倍TEM进一步地确定了三维碳网络主要为SiC纳米线核和非晶碳壳,并且核与壳具有良好的界面结合。
将本实施例1制得的非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫用专用模具冲压成外径7.00mm、内径3.00mm、厚度2.00mm的同轴圆环样品,并与石蜡均匀混合制成吸波测试样品。用型号Agilent E5071C矢量网络分析仪测试其在2-18GHz频率范围内电磁参数,并根据传输线理论方程,通过MATLAB软件计算出了复合样品的反射损耗曲线,如图5所示。当吸波层厚度为3.0mm时,该复合材料的反射损耗(RL)值为-52.5dB,有效吸收带宽(RL<-10dB)达到了10.1GHz(7.9-18GHz),覆盖了整个X和Ku波段。可以看出,本发明制得的非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫表现出了良好的电磁波吸收性能。
实施例2
选取葡萄糖以作为碳源,以蒸馏水为溶剂,两者以一定比例均匀混合成浓度为1wt%碳源溶液;将碳源溶液以喷雾法分散到SiC纳米线连续三维网络结构中,使碳源均匀地包覆在SiC纳米线表面,并构筑更多的节点,得到SiC@碳源构筑的薄膜,并在温度为70℃,干燥时长为1h下进行干燥处理;将干燥产物进行形状设计并裁剪冲压,随之将薄膜叠加成块体进行热压处理,在无氧惰性气氛中碳化处理,热处理温度为1000℃,保温时间1h,得到非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫。
实施例3
选取葡萄糖以作为碳源,以蒸馏水为溶剂,两者以一定比例均匀混合成浓度为0.5wt%碳源溶液;将碳源溶液以喷雾法分散到SiC纳米线连续三维网络结构中,使碳源均匀地包覆在SiC纳米线表面,并构筑更多的节点,得到SiC@碳源构筑的薄膜,并在温度为140℃,干燥时长为1h下进行干燥处理;将干燥产物进行形状设计并裁剪冲压,随之将薄膜叠加成块体进行热压处理,在无氧惰性气氛中碳化处理,热处理温度为1300℃,保温时间1h,得到非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫。
实施例4
选取葡萄糖以作为碳源,以蒸馏水为溶剂,两者以一定比例均匀混合成浓度为5wt%碳源溶液;将碳源溶液以喷雾法分散到SiC纳米线连续三维网络结构中,使碳源均匀地包覆在SiC纳米线表面,并构筑更多的节点,得到SiC@碳源构筑的薄膜,并在温度为50℃,干燥时长为4h下进行干燥处理;将干燥产物进行形状设计并裁剪冲压,随之将薄膜叠加成块体进行热压处理,在无氧惰性气氛中碳化处理,热处理温度为700℃,保温时间2h,得到非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫。
实施例5
选取葡萄糖以作为碳源,以蒸馏水为溶剂,两者以一定比例均匀混合成浓度为1wt%碳源溶液;将碳源溶液以负压浸渍分散到SiC纳米线连续三维网络结构中,使碳源均匀地包覆在SiC纳米线表面,并构筑更多的节点,得到SiC@碳源构筑的薄膜,并在温度为80℃,干燥时长为2h下进行干燥处理;将干燥产物进行形状设计并裁剪冲压,随之将薄膜叠加成块体进行热压处理,在无氧惰性气氛中碳化处理,热处理温度为1100℃,保温时间1h,得到非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫。
实施例6
选取蔗糖以作为碳源,以蒸馏水为溶剂,两者以一定比例均匀混合成浓度为1wt%碳源溶液;将碳源溶液以压滤/抽滤法分散到SiC纳米线连续三维网络结构中,使碳源均匀地包覆在SiC纳米线表面,并构筑更多的节点,得到SiC@碳源构筑的薄膜,并在温度为100℃,干燥时长为1h下进行干燥处理;将干燥产物进行形状设计并裁剪冲压,随之将薄膜叠加成块体进行热压处理,在无氧惰性气氛中碳化处理,热处理温度为900℃,保温时间2h,得到非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫。
实施例7
选取蔗糖以作为碳源,以二甲基甲酰胺为溶剂,两者以一定比例均匀混合成浓度为1wt%碳源溶液;将碳源溶液以喷雾法分散到SiC纳米线连续三维网络结构中,使碳源均匀地包覆在SiC纳米线表面,并构筑更多的节点,得到SiC@碳源构筑的薄膜,并在温度为50℃,干燥时长为2h下进行干燥处理;将干燥产物进行形状设计并裁剪冲压,随之将薄膜叠加成块体进行热压处理,在无氧惰性气氛中碳化处理,热处理温度为600℃,保温时间2h,得到非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

1.一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫,其特征在于,由SiC纳米线相互搭接构筑孔径分布范围广且可调的三维连续网络结构;其中,SiC纳米线表面包覆有非晶碳层;
所述SiC纳米线的长度为100~1000μm,直径为20~50nm,非晶碳层的厚度为1至50nm。
2.如权利要求1所述的非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫,其特征在于,当吸波层厚度为3.0mm时,该超长三维SiC纳米线覆碳构筑的连续网络结构泡沫具有10.1GHz的有效吸收带宽,能够覆盖整个X和Ku波段。
3.一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的制备方法,其特征在于,包括以下步骤:
1)以糖类物质作为碳源,以糖类可溶性液体为溶剂,将二者混合均匀配制成碳源溶液;
2)将碳源溶液分散到SiC纳米线连续三维网络结构中,使碳源包覆在SiC纳米线表面,并形成相邻纳米线间的搭接结点,得到SiC/碳源构筑的纸,然后进行干燥处理;
3)将步骤2)得到的干燥产物进行形状设计并裁剪冲压成预设形状,叠加成块体置于高温无氧惰性气氛中碳化处理,获得非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫。
4.根据权利要求3所述的非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的制备方法,其特征在于,步骤1)中,碳源溶液的质量浓度为0.1wt%~10wt%。
5.根据权利要求4所述的非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的制备方法,其特征在于,通过控制碳源溶液的质量浓度调控包覆在SiC连续三维网络结构中SiC纳米线表面非晶碳层的厚度,从而调控非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的吸波性能和力学性能。
6.根据权利要求3或4所述的非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的制备方法,其特征在于,糖类物质选择单糖、二糖和多糖中的一种或几种;糖类可溶性液体选择蒸馏水和二甲基甲酰胺中的一种或两种。
7.根据权利要求3所述的非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的制备方法,其特征在于,步骤2)中,采用喷雾法、负压浸渍法或压滤/抽滤法将碳源溶液均匀地包覆在SiC纳米线连续三维网络结构中的SiC纳米线表面。
8.根据权利要求3所述的非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的制备方法,其特征在于,步骤2)中,干燥处理是在40~140℃,处理1~5h。
9.根据权利要求3所述的非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的制备方法,其特征在于,步骤3)中,碳化处理温度为500~1300℃,保温时间为1~5h。
10.根据权利要求3所述的非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的制备方法,其特征在于,步骤3)中,采用高度可控的热压模具用来调控最终产物即非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫的密度,将密度控制在36~180mg/cm3之间。
CN202010028587.2A 2020-01-11 2020-01-11 一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫及其制备方法 Active CN111138206B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010028587.2A CN111138206B (zh) 2020-01-11 2020-01-11 一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010028587.2A CN111138206B (zh) 2020-01-11 2020-01-11 一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫及其制备方法

Publications (2)

Publication Number Publication Date
CN111138206A true CN111138206A (zh) 2020-05-12
CN111138206B CN111138206B (zh) 2021-04-20

Family

ID=70524435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010028587.2A Active CN111138206B (zh) 2020-01-11 2020-01-11 一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫及其制备方法

Country Status (1)

Country Link
CN (1) CN111138206B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599758A (zh) * 2021-03-03 2021-04-02 拓米(成都)应用技术研究院有限公司 纳米硅团聚体复合负极材料及其制备方法
CN112850703A (zh) * 2021-02-25 2021-05-28 黑龙江哈工石墨科技有限公司 球形石墨提纯的工艺方法
CN113087541A (zh) * 2021-03-19 2021-07-09 西安交通大学 一种透波/吸波复合层状气凝胶及其制备方法和应用
CN113497361A (zh) * 2021-07-07 2021-10-12 东莞理工学院 一种图案化SiC微细结构及其应用
CN114195539A (zh) * 2021-12-29 2022-03-18 王云 一种SiC/PyC纳米线增强Al2O3耐高温吸波陶瓷及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112702A (ja) * 2003-10-10 2005-04-28 National Institute For Materials Science SiCナノワイヤーにより強化されたSiC複合材料
US20100068871A1 (en) * 2008-05-09 2010-03-18 Yonglai Tian Microwave Heating for Semiconductor Nanostructure Fabrication
CN101767999A (zh) * 2009-11-17 2010-07-07 高树森 纳米Al2O3、SiC薄膜包裹碳的Al2O3-MA-SiC-C质耐火浇注料及其制备方法
US20110229795A1 (en) * 2004-12-09 2011-09-22 Nanosys, Inc. Nanowire-Based Membrane Electrode Assemblies for Fuel Cells
KR20130023976A (ko) * 2011-08-30 2013-03-08 엘지이노텍 주식회사 탄화규소 분말 제조 방법
CN103408316A (zh) * 2013-07-23 2013-11-27 贵研铂业股份有限公司 C/SiC复合材料的一种连接方法
CN104927761A (zh) * 2015-05-14 2015-09-23 哈尔滨工业大学 一种SiC@C核壳结构纳米线的制备方法
CN106185946A (zh) * 2016-07-18 2016-12-07 西安交通大学 一种自支撑碳化硅纳米线纸及其制备方法
CN106698409A (zh) * 2017-01-23 2017-05-24 中国科学院宁波材料技术与工程研究所 一种三维石墨烯泡沫及其制备方法和应用
CN106898881A (zh) * 2017-02-20 2017-06-27 西北工业大学 一种三维定向碳化硅纳米线/碳吸波气凝胶的制备方法
CN109320277A (zh) * 2018-11-16 2019-02-12 江苏科技大学 一种SiCnw/C纳米复合材料的制备方法
CN109518026A (zh) * 2018-11-29 2019-03-26 苏州宏久航空防热材料科技有限公司 一种SiC纳米线增强铝碳化硅复合材料及其制备方法
CN110342954A (zh) * 2019-06-28 2019-10-18 西安工程大学 一种高强度碳泡沫材料的制备方法
CN110483053A (zh) * 2019-09-25 2019-11-22 哈尔滨工业大学 一种用于高温吸波的SiC纳米线/SiC多孔陶瓷的制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112702A (ja) * 2003-10-10 2005-04-28 National Institute For Materials Science SiCナノワイヤーにより強化されたSiC複合材料
US20110229795A1 (en) * 2004-12-09 2011-09-22 Nanosys, Inc. Nanowire-Based Membrane Electrode Assemblies for Fuel Cells
US20100068871A1 (en) * 2008-05-09 2010-03-18 Yonglai Tian Microwave Heating for Semiconductor Nanostructure Fabrication
CN101767999A (zh) * 2009-11-17 2010-07-07 高树森 纳米Al2O3、SiC薄膜包裹碳的Al2O3-MA-SiC-C质耐火浇注料及其制备方法
KR20130023976A (ko) * 2011-08-30 2013-03-08 엘지이노텍 주식회사 탄화규소 분말 제조 방법
CN103408316A (zh) * 2013-07-23 2013-11-27 贵研铂业股份有限公司 C/SiC复合材料的一种连接方法
CN104927761A (zh) * 2015-05-14 2015-09-23 哈尔滨工业大学 一种SiC@C核壳结构纳米线的制备方法
CN106185946A (zh) * 2016-07-18 2016-12-07 西安交通大学 一种自支撑碳化硅纳米线纸及其制备方法
CN106698409A (zh) * 2017-01-23 2017-05-24 中国科学院宁波材料技术与工程研究所 一种三维石墨烯泡沫及其制备方法和应用
CN106898881A (zh) * 2017-02-20 2017-06-27 西北工业大学 一种三维定向碳化硅纳米线/碳吸波气凝胶的制备方法
CN109320277A (zh) * 2018-11-16 2019-02-12 江苏科技大学 一种SiCnw/C纳米复合材料的制备方法
CN109518026A (zh) * 2018-11-29 2019-03-26 苏州宏久航空防热材料科技有限公司 一种SiC纳米线增强铝碳化硅复合材料及其制备方法
CN110342954A (zh) * 2019-06-28 2019-10-18 西安工程大学 一种高强度碳泡沫材料的制备方法
CN110483053A (zh) * 2019-09-25 2019-11-22 哈尔滨工业大学 一种用于高温吸波的SiC纳米线/SiC多孔陶瓷的制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CAIYUN LIANG等: ""Controllable Fabricating Dielectric−Dielectric SiC@C Core−Shell Nanowires for High-Performance Electromagnetic Wave Attenuation"", 《ACS APPL. MATER. INTERFACES》 *
JIANLEI KUANG等: ""Three-dimensional carbon nanotube/SiC nanowire composite network structure for high-efficiency electromagnetic wave absorption"", 《CERAMICS INTERNATIONAL》 *
MEIKANG HAN等: ""Flexible and Thermostable Graphene/SiC Nanowire Foam Composites with Tunable Electromagnetic Wave Absorption Properties"", 《ACS APPL MATER INTERFACES》 *
SHUN DONG等: "Designable synthesis of core-shell SiCw@C heterostructures with thicknessdependent electromagnetic wave absorption between the whole X-band and Ku-band", 《CHEMICAL ENGINEERING JOURNAL》 *
ZHIMIN AN等: ""Flexible and recoverable SiC nanofiber aerogels for electromagnetic wave absorption"", 《CERAMICS INTERNATIONAL》 *
ZHIXIN CAI等: ""Hydrophobic SiC@C Nanowire Foam with Broad-Band and Mechanically Controlled Electromagnetic Wave Absorption"", 《ACS APPL. MATER. INTERFACES》 *
梁彤祥等: ""SiC/CNTs纳米复合材料吸波性能的研究"", 《无机材料学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112850703A (zh) * 2021-02-25 2021-05-28 黑龙江哈工石墨科技有限公司 球形石墨提纯的工艺方法
CN112599758A (zh) * 2021-03-03 2021-04-02 拓米(成都)应用技术研究院有限公司 纳米硅团聚体复合负极材料及其制备方法
CN112599758B (zh) * 2021-03-03 2021-07-06 拓米(成都)应用技术研究院有限公司 纳米硅团聚体复合负极材料及其制备方法
CN113087541A (zh) * 2021-03-19 2021-07-09 西安交通大学 一种透波/吸波复合层状气凝胶及其制备方法和应用
CN113497361A (zh) * 2021-07-07 2021-10-12 东莞理工学院 一种图案化SiC微细结构及其应用
CN113497361B (zh) * 2021-07-07 2023-10-13 东莞理工学院 一种图案化SiC微细结构及其应用
CN114195539A (zh) * 2021-12-29 2022-03-18 王云 一种SiC/PyC纳米线增强Al2O3耐高温吸波陶瓷及其制备方法

Also Published As

Publication number Publication date
CN111138206B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN111138206B (zh) 一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫及其制备方法
CN110012656B (zh) 一种纳米复合吸波材料的制备方法
Li et al. Novel, hierarchical SiC nanowire-reinforced SiC/carbon foam composites: Lightweight, ultrathin, and highly efficient microwave absorbers
CN111454691B (zh) 一种石墨烯/非晶二氧化钛纳米棒复合材料、制备方法及其应用
CN112408356B (zh) 一种以酵母菌作为造孔剂的多孔碳微波吸收剂的制备方法
CN115074086B (zh) 一种Zn-MOFs衍生的ZnO/C/Ti3C2复合吸波材料及其制备方法
CN115058616B (zh) 一维微纳分级结构Co/C/CNTs复合吸波材料及其制备方法
Ye et al. Microwave absorption properties of Ni/C@ SiC composites prepared by precursor impregnation and pyrolysis processes
CN113264556A (zh) 一种基于膨胀石墨的碳基复合材料及其制备方法和用途
CN114180558B (zh) 石墨烯微纳腔超导膜的制备方法及相关产品和应用
CN110125428B (zh) MOF衍生的分层蛋黄-壳ZnO-Ni@CNT微球的制备及应用
CN112726194B (zh) 核壳结构碳/碳化硅纤维及其制备方法
CN113163698B (zh) 一种蜂窝状复合材料及其制备方法
CN110723720A (zh) 一种轻质宽频电磁波吸收材料及其制备方法
Wang et al. Lightweight, Flexible, and Thermal Insulating Carbon/SiO2@ CNTs Composite Aerogel for High‐Efficiency Microwave Absorption
CN110803930A (zh) 一种高导热、高导电磺化石墨烯基复合薄膜及其制备方法
CN116218027A (zh) 一种气凝胶吸波材料、电磁波吸收体及其制备方法和应用
CN115318210A (zh) 一种电磁屏蔽用二硫化钴/多孔碳/碳化硅气凝胶复合材料的制备方法和应用
CN114614272A (zh) 一种MOF衍生的MXene/Co/C复合吸波材料及其制备方法
CN111420619B (zh) 一种纤维素-壳聚糖/pani复合气凝胶的制备方法
CN111205106B (zh) 一种氮化硅@碳吸波泡沫及其制备方法和应用
CN118125826A (zh) 一种ZrB2/SiC陶瓷基复合材料及其制备方法和应用
CN117343693A (zh) 一种FeSiB基双层核壳结构吸波变色材料及其制备方法
CN115571918A (zh) 一种制备MnO2@多孔碳纳米纤维(PCNFs)复合吸波材料的方法
Qamar et al. Exploring nitrogen doped mesoporous carbon spheres for superior microwave absorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant